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Some basic definitions 



Some definitions

• Sample Space: The set, 𝑆,of possible values a random variable can take. 
These are mutually exclusive (e.g. coin flips: heads or tails).

• Random Variable: A mapping from a sample space to actual measured 
outputs.  We denote the whole mapping with a capital letter (e.g. 𝑋 ) and 
a particular sample output with a lower case (e.g. 𝑥 ) 

• Support: For a random variable X, is the portion of the sample space that 
has non-zero probability. (if a flipped coin always turns up “heads”, then 
the support is “heads”)



• A Discrete random variable has a countable  sample space. For us, 
we’ll use FINITE sample spaces, like heads/tails or words in a 
dictionary. 

• A Continuous random variable has an uncountably infinite sample 
space, like real numbers on the interval (0,1).  

Some definitions



Probability Mass Function
… specifies the probability of a discrete random variable taking each of 
the values in the sample space.

The PMF is nonnegative, and the sum of its probabilities = 1.0

In this example, the sample space is {1,3,7}

By Oleg Alexandrov - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2073424



Probability density function (PDF)
… specifies the probability of a continuous random variable falling 
within a particular range of values. 
This probability is given by the integral of of the PDF over that range 
(i.e. the area under the curve).
The PDF is nonnegative, and its integral over the entire space = 1.0

By Jhguch at en.wikipedia, CC BY-SA 2.5, 
https://commons.wikimedia.org/w/index.php?curid=14524285



Expected value E[X] of a random variable X
• For a finite, discrete random variable X, E[X] is defined as

𝐸 𝑋 = ∑!∈# 𝑥𝑝(𝑥)

• For a continuous random variable on real numbers, E[X] is defined as 

𝐸[𝑥] = ,
$%

%
𝑥𝑝 𝑥 𝑑𝑥

x is a particular element in the sample space S
p(x) is the probability mass (or density) function for X applied to the sample x.

We often drop the -∞,∞
and assume they’re implied 



An integrable random variable.
• For a finite, discrete random variable X, E[X] is integrable  iff: 

∞ > ∑!∈# |𝑥|𝑝(𝑥)

• For a continuous random variable on real numbers, E[X] is integrable iff:

∞ > ,
$%

%
𝑥𝑝 𝑥 𝑑𝑥

x is a particular element in the sample space S
p(x) is the probability mass (or density) function for X applied to the sample x.



The Normal (Gaussian) 
Distribution



The Gaussian a.k.a. Normal Distribution

By Inductiveload - self-made, Mathematica, Inkscape, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3817954

𝑥~𝑁(𝜇, 𝜎)=



The multivariate normal distribution

By IkamusumeFan - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30432580https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Notation_and_parameterization



Jensen’s Inequality



Some definitions

• A real-valued function is convex if 
the line segment between any two 
points on the graph of the 
function lies above the graph 
between the two points.

• A real-valued function is concave
if the line segment between any 
two points on the graph of the 
function lies below the graph 
between the two points.

Convex

Concave



Is my function convex/concave?

• A differentiable function is  (strictly) convex if its second 
derivative is (strictly) positive;

• That function is (strictly) concave if its second derivative is 
(strictly) negative.

• Example The natural logarithm is strictly concave because…

𝑑&

𝑑𝑥& log 𝑥 = −𝑥$&



Now for the inequality…

• let X be an integrable random variable a random variable and φ be a 
concave function, then Jensen’s inequality is defined as:

𝐸[𝜙 𝑋 ] ≤ 𝜙(𝐸 𝑋 )

• We know log is a concave function. This means:

𝐸[𝑙𝑜𝑔 𝑋 ] ≤ 𝑙𝑜𝑔(𝐸 𝑋 )

• …we’ll be using this later.



Kullback-Leibler divergence



Comparing two PDFs 

• Given two PDFs, p(x) and q(x), how do I tell how similar they are?
• Maybe we could measure the overlap in some way?
• People use  Kullback-Leibler divergence (KL divergence) for this.

q(x)
p(x)



KL-divergence

• P and Q are both probability functions on the same sample space.
• For finite sample spaces:

𝐷'((𝑃| 𝑄 ==
!

𝑃(𝑥)𝑙𝑜𝑔
𝑃(𝑥)
𝑄(𝑥)

• For real-valued sample spaces :

𝐷'((𝑃| 𝑄 = ,𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥



Relation to entropy

𝐷!"(𝑃| 𝑄 ='
#

𝑃 𝑥 𝑙𝑜𝑔
𝑃 𝑥
𝑄 𝑥

='
#

𝑃 𝑥 log 𝑃(𝑥) −'
#

𝑃 𝑥 log 𝑄 𝑥

This is the entropy of P(x) This is the cross-entropy of P(x) compared to Q(x)



Jensen-Shannon Divergence

• Symmetric measure
• People often use this, because it is symmetric and avoids divide by 0

𝐷)#(𝑃||𝑄) = 𝐷'( 𝑃||𝑀 + 𝐷'( 𝑄||𝑀

…where 𝑀 = *+,
&



Joint distributions



Joint Distribution

• Given two random variables, X and Z, defined on the same probability 
space, the joint probability distribution is the probability distribution on 
all possible pairs of outputs.

P 𝑋, 𝑍

By IkamusumeFan - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30432580



The Chain Rule  & Conditional Probability

Definition  of conditional probability: 

P X Z = P(X, Z)/P(Z)

P Z X = P(X, Z)/P(X)

We can factor the joint distribution 
using conditional probability:

P(X, Z) = P X Z P(Z)
= P Z X P(X)

By IkamusumeFan - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30432580



Bayes Rule
With conditional probability:

P X Z = P(X, Z)/P(Z)

…and the chain rule:

P(X, Z) = P Z X P(X)

We get to Bayes rule:

P Z X = P(X, Z)/P(X)
= P X Z P(Z)/P(X)

By IkamusumeFan - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=30432580



A finite Joint Distribution of Booleans

• A truth table listing all combinations 
of variable values

• This embodies P(A,B,C)

• Each combination has a probability 
that must be estimated

• How big is this table for 100 Boolean 
variables?

