
Diffusion/Score Models
Deep Learning
Bryan Pardo
Spring 2023

Diffusion Models became SOTA in 2021-ish

https://cvpr2022-tutorial-diffusion-models.github.io

DALL-E 2 (left) IMAGEN (right)

https://cvpr2022-tutorial-diffusion-models.github.io

Diffusion/Score models

• Assume a dataset 𝑋 = {𝑥!, …𝑥"} where each 𝑥# is an i.i.d. draw from
a probability distribution 𝑝 𝑥 .

• An example dataset would be pictures of cats.

• We want to learn 𝑝(𝑥), so we can make new things like the ones in
the data set (i.e. more cat pictures)

• We do this by adding (Gaussian) noise to the samples in our data set
and learning a function that can de-noise to generate things like our
samples.

Two processes

• Forward diffusion: add noise to a true data point
• Backward diffusion: denoise from a noise sample

https://cvpr2022-tutorial-diffusion-models.github.io

As t increases, we get more Guassian

Forward process (noising up 4 images)

Image from https://yang-song.net/blog/2021/score/

Reverse (generating 4 images from noise)

Image from https://yang-song.net/blog/2021/score/

Disclaimer: I’m going to focus on score-based

•Why? I like the math better.

• Don’t worry. Score models are the same thing as diffusion
models.

The goal of our generative model

• Assume a dataset of items {𝑥!, 𝑥$, … , 𝑥"}

• Each 𝑥!	is drawn from an unknown distribution 𝑝(𝑥)

• The goal is to make an estimate of	𝑝 𝑥 such that drawing samples
from the estimate gives things that seem like they came from	𝑝(𝑥).

Let’s define our estimate function

• Define our estimate of probability function 𝑝(𝑥)	as follows:

𝑝(𝑥) ≈ 𝑓(𝑥) =
(𝑝 𝑥
𝑍

• …where 𝑍 is a normalizing constant that ensures𝑓(𝑥) sums to 1

• In the end, we’re going to want to lose Z and just learn /𝑝 𝑥

Learning our estimate

• Let’s parameterize this by 𝜃. These are the learned parameters.
• Approximate the true distribution by varying the parameters 𝜃 to

maximize the probability of each sample 𝑥# 	in the data.

argmax
!

/
"#$

%
(𝑝! 𝑥"
𝑍!

There are 3 ways deal with 𝑍!

RESTRICTING MODEL ARCHITECTURE TO MAKE CALCULATING POSSIBLE
causal convolutions in autoregressive models

GUESTIMATE 𝑍%
variational inference in VAEs

AVOID NEEDING TO KNOW 𝑍%
Score models

Score Function ∇&𝑝(𝑥)
• The score of a probability function is the gradient of that function.

Image from https://yang-song.net/blog/2021/score/

Markov Chain

• A stochastic model
describing a sequence of
possible events where the
probability of each event
depends only on the state
attained in the previous step.

• What happens next depends
only on the current state.

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

Markov Chain Equilibrium Distribution

• If you sample from the
Markov Chain over and over,
you end up with this
distribution

• Example: Four is the magic
number (spelling letters
chain)

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

Markov chain Monte Carlo (MCMC)

• MCMC algorithms are for sampling from a probability distribution
you can’t model directly.

• A Markov Chain with the desired distribution as its equilibrium
distribution, lets you sample of the desired distribution by
recording states from the chain.

• To work, an MCMC algorithm need a way of ensuring each step
gets closer to the desired distribution.

Langevin Dynamics

• Named for French physicist Paul Langevin
(Lahn-je-vahn)

• Langevin dynamics provides an MCMC
procedure to sample from a distribution
using only its score function

• It initializes the chain from an arbitrary
prior distribution and then iterates to
converge on p(x)

https://yang-song.net/blog/2021/score/

We do this by learning the gradient of p(x)

Image from https://yang-song.net/blog/2021/score/

Learning the score: ∇& (𝑝(𝑥)

• Assume we can approximate data distribution p(x), up to some
normalizing factor Z:

 𝑝 𝑥 = !"($)
&

Take the log: log 𝑝 𝑥 = log !" #
$

 = log(.𝑝 𝑥) − log(𝑍)

Rearrange: log 𝑝 𝑥 + log(𝑍) = log(.𝑝 𝑥)

Learning the score: ∇& (𝑝(𝑥)
From the previous slide: log 𝑝 𝑥 + log(𝑍) = log(/𝑝 𝑥)

…Now let’s take gradients

∇&(log 𝑝 𝑥 + log(𝑍)) = ∇& log /𝑝 𝑥
 ∇&log 𝑝 𝑥 = ∇&log(/𝑝 𝑥)

Z drops out, since it is a constant with respect to x.
So, we can skip learning Z….which was the intractable part.

Gradient=0
w.r.t. x

Using∇&𝑝 𝑥 	to generate a new example

• Start at a random point.

• Iteratively follow gradient ∇&𝑝(𝑥) to
reach a point that looks like our
training data.

• Voila! a new sample is generated!

• All we need is an estimate of ∇&𝑝(𝑥).

Modified image from https://yang-song.net/blog/2021/score/

1
2 3 4 5 6

Using ∇&𝑝 𝑥 	vs ∇&log(𝑝 𝑥)

• We want the gradient ∇&𝑝 𝑥 of the probability function 𝑝 𝑥 	because it
lets us start anywhere in the space and iteratively follow gradient ∇&𝑝(𝑥)
to reach a point that looks like our training data.

• So…learning	∇&𝑝 𝑥 it is as good as learning 𝑝 𝑥 			

• The	log	of	the	gradient	∇&log(𝑝 𝑥)	also lets us play the same game.

Don’t worry, it will be imperfect.

• Our estimate ∇& /𝑝(𝑥) is only accurate where we have lots of data.
• For 1000 by 1000 pixel images, this 10^6 D space is mostly empty.
• Ergo, the estimate is mostly bad.

Image from https://yang-song.net/blog/2021/score/

What if we made more data to fill in the space?

• If we add perturbed data, our sample would cover more of the space.
• If we perturb using a parametric noise distribution (e.g. Gaussian noise) we

could account for it when we learn the gradient.

Image from https://yang-song.net/blog/2021/score/

Perturb at multiple scales

Image from https://yang-song.net/blog/2021/score/

Add (Gaussian) noise at different scales until your data fills the space

Walk it back

Image from https://yang-song.net/blog/2021/score/

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2nd most perturbed….then the 3rd
most…until you reach what you hope is the original p(x)

Learn these steps with a neural network that outputs the noise
gradient at each step.

Relating this to the other view of diffusion

• When we typically talk diffusion, we discuss learning the mean 𝜇 and
covariance matrix Σ for each Gaussian at each step in the diffusion
process.

• If you know 𝜇 and Σ of a Gaussian, you can derive the gradient.

• The score is the gradient.

• So these are two views of the same thing.

What we’d hope to see.

Image from https://yang-song.net/blog/2021/score/

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2nd most perturbed….then the 3rd
most…until you reach what you hope is a sample from p(x)

We learn these steps with a neural network that outputs the noise
gradient (AKA the score) at each step.

What we’re minimizing

!
!"#

$

𝜆(𝑖)𝔼%!"(𝐱) 𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *

*

𝐥𝐞𝐚𝐫𝐧𝐞𝐝	𝐧𝐞𝐭𝐰𝐨𝐫𝐤	
𝐰𝐢𝐭𝐡	𝐩𝐚𝐫𝐚𝐦𝐭𝐞𝐫𝐬	𝜽

Input example at step t
in the Lavengian process

…..The score function…..

The function determining the
scale of noise being applied

How much weight to
give this level in the
noise scaling, when
calculating loss

The number of levels in
our noise scaling.

What we’re minimizing

!
!"#

$

𝜆(𝑖)𝔼%!"(𝐱) 𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *

*

Image from https://yang-song.net/blog/2021/score/

𝐥𝐞𝐚𝐫𝐧𝐞𝐝	𝐧𝐞𝐭𝐰𝐨𝐫𝐤	
𝐰𝐢𝐭𝐡	𝐩𝐚𝐫𝐚𝐦𝐭𝐞𝐫𝐬	𝜽

Input example at step t
in the Langevin process

…..The score function…..

