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Reminder about Autoencoders



Simplest Autoencoder: Linear model, 1 hidden layer

input 𝑥

output (𝑥

weights 𝑉

weights 𝑈

loss ℒ = 𝑥 − (𝑥 !

(𝑥 = 𝑈𝑉𝑥

Linear
activations Maps d dimensional 

input x to k dimensional 
embedding subspace S



More generally

• With multiple layers & nonlinear 
activations we can map on to a 
nonlinear embedding space

• We can represent complex data this 
way and use the encoder as the 
input to a supervised network

• This lets us learn features from 
unlabeled data, which is far easier to 
get than labeled data.

bottleneck

Encoder

Decoder



Using autoencoders for 
generation



Imputation/infill = Masked Inference

• If the “noise” we add is masking out 
large patches….

• We can train it to fill in blanks.

bottleneck

Encoder

Decoder

Mask



The MNIST dataset

• Famous dataset of 
handwritten digits
• They trained an 

autoencoder with a 2-digit

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18



An autoencoder trained on MNIST
loss ℒ = 𝑥 − 𝐷(𝐸 𝑥 ) !



A 2-D “latent” space of the trained autoencoder

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18



Generating images from “latent” vectors

• It is difficult to know 
what will happen when 
you move in a direction

• There are spots in the 
space that 
are…well…weird.

https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-autoencoders-22bd41e56d18



Variational Autoencoders
Based on (and figures from)

Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-392.

https://arxiv.org/pdf/1906.02691.pdf

…and 

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

https://arxiv.org/pdf/1606.05908.pdf

…and

Odaibo, Stephen, “ Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function”

https://arxiv.org/pdf/1907.08956.pdf

https://arxiv.org/pdf/1906.02691.pdf
https://arxiv.org/pdf/1606.05908.pdf
https://arxiv.org/pdf/1907.08956.pdf


A Bayesian Autoencoder

• Training goal: recreate the input dataset (just like an autoencoder)

• True objective: a model that will generate things like the training data, 
but not actually the training data 

• Stretch goal: Allow user selection of subclasses (e.g. which MNIST 
digit) at generation time

• Hope: A smooth, continuous, interpretable latent space for 
controlling generation.



Some terminology

• If you can directly sample a random variable X and see the outcome x, 
we call x an observation. (e.g. the data our model is trained on)

• If you can’t directly sample a random variable Z and see the outcome 
z, we call Z a latent variable. 

• We’ll typically use those letters with those implications: X is 
observable, Z is latent.



A simple latent variable model example

• What is the chance I have Covid, if I have a positive Covid test?

• Let Z be the latent variable ”Covid: yes/no” 

• Let X be the observable variable “test: positive/negative”



A simple latent variable model example

• P(X) is the unconditioned (aka prior) probability of a positive test.

• P(Z) is the prior probability of having Covid.

• P(Z|X) is the posterior probability of Covid, given the observed outcome.

• P(X|Z) is the probability of a test outcome, given the truth of whether 
you have Covid. (aka the likelihood)



A really simplified overview of a trained VAE

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Model parameters
Latent variable(s)
drawn from a 0-
mean, spherical 
distribution

Output examples 



A more detailed overview

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

• An encoder/decoder framework

• We train the encoder to encode 
examples from the dataset as points in 
the latent space

• We train the decoder to decode points 
in the latent space into examples in the 
distribution of the training data

𝑝(𝑧)



The Evidence distribution 𝑝(𝐱)

• The Dataset (aka the Evidence) 
contains examples x drawn from the 
unknown distribution p(x)

• Examples could be pictures, sounds, 
whatever. 

• If we already had a good estimate of 
𝑝(𝐱) we wouldn’t have to build a 
VAE. We’d just sample from it. 

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.



The ”true” latent distribution 𝑝(𝑧)
• We get to pick what this is.

• To make our lives easier, we’re going to 
make  𝑝!(𝑧) a Normal (Gaussian) 
distribution.

• This is a parametrized distribution. The 
mean vector 𝜇 and covariance matrix Σ
are the parameters 𝜃

• We will later specify 𝜇 = 0, Σ = 𝐈,the 
identity matrix. (a spherical, 0-centered 
distribution)

𝑝(𝑧) = Ν(𝑧; 0, I)

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.

𝑝(𝑧)



The decoder 

• The Decoder is a neural network 
with parameters we’ll be learning.

• It maps a latent sample z into an 
example x.

• The Decoder, once trained, will be 
used to generate new examples.

𝐴 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.



The Encoder 𝑞,(𝐳|𝐱)

• The Encoder 𝑞!(𝐳|𝐱) is a neural network 
we’ll be learning the parameters for. 

