Diffusion/Score Models

Deep Learning
Bryan Pardo
Spring 2023

Diffusion Models became SOTA in 2021-ish

“Diffusion Models Beat GANs on Image Synthesis” “Cascaded Diffusion Models for High Fidelity Image Generation”

Dhariwal & Nichol, OpenAl, 2021 Ho et al., Google, 2021)
https://cvpr2022-tutorial-diffusion-models.github.io

DALL-E 2 (left) IMAGEN (right)

A group of teddy bears in suit in a corporate office celebrating

& Ieddy bearion:a;skalehoand Iniimes squars the birthday of their friend. There is a pizza cake on the desk.

“Hierarchical Text-Conditional Image Generation with CLIP Latents” “Photorealistic Text-to-Image Diffusion Models with Deep
Ramesh et al., 2022 Language Understanding”, Saharia et al., 2022

https://cvpr2022-tutorial-diffusion-models.github.io

Diffusion/Score models

* Assume a dataset X = {x4, ... x,} where each x; is an i.i.d. draw from
a probability distribution p(x).

* An example dataset would be pictures of cats.

* We want to learn p(x), so we can make new things like the ones in
the data set (i.e. more cat pictures)

* We do this by adding (Gaussian) noise to the samples in our data set
and learning a function that can de-noise to generate things like our

samples.

Two processes

* Forward diffusion: add noise to a true data point
» Backward diffusion: denoise from a noise sample

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

https://cvpr2022-tutorial-diffusion-models.github.io

As t increases, we get more Guassian

Forward diffusion process (fixed)

Song et al., ICLR, 2021

Forward process (noising up 4 images

—— Stochastic process

Image from https://yang-song.net/blog/2021/score/

Reverse (generating 4 images from noise

—— Reverse stochastic process

Image from https://yang-song.net/blog/2021/score/

Disclaimer: I'm going to focus on score-based

* Why? | like the math better.

* Don’t worry. Score models are the same thing as diffusion
models.

The goal of our generative model

* Assume a dataset of items {x;, x>, ..., X, }
* Each x; is drawn from an unknown distribution p(x)

* The goal is to make an estimate of p(x)such that drawing samples
from the estimate gives things that seem like they came from p(x).

Let’s define our estimate function

* Define our estimate of probability function p(x) as follows:

p() ~ f) =272

* ..where Z is a normalizing constant that ensuresf (x) sums to 1

* In the end, we're going to want to lose Z and just learn p(x)

Learning our estimate

* Let’s parameterize this by 8. These are the learned parameters.

* Approximate the true distribution by varying the parameters 6 to
maximize the probability of each sample x; in the data.

z p@ (xl)
argmax

There are 3 ways deal with Zg

RESTRICTING MODEL ARCHITECTURE TO MAKE CALCULATING POSSIBLE

causal convolutions in autoregressive models

GUESTIMATE Zg

variational inference in VAEs

AVOID NEEDING TO KNOW Zg

Score models

Score Function V,.p(x)

* The score of a probability function is the gradient of that function.

e e S NI N N N W U R R N S

. .. -.. NATETATATA A A A A A A 4 4 v s s
e Se A TR e R B A A A f ot s s oA
0.; Q"a..;'o.' \‘ B e e e e o
°e lv!i":‘.‘: \ x ‘ B
.‘: .':‘-." \\‘{ - T Y v v v w
NV VY Yy
arj W T :
“"""yllidlllll\‘
v A A 4 4 4 4 A b

XYY Y vr vy
““v"”,414d441l\\
a \\1"7””"“““\\
I \\\""')AA‘I""‘*\\
“.A PRSI E S L L LS.
Y i aeeee PEEEMY
SoiiIIII vty
= . * ——---~--~<<¢<—<—<—<—\‘\\
vv--~~vw~v“$‘<—<—<—\\\
K . H L e T e e e \ \
2 O Y Y Y W R R R R R R \

Data samples Scores

{X17X27 e 7XN} l}\(} p(X) SH(X) ~ VX logp(x)

Image from https://yang-song.net/blog/2021/score/

Markov Chain

A stochastic model
describing a sequence of
possible events where the
probability of each event
depends only on the state

attained in the previous step.

