Variational Autoencoders

Bryan Pardo
Northwestern University
(updated fall 2022)

Reminder about Autoencoders

Simplest Autoencoder: Linear model, 1 hidden layer

() output loss £ = [|lx — X||
%=UVx

>

PN
OOC
Sl

%o

Linear
activations

Maps d dimensional
input x to k dimensional
weights I/ embedding subspace S

More generally

* With multiple layers & nonlinear
activations we can map onto a
nonlinear embedding space

* We can represent complex data this
way and use the encoder as the
input to a supervised network

* This lets us learn features from
unlabeled data, which is far easier to
get than labeled data.

%
Decoder
%+

bottleneck
// Encoder \

%

Using autoencoders for
generation

Imputation/infill = Masked Inference
%

* If the “noise” we add is masking out D g
large patches.... ecodaer
*
) bottleneck
%

» / Encoder \

L)
* We can train it to fill in blanks. |:> Mask [>

The MINIST dataset

* Famous dataset of

. .. 0000060880000 0
handwrljcten digits NV V AT /T L)))
* They trained an Ar2Razz2plz222J
autoencoder witha2-digit 3 333232733333 3333

H4MM Y sy QEdy Y Jadsddy
Sy s (Sss5s85Ss585Y
& 666G6EGEELGOLGECEE
77231277 17217177727
FLE8 58558858 85%Q 75
9577297937989 49 797

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

dataset

Qg &

NGwes Uy
YR CNOD—NWEwN

WO oS e QY

3
s
b
5
2
/
q
s
2
5

O~ AW 0~ a0 L
N P-DWIONN
ROCNRND QLA ~ K-

o)
EVNTVRE I G ORI T VR

RQNMNPNDSYN &N

S 06 00 Oy N

D -~

l

:B’V‘px

real inputs

E(x)
D(E(w))
» » E » » | ;
reconstructed
inputs

An autoencoder trained on MNIST
loss £ = ||x — D(E(x))]|*

A 2-D “latent” space of the trained autoencoder

75 LA

@
5.0 - ° g0t

25 1

~10.0 -
~15.0 -125 -100 -75 -50 -25 00 25 50

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

Generating images from “latent” vectors

0
* It is difficult to know 20
what will happen when %

you move in a direction
60
80

* There are spots in the

space that —
are..well...weird. 120

140

160

0 25 50 75 100 125 150

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

Variational Autoencoders

Based on (and figures from)
Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-392.

https://arxiv.org/pdf/1906.02691.pdf

...and
Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

https://arxiv.org/pdf/1606.05908.pdf

..and
Odaibo, Stephen, “ Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function”

https://arxiv.org/pdf/1907.08956.pdf

https://arxiv.org/pdf/1906.02691.pdf
https://arxiv.org/pdf/1606.05908.pdf
https://arxiv.org/pdf/1907.08956.pdf

A Bayesian Autoencoder

* Training goal: recreate the input dataset (just like an autoencoder)

* True objective: a model that will generate things like the training data,
but not actually the training data

 Stretch goal: Allow user selection of subclasses (e.g. which MNIST
digit) at generation time

* Hope: A smooth, continuous, interpretable latent space for
controlling generation.

Some terminology

* If you can directly sample a random variable X and see the outcome x,
we call x an observation. (e.g. the data our model is trained on)

* If you can’t directly sample a random variable Z and see the outcome
z, we call Z a latent variable.

* We'll typically use those letters with those implications: X is
observable, Z is latent.

A simple latent variable model example

 What is the chance | have Covid, if | have a positive Covid test?
* Let Z be the latent variable "Covid: yes/no”

* Let X be the observable variable “test: positive/negative”

A simple latent variable model example

* P(X) is the unconditioned (aka prior) probability of a positive test.
* P(Z) is the prior probability of having Covid.
* P(Z|X) is the posterior probability of Covid, given the observed outcome.

* P(X]|Z) is the probability of a test outcome, given the truth of whether
you have Covid. (aka the likelihood)

A really simplified overview of a trained VAE

_ Model parameters
Latent variable(s)

drawn from a O-
mean, spherical

distribution

Output examples e

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

A more detailed overview Prior dsribution: p(2)

* An encoder/decoder framework

* We train the encoder to encode
examples from the dataset as points in
the latent space

Encoder: q¢(z|x)

.
™,
.

* We train the decoder to decode points 3
in the latent space into examples in the ‘
distribution of the training data

Decoder: pe(x|z)

X-space

Dataset: D

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The Evidence distribution p(X)

A

* The Dataset (aka the Evidence)
contains examples x drawn from the
unknown distribution p(x)

‘0
*
“
*
.

» Examples could be pictures, sounds, X-Space

whatever,

* If we already had a good estimate of
p(x) we wouldn’t have to build a
VAE. We'd just sample from it.

Dataset: D

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The “true” latent distribution p(z)

 We get to pick what this is. p(z) = N(z0,1)

* To make our lives easier, we're going to Prior distribution p(2)
make pg(z) a Normal (Gaussian) _
distribution.