• It approximates 𝑝(𝐳|𝐱), the “true” 
conditional distribution of the latents, 
given the data.

• Recall we set the unconditioned 
distribution 𝑝(𝐳) to be a spherical 
Gaussian, 

• 𝑞!(𝐳|𝐱), therefore, is designed to map 
example x to a Gaussian distribution for z.

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.



• Assume the probability of the evidence x and the latent variables z can be 
modeled as a joint probability.

• We can factorize this like so:

• We may specify 𝑝 𝐳 before-hand. I.E., as a spherical Gaussian with mean 0.

Getting to the math….

𝑝 𝐱 = 6𝑝 𝐱, 𝐳 𝑑𝐳

𝑝 𝐱 = 6𝑝 𝐱|𝐳 𝑝(𝐳)𝑑𝐳



So…we’ve got our generative model, right? 

• Just take any neural network and learn a distribution 𝑝 𝐱|𝐳 . Done!
• Well…no.
• We could assign random points in an arbitrary spherical distribution 

to points in the data space…but where is our assurance that nearby 
points in the distribution of z also produce things in the distribution 
p(x)?
• That is what the encoder is for. 



The Encoder 𝑞,(𝐳|𝐱)

• The Encoder 𝑞"(𝐳|𝐱) embodies a 
normal distribution: 
𝑄 𝑧 𝑋 = 𝑁(𝑧; 𝜇 X , diag X )

• What the network outputs are means 
and covariances.

• We then sample a latent vector from 
this distribution.

• What effect does this have on the z 
space? 

Adapted from Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.



What is so hard about this?

Let 𝐱 = x#… x𝒏 be a set of observed variables.
Let 𝐳 = z#… z𝒎 be a set of latent variables of interest.

We want to infer these latent variables from the evidence. We want to 
know 𝑝 𝐳 𝐱 . If we could do this, we’d have our encoder.

𝑝(𝐳|𝐱) =
𝒑(𝐳, 𝐱)
𝒑(𝐱)



How do we learn 𝑝(𝐳|𝐱)?

𝑝(𝐳|𝐱) =
𝒑(𝐳, 𝐱)
𝒑(𝐱)

When we went the other way, making a decoder  from z to x, we 
dictated the distribution 𝒑 𝐳 , saying it would be a spherical Gaussian. 
If we could already specify the 𝒑 𝐱 we want here, we would not need 
a decoder to generate new examples. We’d just sample directly from 
the distribution.  
So now what?



Idea: Set this up as an estimation problem.

• We want to learn 𝑝 𝐳 𝐱
• Make a family of density functions 𝜃
• Search through 𝜃 to find 𝑞∗(𝐳), the density function optimizing this equation:

𝑞∗ 𝐳 = argmin
*(𝐳)∈,

𝐷-.(𝑞(𝐳)||𝑝 𝐳 𝐱 )

Here, 𝜃 is the set of functions. If those functions were parameterizable (e.g. 
Gaussians), we could think of 𝜃 as being defined by the possible parameter 
settings. 



In the end we’ll want to do this…

𝑞∗ 𝐳|𝐱 = argmin
*(𝐳|𝐱)∈,

𝐷-.(𝑞 𝐳 𝐱 ||𝑝 𝐳 𝐱 )

Kingma et al. add a dependence on the data in evidence to this 
formulation. These folks invented the Variational Autoencoder (VAE). 
Recall 𝑞 𝐳 𝐱 is learned by our encoder neural net. 
Note: we  still don’t know 𝑝 𝐳 𝐱
So how do we minimize this divergence?



Relation to expected value

𝐷45(𝑄(𝑧)| 𝑃(𝑧|𝑥 ) =1
6

𝑄 𝑧 𝑙𝑜𝑔
𝑄(𝑧)
𝑃(𝑧|𝑥)

=1
6

𝑄(𝑧) log𝑄(𝑧) − log𝑃(𝑧|𝑥)

= 𝐸6~8 log𝑄(𝑧) − log𝑃(𝑧|𝑥)



Switching to Doersch’s formulation

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

KL Divergence is notated as D[A||B]

Q(z) is our user-defined distribution

P(z|X) is our unknown conditional distribution for z, given 
the evidence X.



