Variational Autoencoders

Bryan Pardo Northwestern University (updated fall 2022)

Reminder about Autoencoders

Simplest Autoencoder: Linear model, 1 hidden layer

 $\log \mathcal{L} = \|x - \tilde{x}\|^2$ $\tilde{x} = UVx$

Maps *d* dimensional input *x* to *k* dimensional embedding subspace *S*

More generally

- With multiple layers & nonlinear activations we can map on to a nonlinear embedding space
- We can represent complex data this way and use the encoder as the input to a supervised network
- This lets us learn features from unlabeled data, which is far easier to get than labeled data.

Using autoencoders for generation

Imputation/infill = Masked Inference

• If the "noise" we add is masking out large patches....

• We can train it to fill in blanks.

The MNIST dataset

- Famous dataset of handwritten digits
- They trained an autoencoder with a 2-digit

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

dataset

A 2-D "latent" space of the trained autoencoder

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

Generating images from "latent" vectors

- It is difficult to know what will happen when you move in a direction
- There are spots in the space that are...well...weird.

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18

Variational Autoencoders

Based on (and figures from)

Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-392.

https://arxiv.org/pdf/1906.02691.pdf

...and Doersch, Carl, "Tutorial on Variational Autoencoders " (2021)

https://arxiv.org/pdf/1606.05908.pdf

...and

Odaibo, Stephen, "Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function"

https://arxiv.org/pdf/1907.08956.pdf

A Bayesian Autoencoder

- Training goal: recreate the input dataset (just like an autoencoder)
- True objective: a model that will generate things like the training data, but not actually the training data
- Stretch goal: Allow user selection of subclasses (e.g. which MNIST digit) at generation time
- Hope: A smooth, continuous, interpretable latent space for controlling generation.

Some terminology

- If you can directly sample a random variable X and see the outcome x, we call x an **observation**. (e.g. the data our model is trained on)
- If you can't directly sample a random variable Z and see the outcome z, we call Z a **latent variable**.
- We'll typically use those letters with those implications: X is observable, Z is latent.

A simple latent variable model example

- What is the chance I have Covid, if I have a positive Covid test?
- Let Z be the latent variable "Covid: yes/no"
- Let X be the observable variable "test: positive/negative"

A simple latent variable model example

- P(X) is the unconditioned (aka **prior**) probability of a positive test.
- P(Z) is the **prior** probability of having Covid.
- P(Z|X) is the **posterior** probability of Covid, given the observed outcome.
- P(X|Z) is the probability of a test outcome, given the truth of whether you have Covid. (aka the **likelihood**)

A really simplified overview of a trained VAE

Latent variable(s) drawn from a 0mean, spherical distribution

Output examples

A more detailed overview

- An encoder/decoder framework
- We train the encoder to encode examples from the dataset as points in the latent space
- We train the decoder to decode points in the latent space into examples in the distribution of the training data

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The Evidence distribution $p(\mathbf{x})$

- The Dataset (aka the Evidence) contains examples x drawn from the unknown distribution p(x)
- Examples could be pictures, sounds, whatever.
- If we already had a good estimate of p(x) we wouldn't have to build a VAE. We'd just sample from it.

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The "true" latent distribution p(z)

- We get to pick what this is.
- To make our lives easier, we're going to make $p_{\theta}(z)$ a Normal (Gaussian) distribution.
- This is a parametrized distribution. The mean vector μ and covariance matrix Σ are the parameters θ
- We will later specify $\mu = 0$, $\Sigma = I$, the identity matrix. (a spherical, 0-centered distribution)

 $p(z) = \mathcal{N}(z; 0, \mathbf{I})$

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The decoder

- The Decoder is a neural network with parameters we'll be learning.
- It maps a latent sample z into an example x.
- The Decoder, once trained, will be used to generate new examples.

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

The Encoder $q_{\varphi}(\mathbf{z}|\mathbf{x})$

- The Encoder $q_{\varphi}(\mathbf{z}|\mathbf{x})$ is a neural network we'll be learning the parameters for.
- It approximates $p(\mathbf{z}|\mathbf{x})$, the "true" conditional distribution of the latents, given the data.
- Recall we set the unconditioned distribution $p(\mathbf{z})$ to be a spherical Gaussian,
- $q_{\varphi}(\mathbf{z}|\mathbf{x})$, therefore, is designed to map example x to a Gaussian distribution for z.

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

Getting to the math....