The function determining the
scale of noise being applied.
Here, 𝝈 is our standard deviation

How much weight to
give this level in the
noise scaling, when
calculating loss.
Often a function of 𝝈

The number of levels in
our noise scaling.

We’re minimizing this difference

https://cvpr2022-tutorial-diffusion-models.github.io

We know this because we have
each data sample 𝐱𝟎 and we
defined the parameters of the
distribution 𝒒𝒕 applied at step t.

If we train 𝒔𝜽	 on the data, we
hope to learn the gradient for
each time step EVERYWHERE, not
just at the points in the training
data.

𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *
*

After training, we run in reverse order

Image from https://yang-song.net/blog/2021/score/

Score network for
CelebA

Image from https://yang-song.net/blog/2021/score/

Score network for
CIFAR-10

Image from https://yang-song.net/blog/2021/score/

Where we are

• We can learn ∇&log(/𝑝 𝑥) with a diffusion model.

• This lets us start anywhere in the space & walk the gradients to make
a sample similar to one from the original distribution.

• This can take thousands of steps at generation time.

The generative modeling “tri-lemma”

https://cvpr2022-tutorial-diffusion-models.github.io

Many approaches to speeding up diffusion

• Teacher-student models to learn bigger steps

• Run diffusion on VAE latent space

• Learn variable step size in training, then take bigger steps in
generation

• Do continuous (infinite steps) and then…well…there’s lots there. No
time to talk about it all, really.

Conditioning Using a Classifier

Where we are

• We can learn ∇&log(/𝑝 𝑥) with a diffusion model.

• This lets us start anywhere in the space & walk the gradients to make
a sample similar to one from the original distribution.

• We have no way of controlling which part of the original distribution.

So…how do we get to this?

https://cvpr2022-tutorial-diffusion-models.github.io

Adding a conditioning variable y

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

DOG

Gradient=0
w.r.t. x

…continued

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

Gradient of the
class-conditioned
distribution

Gradient of the
classifier’s label,
given, example x

Gradient of the
unconditional
example x

Get this from our
previously-trained
diffusion model

Get this from any
previously- trained
classifier

• This lets us walk the gradients to make a sample like one from the
original distribution that also would get labeled as a “dog” (or “cat” or
whatever) by the classifier.

Use ∇& (𝑝(𝑥) + ∇&𝑝(𝑦|𝑥) to condition generation

• Start at a random point.

• Iteratively follow the gradient ∇& /𝑝(𝑥)
to reach a point like our training data.

• Iteratively follow ∇&𝑝(𝑦|𝑥) to reach a
point with class y

Modified image from https://yang-song.net/blog/2021/score/

1
2

3

4
5 6Twitter employees

Ex Twitter employees

Weighting our classifier “Guidance”

Image from Dhariwal, Nichol, “Diffusion Models Beat GANs on Image Synthesis”, Neural Information Processing Systems, 2021

Class: Pembroke Welsh corgi𝛾 = 1 𝛾 = 10

https://arxiv.org/abs/2105.05233

The catch

• If the classifier can’t handle noisy inputs, it can’t provide good
guidance

• Practically speaking, this can mean the classifier needs to be trained
on the data generated by the diffusion process

• This means we can’t necessarily use any off-the-shelf classifier for
guidance

• So what now???
• …and how does CLIP play into things?
• We’ll see with the GLIDE paper.

Classifier-free Conditioning

Let’s run Bayes the other way…

DOG

A little math

• Our formula for classifier-guided generation was this:

• From the previous slide we get:

• Let’s plug that into the guided generation formula.

Weighted self-guidance

• This gives us:

• Or equivalently:

Using this formula

• Train a class-conditional diffusion model
• Around 20% of the time, randomly replace the true label with the

”anything” class label.
• Use this “anything” conditioning as a substitute for unconditioned

generation
• At generation time, use this formula for guidance:

Next time

• We’ll see how CLIP and guidance lead to GLIDE