* What happens next depends
only on the current state.

0.3

0.7

X
0.6

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

Markov Chain Equilibrium Distribution

0.3

* If you sample from the

Markov Chain over and over,

you end up with this 0.7

distribution '
« Example: Four is the magic 0.4

number (spelling letters

chain)

0.6

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

Markov chain Monte Carlo (MCMC)

 MCMC algorithms are for sampling from a probability distribution
you can’t model directly.

« A Markov Chain with the desired distribution as its equilibrium
distribution, lets you sample of the desired distribution by

recording states from the chain.

 To work, an MCMC algorithm need a way of ensuring each step
gets closer to the desired distribution.

Langevin Dynamics

\\\N\\\ ~ - - Y 14 r

* Named for French physicist Paul Langevin \ = I N A D P R
(Lahn-je-vahn) = ==) | [N A
=== =l I LSRR

o e e A A

* Langevin dynamics provides an MCMC : t i i f SR A BB
procedure to sample from a distribution ETEE AN NP N AN g e B S
using only its score function I R R S A S A e
e 3\ ot

: L TN PRBIRANBRRARIING = ===

* |t initializes the chain from an arbitrary RN ==
prior distribution and then iterates to RN =
converge on p(x) L et I LR LR

https://yang-song.net/blog/2021/score/

We do this by learning the gradient of p(x)

S .

e

L
°

.Y

L J
..‘-

X I..:';" g

o o
°

-

A .
B n

Data samples

ii.d.

{x1, %2, ,xn} ~ p(x)

NS ASASA A A A A A4y
TNATETATA A YA A A A A A 4 4y

AR e . A A A A

AAAAAA

A e o L L Al

—

score
matching -

VI VB

VVVVVV

ry r »

i e - -
T v v -

. . . - - —————

W W W . ———

P T v ¢ <

W OW W R R RS S

y v
T XA A A 4 h Ny

!

PV OF W R R OR R R TR RS

Scores

SG(X) ~ Vy logp(x)

Image from https://yang-song.net/blog/2021/score/

[—

Langevin
dynamics

New samples

Learning the score: V,.p(x)

* Assume we can approximate data distribution p(x), up to some
normalizing factor Z:

_ P
p(x) ==
Take the log: log(p(x)) = log (%x))

= log(p(x)) — log(Z)

Rearrange: log(p(x)) + log(Z) = log(p(x))

Learning the score: V,.p(x)

From the previous slide: log(p(x)) + log(Z) = log(p(x))

Gradient=0
w.r.t. x

...Now let’s take gradients

V,(log(p(x)) +log(2)) =V, log(p(x))
V,log(p(x)) = V,log(p(x))

Z drops out, since it is a constant with respect to x.
So, we can skip learning Z....which was the intractable part.

UsingV,.p(x) to generate a new example

e Start at a random point.

* Iteratively follow gradient V. p(x) to
reach a point that looks like our
training data.

* Voila! a new sample is generated!

* All we need is an estimate of V,.p(x).

Modified image from https://yang-song.net/blog/2021/score/

o
ee ee -':')n

.
T p

g 411

Using Vi p(x) vs Vylog(p(x))

* We want the gradient V,.p(x) of the probability function p(x) because it
lets us start anywhere in the space and iteratively follow gradient V. p(x)
to reach a point that looks like our training data.

* So...learning V,.p(x) it is as good as learning p(x)

* The log of the gradient V,.log(p(x)) also lets us play the same game.

Don’t worry, it will be imperfect.

Data scores Estimated scores

Data density

* Our estimate V,.p(x) is only accurate where we have lots of data.
* For 1000 by 1000 pixel images, this 10726 D space is mostly empty.
* Ergo, the estimate is mostly bad.

Image from https://yang-song.net/blog/2021/score/

What if we made more data to fill in the space?