4

* This is a parametrized distribution. The
mean vector ¢ and covariance matrix X

are the parameters 6 o Z-Space

* We will later specify u = 0, Z = L,the
identity matrix. (a spherical, O-centered
distribution)

L
...
*
*

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The decoder

* The Decoder is a neural network
with parameters we’ll be learning.

* It maps a latent sample z into an
example x.

 The Decoder, once trained, will be
used to generate new examples.

Z-Space

A neural net

Decoder: pe(x|z)

L4
L]
L4

X-space

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The Encoder g, (z[x)

* The Encoder q, (z|x) is a neural network
we’ll be learning the parameters for.

* It approximates p(z|x), the “true”
conditional distribution of the latents,
given the data.

* Recall we set the unconditioned
distribution p(z) to be a spherical
Gaussian,

* q,(z|X), therefore, is designed to map

example x to a Gaussian distribution for z.

Encoder: q,(z|x)

A

0..
\

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

‘H‘

Getting to the math....

* Assume the probability of the evidence x and the latent variables z can be
modeled as a joint probability.

px) = [p(x2)dz
 We can factorize this like so:

p(x) = f p(x|2)p (2)dz

* We may specify p(z) before-hand. I.E., as a spherical Gaussian with mean 0.

So...we’ve got our generative model, right?

* Just take any neural network and learn a distribution p(x|z). Done!

* Well...no.

* We could assign random points in an arbitrary spherical distribution
to points in the data space...but where is our assurance that nearby
points in the distribution of z also produce things in the distribution

p(x)?
 That is what the encoder is for.

The Encoder g, (z[x)

* The Encoder q,(z|x) embodies a
normal distribution:

Q(z|X) = N(z; u(X), diag(X))

* What the network outputs are means
and covariances.

* We then sample a latent vector from
this distribution.

 What effect does this have on the z
space?

Encoder: q,(z|x)

A

0..
\

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

‘H‘

What is so hard about this?

Let X = X4 ... X,, be a set of observed variables.
Letz = z, ... z,,, be a set of latent variables of interest.

We want to infer these latent variables from the evidence. We want to
know p(z|x). If we could do this, we’d have our encoder.

p(z,X)
p(X)

p(z[x) =

How do we learn p(z|x)?

_p(zx)
p(z[x) =)

When we went the other way, making a decoder from z to x, we
dictated the distribution p(z), saying it would be a spherical Gaussian.

If we could already specify the p(x) we want here, we would not need
a decoder to generate new examples. We’d just sample directly from
the distribution.

So now what?

|dea: Set this up as an estimation problem.

* We want to learn p(z|x)
* Make a family of density functions 6
* Search through 6 to find g*(z), the density function optimizing this equation:

q*(z) = argmin Dy, (q(z)||p(z|x))
q(z)€0

Here, 0 is the set of functions. If those functions were parameterizable (e.g.
Gaussians), we could think of 8 as being defined by the possible parameter
settings.

In the end we’ll want to do this...

q*(z|x) = argmin Dy (q(z|x)||p(z[x))
q(z|x)€od

Kingma et al. add a dependence on the data in evidence to this
formulation. These folks invented the Variational Autoencoder (VAE).

Recall g(z|x) is learned by our encoder neural net.

Note: we still don’t know p(z|x)
So how do we minimize this divergence?

Relation to expected value

Q(z))
P(z|x)

DL QEIPEI) =) Q@log

=) 0(x)(0gQ(2) — log P(z]))

= E, ol(logQ(z) —log P(z|x))]

Switching to Doersch’s formulation

D [Q(z)[|P(z]|X)] = Ez~q [log Q(z) — log P(z|X)]
KL Divergence is notated as D[A| | B]

Q(z) is our user-defined distribution

P(z|X) is our unknown conditional distribution for z, given
the evidence X.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Doing some math...

Definition of KL divergence
DIQ@)||P(z[x)] = E,-ol(logQ(z) —log(P(z|x))]

Applying Bayes’ rule

_ P P _
= E, .o |logQ(z) — log ((XILZ(zC) (Z))

Using logarithms
= E,¢ [logQ(z) — log(P(xIZ)) — log(P(z)) + log(P(x))]

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Doing some math...
Where we left off

= E,¢ [logQ(z) — log(P(sz)) — log(P(z)) + log(P(x))]
Moving P(x) out of the expectation...since it doesn’t depend on z
= E,¢ [log Q(z) — log(P(xlz)) — log(P(Z))] + log(P(x))

Remember how we defined KL divergence...

= D[Q(2)||P(2)] + Ez~q [—1og(P(x]2))] + log(P(x))

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Doing some math...
Where we left off

DIQ(2)||P(z|x)]
= D[Q@)||P(2)] + Ez~q |~ log(P(x|2))] + log(P(x))

Negate both sides and move terms
log(P(x)) — DIQ@IIP(zx)] = E,-q|log(P(x|2))] — DIQ(2)||P(2)]

Our Q(z) doesn’t depend on the evidence x.
Let’s rewrite our formula to add that.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Conditioning latent generation on evidence

Note that X is fixed, and Q can be any distribution, not just a distribution
which does a good job mapping X to the z’s that can produce X. Since we’re
interested in inferring P(X), it makes sense to construct a Q which does
depend on X, and in particular, one which makes D [Q(z)||P(z|X)] small:

log P(X) — D [Q(zIX)||P(z]X)] = E.-q [log P(X|2)] — D [Q(z|X) | P(2)]

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

The left side of this function:

log P(X) — D [Q(z|X)||P(z|X)] =

Log P(X) is the log probability of the evidence. We don’t know this. If we did, we’d
skip all this and sample directly from P(X).