• Assume the probability of the evidence x and the latent variables z can be modeled as a joint probability.

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

• We can factorize this like so:

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

• We may specify $p(\mathbf{z})$ before-hand. I.E., as a spherical Gaussian with mean 0.

So...we've got our generative model, right?

- Just take any neural network and learn a distribution $p(\mathbf{x}|\mathbf{z})$. Done!
- Well...no.
- We could assign random points in an arbitrary spherical distribution to points in the data space...but where is our assurance that nearby points in the distribution of z also produce things in the distribution p(x)?
- That is what the encoder is for.

• The Encoder $q_{\varphi}(\mathbf{z}|\mathbf{x})$ embodies a normal distribution:

 $Q(z|X) = N(z; \mu(X), \operatorname{diag}(X))$

- What the network outputs are means and covariances.
- We then sample a latent vector from this distribution.
- What effect does this have on the z space?

What is so hard about this?

Let $\mathbf{x} = x_1 \dots x_n$ be a set of observed variables. Let $\mathbf{z} = z_1 \dots z_m$ be a set of latent variables of interest.

We want to infer these latent variables from the evidence. We want to know $p(\mathbf{z}|\mathbf{x})$. If we could do this, we'd have our encoder.

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}$$

How do we learn $p(\mathbf{z}|\mathbf{x})$?

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}$$

When we went the other way, making a decoder from z to x, we dictated the distribution p(z), saying it would be a spherical Gaussian.

If we could already specify the $p(\mathbf{x})$ we want here, we would not need a decoder to generate new examples. We'd just sample directly from the distribution.

So now what?

Idea: Set this up as an estimation problem.

- We want to learn $p(\mathbf{z}|\mathbf{x})$
- Make a family of density functions $\boldsymbol{\theta}$
- Search through θ to find $q^*(\mathbf{z})$, the density function optimizing this equation:

$$q^*(\mathbf{z}) = \underset{q(\mathbf{z})\in\theta}{\operatorname{argmin}} D_{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}))$$

Here, θ is the set of functions. If those functions were parameterizable (e.g. Gaussians), we could think of θ as being defined by the possible parameter settings.

In the end we'll want to do this...

$$q^*(\mathbf{z}|\mathbf{x}) = \underset{q(\mathbf{z}|\mathbf{x})\in\theta}{\operatorname{argmin}} D_{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x}))$$

Kingma et al. add a dependence on the data in evidence to this formulation. These folks invented the Variational Autoencoder (VAE). Recall $q(\mathbf{z}|\mathbf{x})$ is learned by our encoder neural net. Note: we still don't know $p(\mathbf{z}|\mathbf{x})$ So how do we minimize this divergence? Relation to expected value

$$D_{KL}(Q(z)||P(z|x)) = \sum_{z} Q(z) \log\left(\frac{Q(z)}{P(z|x)}\right)$$
$$= \sum_{z} Q(z) (\log Q(z) - \log P(z|x))$$
$$= E_{z \sim Q} [(\log Q(z) - \log P(z|x))]$$

Switching to Doersch's formulation

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

KL Divergence is notated as D[A||B]

Q(z) is our user-defined distribution

P(z|X) is our unknown conditional distribution for z, given the evidence X.

Doing some math...

Definition of KL divergence

 $\mathcal{D}[Q(z)||P(z|x)] = E_{z \sim Q}[(\log Q(z) - \log(P(z|x))]$

$$= E_{z \sim Q} \left[\log Q(z) - \log \left(\frac{P(x|z)P(z)}{P(x)} \right) \right]$$

Using logarithms

 $= E_{z \sim Q} \left[\log Q(z) - \log \left(P(x|z) \right) - \log \left(P(z) \right) + \log \left(P(x) \right) \right]$

Doing some math...

Where we left off

$$= E_{z \sim Q} \left[\log Q(z) - \log \left(P(x|z) \right) - \log \left(P(z) \right) + \log \left(P(x) \right) \right]$$

Moving P(x) out of the expectation...since it doesn't depend on z

$$= E_{z \sim Q} \left[\log Q(z) - \log \left(P(x|z) \right) - \log \left(P(z) \right) \right] + \log \left(P(x) \right)$$

Remember how we defined KL divergence...

$$= \mathcal{D}[Q(z)||P(z)] + E_{z \sim Q} \left[-\log(P(x|z)) \right] + \log(P(x))$$

Doing some math...