Doing some math…

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Applying Bayes’ rule

𝒟 𝑄 𝑧 ||𝑃(𝑧|𝑥) = 𝐸/~1 log𝑄 𝑧 − log( 𝑃(𝑧|𝑥)

= 𝐸/~1 log𝑄 𝑧 − 𝑙𝑜𝑔
𝑃 𝑥 𝑧 𝑃(𝑧)

𝑃(𝑥)
Using logarithms

= 𝐸/~1 log𝑄 𝑧 − 𝑙𝑜𝑔 𝑃 𝑥 𝑧 − log 𝑃 𝑧 + log 𝑃 𝑥

Definition of KL divergence



Doing some math…

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Moving P(x) out of the expectation…since it doesn’t depend on z

Where we left off

= 𝐸/~1 log𝑄 𝑧 − 𝑙𝑜𝑔 𝑃 𝑥 𝑧 − log 𝑃 𝑧 + log 𝑃 𝑥

Remember how we defined KL divergence…

= 𝐸/~1 log𝑄 𝑧 − 𝑙𝑜𝑔 𝑃 𝑥 𝑧 − log 𝑃 𝑧 + log 𝑃 𝑥

= 𝒟 𝑄 𝑧 ||𝑃(𝑧) + 𝐸/~1 − log 𝑃 𝑥|𝑧 + log 𝑃 𝑥



Doing some math…

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Where we left off

𝒟 𝑄 𝑧 ||𝑃(𝑧|𝑥)
= 𝒟 𝑄 𝑧 ||𝑃(𝑧) + 𝐸/~1 − log 𝑃 𝑥|𝑧 + log 𝑃 𝑥

Negate both sides and move terms 

log 𝑃 𝑥 − 𝒟 𝑄 𝑧 ||𝑃(𝑧|𝑥) = 𝐸'~) log 𝑃 𝑥|𝑧 − 𝒟 𝑄 𝑧 ||𝑃(𝑧)

Our Q(z) doesn’t depend on the evidence x.
Let’s rewrite our formula to add that.



Conditioning latent generation on evidence

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)



The left side of this function:

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Log P(X) is the log probability of the evidence. We don’t know this. If we did, we’d 
skip all this and sample directly from P(X).

𝐷[𝑄(𝑧|𝑋)||𝑃 𝑧 𝑋 ] is the divergence between 𝑄(𝑧|𝑋) , the function our 
ENCODER will learn for the conditional distribution of the latents z, and the 
(unknown) real conditional distribution 𝑃 𝑧 𝑥 .

NOTE: We won’t be optimizing this side of the equation.



The right side of this function:

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

𝐸0~2[log𝑃 𝑋 𝑧 ] is the expected value of taking a sample our ENCODER made, 
based on a real example X, and passing that to our DECODER’s learned function 
𝑃 𝑋 𝑧 . We want this to equal log P(X).

𝐷[𝑄(𝑧|𝑋)| 𝑃 𝑧 is the divergence between the distribution learned by our 
ENCODER,  Q 𝑧 𝑋 , and the “true” unconditioned latent distribution 𝑃(𝑧).

We set 𝑷 𝒛 before-hand to be 𝑵 𝒛; 𝟎, 𝑰 . That’s our choice.

We constrain the learned  encoder function Q 𝑧 𝑋 to be a Gaussian with a diagonal 
covariance matrix.



So what are we optimizing? 

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

THIS!

We want what comes out of the decoder:  𝐸6~8[log𝑃 𝑋 𝑧 ] to 
be equal to the X from the data that went into the encoder. 

We can measure that with Euclidean distance.



So what are we optimizing? 

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

THIS!
The learned parameters for the encoder’s distribution 𝑄 𝑧 𝑋 are the 
mean vector 𝝁 and the values of the diagonal of our covariance matrix Σ.
(Remember, we constrained Σ to be diagonal).

P(z), the distribution we’re matching, is N(z;0,I).

We want 𝝁 to tend to the 0 vector and tr(Σ) trace to tend to  D, where D 
is the dimensionality of the latent space. That pushes Σ towards 𝐈.



Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Red box indicates non-differentiable

Blue box indicates loss measurement



Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.



A graphical view

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)

Red box indicates non-differentiable

Blue box indicates loss measurement



Where is the “evidence lower bound”?

Rearranging to isolate the log evidence on the left.

The ELBO 

+

KL divergence is non-negative.
So the ELBO forms a lower bound on the log evidence.

≥



Discussion points

• How do we make these things controllable?
• How do we navigate the latent space?
• What is “disentanglement”?



Adding class conditioning



Why do we want this?

• If I train a VAE on a big dataset of imaged (e.g. CFAR100), I want to be 
able to use it to generate an image of a particular class (like “dog”)
• Without class conditioning, how could I do this?
• Let’s think about the latent space….



Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)



Example output



Unconditioned generation

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)



VAE vs Autoencoder: unconditioned output

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)



Conditional MNIST generation

Ground Truth CVAE generationRegressor generation

Doersch, Carl, “Tutorial on Variational Autoencoders “  (2021)



Kingma’s formulation