D[Q(z|X)||P(z|X)] is the divergence between Q(z|X) , the function our
ENCODER will learn for the conditional distribution of the latents z, and the
(unknown) real conditional distribution P(z]|x).

NOTE: We won’t be optimizing this side of the equation.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

The right side of this function:

— E,o[log P(X|2)] — D [Q(z|X) || P(2)]

E, q[logP(X|z)] is the expected value of taking a sample our ENCODER made,
based on a real example X, and passing that to our DECODER’s learned function
P(X|z) . We want this to equal log P(X).

D[Q(z|X)||P(z)] is the divergence between the distribution learned by our
ENCODER, Q(z|X), and the “true” unconditioned latent distribution P(z).

We set P(z) before-hand to be N(z; 0, I). That’s our choice.

We constrain the learned encoder function Q(z|X) to be a Gaussian with a diagonal
covariance matrix.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

So what are we optimizing?
log P(X) — D [Q(2|X)||P(z|X)] = Ez~q [log P(X|2)] — D [Q(z|X)||P(2)]

THIS!

We want what comes out of the decoder: E,_,[logP(X]|z)] to
be equal to the X from the data that went into the encoder.

We can measure that with Euclidean distance.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

So what are we optimizing?
log P(X) — D [Q(2|X)||P(z|X)] = Ez~q [log P(X|2)] — D [Q(z|X)||P(2)]

THIS!

The learned parameters for the encoder’s distribution Q (z|X) are the
mean vector i and the values of the diagonal of our covariance matrix .
(Remember, we constrained X to be diagonal).

P(z), the distribution we’re matching, is N(z;0.,I).

We want u to tend to the 0 vector and tr(X) trace to tend to D, where D
is the dimensionality of the latent space. That pushes X towards I.

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

log P(X) — D [Q(2|X)[|P(z]X)] = E.-q [log P(X|2)] — D [Q(|X) | P(2)]

|X — f(2)]?
A
f(z)
I\
Decoder
KLIN (u(X), S(X)[IN(0, 1)) ‘?
Sample z from N (X)), X(X))
Blue box indicates loss measurement
(X)) || E(X)
Red box indicates non-differentiable
Encoder
(@)
1
X

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Original form

~ dp(z[x)

Reparameterized form

Backprop l

f
I
V.f 2z =gpxe)
“ /1

Vof ¢

~p(e)

: Deterministic node

‘ : Random node

— : Evaluation of f

===gp . Differentiation of f

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

1
f(z)
A

KLIN (u(X), S(X))[IN(0.1)]] | Decoder

N N (P)
Blue box indicates loss measurement
Red box indicates non-differentiable HX)[|ZX)
Encoder | |Sample ¢ from N (0,])
Q)
Y

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Where is the “evidence lower bound”?
log P(X) — D [Q(z|X)||P(z| X)] = E;~q [log P(X|z)] — D [Q(z|X)||P(z)]

The ELBO

Rearranging to isolate the log evidence on the left.
log P(X) = E;~q [log P(X|z)] — D [Q(z|X)||P(2)] + D[Q(z|X)| P(z|X)]

KL divergence is non-negative.
So the ELBO forms a lower bound on the log evidence.

log P(X) = E;q [log P(X|z)] = D [Q(z|X)||P(2)]

Discussion points

* How do we make these things controllable?
* How do we navigate the latent space?
* What is “disentanglement”?

Adding class conditioning

Why do we want this?

* If | train a VAE on a big dataset of imaged (e.g. CFAR100), | want to be
able to use it to generate an image of a particular class (like “dog”)

* Without class conditioning, how could | do this?

* Let’s think about the latent space....

=70

KLIN (Y. X), 2(Y, X)) [N(0. 1)

Decoder

N\

(v, X)][0V, X)]

(P)

Encoder | Sample € from NV (0,)

@
0\

}/‘

Decoder

(P)

X | I sample z from N (0, 1) |

Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure 4. Right: the same model at test time, when we want to sample from

P(Y|X).

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Example output

Unconditioned generation

HHENRNGHEEE
Z|2[9|2]1]0]1]1]7]3

I
A
18

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

VAE vs Autoencoder: unconditioned output

Conditional MNIST generation

Regressor generation Ground Truth CVAE generation

BIEIEIE] MW [ENdRd
S|9(7(5 S|97[6
EJRIEIC] EA1EIEN
EIEIEE] FAEIEIEN

Doersch, Carl, “Tutorial on Variational Autoencoders “ (2021)

Kingma’s formulation