Perturbed density Perturbed scores Estimated scores
F P e o S S S G N BN RN TR TR T T NSNS S NN NN Yy s
Rt e e e e e T A 4 \\\\\\\\\\\\ D T A ™
R el - i

\\\\\::—._. ST ' o \\\\\\:_.-‘-. o)
N N S ™- R e s e .-
tt::\‘_."/” « Loy YN QE:::_._'—',”” 4 L Y
. .- A A A R I e L N S O o P AV AN A B | [Y
????A AR CE R I NN AR
~~rirate - C rate.\\
::::,,C.,u,rf.afteux\ AR C b
NN PR I A B B O B N R EEERER
.\ .o':;:}zit S .fr::;{§§
SRRSO E R R R S NS SO R R R R R
L N T 0 Y W - N N U WL U O
I RN R AR RN R R
- \\\\\\\\\\\\ “\\\\\\\\\\\
- \\\\\\\\\\\\\ \\\\\\\\\\\\\\
b S \\\.\\\\\‘\\\ ,,,,,,, .\\\\\\\\\\\\\

* If we add perturbed data, our sample would cover more of the space.

* |f we perturb using a parametric noise distribution (e.g. Gaussian noise) we
could account for it when we learn the gradient.

Image from https://yang-song.net/blog/2021/score/

Perturb at multiple scales

\\\\\\\\\\\\

Add (Gaussian) noise at different scales until your data fills the space

Image from https://yang-song.net/blog/2021/score/

Walk it back

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2"4 most perturbed....then the 3
most...until you reach what you hope is the original p(x)

Learn these steps with a neural network that outputs the noise
gradient at each step.

Image from https://yang-song.net/blog/2021/score/

Relating this to the other view of diffusion

* When we typically talk diffusion, we discuss learning the mean u and
covariance matrix X for each Gaussian at each step in the diffusion

process.
* If you know u and X of a Gaussian, you can derive the gradient.
* The score is the gradient.

* So these are two views of the same thing.

What we’d hope to see.

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2"4 most perturbed....then the 3
most...until you reach what you hope is a sample from p(x)

We learn these steps with a neural network that outputs the noise
gradient (AKA the score) at each step.

Image from https://yang-song.net/blog/2021/score/

What we're minimizing

The number of levels in Input example at step t
our noise scaling. in the Lavengian process

..... The score function.....

L
> A Epy 0 lI56 Gees 1) = T, Tog e Geclxo)
i=1 A

How much weight to learned network

give this level in the with paramters (2]
noise scaling, when \
calculating loss

The function determining the
scale of noise being applied

What we're minimizing

The number of levels in Input example at step t
our noise scaling. in the Langevin process

&

..... The score function.....

L
z A(D) Do (x) HSQ (X¢, t) — V. 10g q¢ (Xt‘xo)luj
i=1 A

How much weight to learned network
give this level in the with paramters (2]
noise scaling, when \

calculating loss.
Often a function of o

The function determining the
scale of noise being applied.
Here, o is our standard deviation Image from https://yang-song.net/blog/2021/score/

We’'re minimizing this difference

|56 (e, ©) — Vi, log g (xc1%0)||

. e ——

neural score of diffused
network data sample
If we train sy on the data, we We know this because we have
hope to learn the gradient for each data sample x, and we
each time step EVERYWHERE, not defined the parameters of the
just at the points in the training distribution g, applied at step t.

data.

https://cvpr2022-tutorial-diffusion-models.github.io

After training, we run in reverse order

Q
=
>
&

\\\\\ T Y R M N - . v ’ ’ \\\\\ —e “m M WA ‘\\N\\w
\ STIDIIIICEEEE oot NOREL
V] T o g | \\TTT T T 5 N wT T T e
\ \ l — - o v . - \ l \ — - - '». .\OQ\N—“OO—‘.
\‘l‘ - S ARy \‘l_.,,a'll Nt\t‘:""‘.
SRRSOt . B
VA A S PR R
A A AV e R T Y B B A 20 g 4y Neleddetes t.'.‘.
LU I B A4 4 RIS £ \ Lo\ e P aiers e 4 :"\’Q
o o e R ! ’ ' ' ‘\ R ey a2 1 , ’ " RO%** Y %o o’o't ole
o E A B S ot Py reeeceece oo qoped ool
po= s I‘\ 3 BRI T 27 "\ PP RRE TR S tie- o 60 -0 5 O, 6 ‘o\o‘
W= P Aa-‘-o-'-.—-‘ T A s - e ™ \ DQ'O'QOQ‘Q‘O'..‘O\Q}.‘OY o0'e
o e e S e e g e \ ‘\ B e Wy \ I\ Lo o 8 o 0 0 g o one Y c\o\&o\'\
- O e e e e —— \ \ - - - - e St My St o \ \ :.-‘-. : 'v‘\‘: .\.\.\. \'\. \ ‘\.\
I R T R El e\t
. e T T T Wi Wi, Wy \ ORI M. M M T oy \ PNt N e Y I a™a ™ .\:\.& .\.\