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05



Finding a marginal distribution
• To find P(A) we must “marginalize”
• Sum the probabilities of all rows where 

A=1

𝑃 𝐴 ==
-

=
.

𝑃 1, 𝑏, 𝑐

= 0.05+ 0.2 + 0.25+ 0.05
= 0.55

What happens if there are 100 variables?

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05



Inferring latent variables



More definitions!

• If you can directly sample a random variable X and see the outcome x, 
we call x an observation.

• If you can’t directly sample a random variable Z and see the outcome 
z, we call Z a latent variable.

• We’ll typically use those letters with those implications: X is 
observable, Z is latent.



A grounded example with names

• What is the chance I have Covid, if I have a positive Covid test?
• Let Z be the latent variable ”Covid: yes/no” 
• Let X be the observable variable “test: positive/negative”

• P(X) is the unconditioned (aka prior) probability of a positive test.
• P(Z) is the prior probability of having Covid.
• P(Z|X) is the posterior probability of Covid, given the observed outcome.
• P(X|Z) is the probability of a test outcome, given the truth of whether 

you have Covid. (aka the likelihood)



The problem

Let 𝐱 = x/… x𝒏 be a set of observed variables.
Let 𝐳 = z/… z𝒎 be a set of latent variables of interest.

We want to infer these latent variables from the evidence. We want to 
know 𝑝 𝐳 𝐱 .

𝑝(𝐳|𝐱) =
𝒑(𝐳, 𝐱)
𝒑(𝐱)

Note that this simple expression hides a lot of complexity.



Marginalization is not your friend.

𝑝(𝐳|𝐱) =
𝒑(𝐳, 𝐱)
𝒑(𝐱)

To calculate 𝒑(𝐱)we often have to marginalize all the 
variables in 𝐱 over all the variables in 𝐳. 
This is often intractable.  Remember the joint 
probability table.



Variational Inference
Based on (but modified from):
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for 
statisticians." Journal of the American statistical Association 112.518 (2017): 859-877.
https://arxiv.org/pdf/1601.00670.pdf



Set this up as an estimation problem.
• We want to learn 𝑝 𝐳 𝐱

• Make a family of density functions 𝜃

• Search through 𝜃 to find 𝑞∗(𝐳), which optimizes this equation:

𝑞∗ 𝐳 = argmin
"(𝐳)∈'

𝐷()(𝑞(𝐳)||𝑝 𝐳 𝐱 )

This is Blei et al’s formulation. These folks came up with Variational Inference.



In the end we’ll want to do this…

𝑞∗ 𝐳|𝐱 = argmin
"(𝐳)∈'

𝐷()(𝑞 𝐳 𝐱 ||𝑝 𝐳 𝐱 )

This is Kingma et al’s formulation. These folks invented the Variational 
Autoencoder (VAE).

The big difference is making z depend on x.

…but for now, we’ll go back to Blei et al’s formulation.



What are we doing, again?

• We’re to skip that marginalization process on the evidence.

• We’re using KL divergence to find the best fit from a family of 
distributions  𝜃 . 

• We must pick a 𝜃 flexible enough to have a member that models 
p(z|x) well, while still being tractable to search. 

• Often, people use the Gaussians as the family of distributions.



So does this make things any easier?

𝑞∗ 𝑧 = argmin
"(𝐳)∈'

𝐷()(𝑞(𝐳)||𝑝 𝐳 𝐱 )

Let’s pick apart that KL divergence a bit, taking expectation with respect 
to z
𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) = E log 𝑞 𝐳 − E log 𝑝 𝐳 𝐱

= E log 𝑞 𝐳 − E log 𝑝 𝐳, 𝐱 + log 𝑝(𝐱)

But wait….that term 𝑝(𝐱) is back. That’s the one we said was intractable!
No worries. This is going to the other side of the equation.



Getting to the ELBO
From previous slide:

𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) = E log 𝑞 𝐳 − E log 𝑝 𝐳, 𝐱 + log 𝑝(𝐱)

Negate both side:

−𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) = −E log 𝑞 𝐳 + E log 𝑝 𝐳, 𝐱 − log 𝑝(𝐱)

Add  log 𝑝(𝐱) to both sides:
−𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) + log 𝑝(𝐱) = −E log 𝑞 𝐳 + E log 𝑝 𝐳, 𝐱

Put our evidence on one side:
log 𝑝(𝐱) = 𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) + ELBO

This is called the Evidence Lower Bound (ELBO)



Why it is called the “Evidence Lower Bound”

From previous slide:

log 𝑝(𝐱) = 𝐷'((𝑞(𝐳)||𝑝 𝐳 𝐱) + ELBO

By definition 𝐷'(() ≥ 0,	so	the	ELBO	is	a	lower	bound	on	the	log	evidence.	
The	more	we	reduce	this	KL	divergence,	the	closer	the	ELBO	gets.



Rewriting the ELBO
ELBO = E log 𝑝 𝐳, 𝐱 − E log 𝑞 𝐳

by the chain rule                      = E log 𝑝 𝐱 𝐳 + E log 𝑝 𝐳 −E log 𝑞 𝐳

By def of KL divergence           = E log 𝑝 𝐱 𝐳 − 𝐷'((𝑞(𝐳)||𝑝 𝐳 )

This is starting to look like a good function to optimize. 

We have the expected log likelihood of the data and the KL divergence 
between the true distribution for the hidden variables and our guestimate.