Where we left off

 $\mathcal{D}[Q(z)||P(z|x)] = \mathcal{D}[Q(z)||P(z)] + E_{z \sim Q} \left[-\log(P(x|z)) \right] + \log(P(x))$

Negate both sides and move terms

 $\log(P(x)) - \mathcal{D}[Q(z)||P(z|x)] = E_{z \sim Q}\left[\log(P(x|z))\right] - \mathcal{D}[Q(z)||P(z)]$

Our Q(z) doesn't depend on the evidence x. Let's rewrite our formula to add that.

Conditioning latent generation on evidence

Note that *X* is fixed, and *Q* can be *any* distribution, not just a distribution which does a good job mapping *X* to the *z*'s that can produce *X*. Since we're interested in inferring P(X), it makes sense to construct a *Q* which *does* depend on *X*, and in particular, one which makes $\mathcal{D}[Q(z)||P(z|X)]$ small:

 $\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right]$

The left side of this function:

 $\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right]$

Log P(X) is the log probability of the evidence. We don't know this. If we did, we'd skip all this and sample directly from P(X).

D[Q(z|X)||P(z|X)] is the divergence between Q(z|X), the function our ENCODER will learn for the conditional distribution of the latents z, and the (unknown) real conditional distribution P(z|x).

NOTE: We won't be optimizing this side of the equation.

The right side of this function:

 $\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right]$

 $E_{z\sim Q}[\log P(X|z)]$ is the expected value of taking a sample our ENCODER made, based on a real example X, and passing that to our DECODER's learned function P(X|z). We want this to equal log P(X).

D[Q(z|X)||P(z)] is the divergence between the distribution learned by our ENCODER, Q(z|X), and the "true" unconditioned latent distribution P(z).

We set P(z) before-hand to be N(z; 0, I). That's our choice.

We constrain the learned encoder function Q(z|X) to be a Gaussian with a diagonal covariance matrix.

So what are we optimizing?

 $\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right]$ THIS!

We want what comes out of the decoder: $E_{z\sim Q}[\log P(X|z)]$ to be equal to the X from the data that went into the encoder.

We can measure that with Euclidean distance.

So what are we optimizing?

 $\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right]$ THIS!

The learned parameters for the encoder's distribution Q(z|X) are the mean vector μ and the values of the diagonal of our covariance matrix Σ . (Remember, we constrained Σ to be diagonal).

P(z), the distribution we're matching, is N(z;0,I).

We want μ to tend to the 0 vector and tr(Σ) trace to tend to D, where D is the dimensionality of the latent space. That pushes Σ towards **I**.

$\log P(X) - \mathcal{D}\left[Q(z|X) \| P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X) \| P(z)\right].$

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

A graphical view

Blue box indicates loss measurement

Red box indicates non-differentiable

Doersch, Carl, "Tutorial on Variational Autoencoders" (2021)

Where is the "evidence lower bound"?

 $\log P(X) - \mathcal{D} \left[Q(z|X) \| P(z|X) \right] = E_{z \sim Q} \left[\log P(X|z) \right] - \mathcal{D} \left[Q(z|X) \| P(z) \right]$ The ELBO

Rearranging to isolate the log evidence on the left.

 $\log P(X) = E_{z \sim Q} \left[\log P(X|z) \right] - \mathcal{D} \left[Q(z|X) \| P(z) \right] + \mathcal{D} \left[Q(z|X) \| P(z|X) \right]$

KL divergence is non-negative.

So the ELBO forms a lower bound on the log evidence.

 $\log P(X) \geq E_{z \sim Q} \left[\log P(X|z) \right] - \mathcal{D} \left[Q(z|X) \| P(z) \right]$

Discussion points

- How do we make these things controllable?
- How do we navigate the latent space?
- What is "disentanglement"?

Adding class conditioning

Why do we want this?

- If I train a VAE on a big dataset of imaged (e.g. CFAR100), I want to be able to use it to generate an image of a particular class (like "dog")
- Without class conditioning, how could I do this?
- Let's think about the latent space....

Figure 6: Left: a training-time conditional variational autoencoder implemented as a feedforward neural network, following the same notation as Figure 4. Right: the same model at test time, when we want to sample from P(Y|X).

Example output

Unconditioned generation

VAE vs Autoencoder: unconditioned output

Doersch, Carl, "Tutorial on Variational Autoencoders" (2021)

Conditional MNIST generation

Kingma's formulation