Image from https://yang-song.net/blog/2021/score/

Score network for

CelebA

S~
()
ful
(]
O
w

~

i

N

o

N

S~
[e14]

o

0

S~

-
()
c

//yang-song

Image from https

Score network for
CIFAR-10

Image from https://yang-song.net/blog/2021/score/

Where we are
* We can learn V,log(p(x)) with a diffusion model.

* This lets us start anywhere in the space & walk the gradients to make
a sample similar to one from the original distribution.

* This can take thousands of steps at generation time.

The generative modeling “tri-lemma”

Likelihood-based models
(Variational Autoencoders
& Normalizing flows)

- g e - ———— P

\
Fast it :
Sampling Coverage/ !
Diversity A
Generative h Denoising
Adversarial y Diffusion
Networks (GANs) Models
High
Quality ! * Often requires 1000s of
Samples network evaluations!

https://cvpr2022-tutorial-diffusion-models.github.io

Many approaches to speeding up diffusion
* Teacher-student models to learn bigger steps
* Run diffusion on VAE latent space

* Learn variable step size in training, then take bigger steps in
generation

* Do continuous (infinite steps) and then...well...there’s lots there. No
time to talk about it all, really.

Conditioning Using a Classifier

Where we are
* We can learn V,log(p(x)) with a diffusion model.

* This lets us start anywhere in the space & walk the gradients to make
a sample similar to one from the original distribution.

* We have no way of controlling which part of the original distribution.

So...how do we get to this?

DALL-E 2 IMAGEN
“a propaganda poster depicting a cat dressed as french “A photo of a raccoon wearing an astronaut helmet,
emperor napoleon holding a piece of cheese” looking out of the window at night.”

— & il /‘ AN S Imagen

https://cvpr2022-tutorial-diffusion-models.github.io

Adding a conditioning variable vy

‘ |
' DOG
/ Gradient=0

Wl rlt. X

— logp(z | y) = logp(y | :c) + logp(w) — log p(y)
— Vi logp(z | y) = Vi logp(y |) + V. logp(z),

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

..continued

Get this from any Get this from our
previously- trained previously-trained
classifier diffusion model

V:logp(z | y) = Vi logp(y | z) + V. logp(z),

Gradient of the Gradient of the Gradient of the
class-conditioned classifier’s label, unconditional
distribution given, example x example x

* This lets us walk the gradients to make a sample like one from the
original distribution that also would get labeled as a “dog” (or “cat” or
whatever) by the classifier.

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

Use V,.p(x) + V,.p(y|x) to condition generation

e Start at a random point. f‘;:‘f‘,z‘
* [teratively follow the gradient V,,p(x) % .
to reach a point like our training data. j Twntteremplovees

* Iteratively follow V. p(y|x) to reach a j
point with class y . E

Ex Twitter employees

= *® 50
f o
°
=
.
'. - -
¢ ™y

Modified image from https://yang-song.net/blog/2021/score/

Weighting our classifier “Guidance”

Vi logpy(z | y) = Vi logp(z) + vV, logp(y |)

Yy = Class: Pembroke Welsh corgi Yy = 10

Image from Dhariwal, Nichol, “Diffusion Models Beat GANs on Image Synthesis”, Neural Information Processing Systems, 2021

https://arxiv.org/abs/2105.05233

The catch

* If the classifier can’t handle noisy inputs, it can’t provide good
guidance

* Practically speaking, this can mean the classifier needs to be trained
on the data generated by the diffusion process

* This means we can’t necessarily use any off-the-shelf classifier for
guidance

* So what now???
e ..and how does CLIP play into things?
* We'll see with the GLIDE paper.

Classifier-free Conditioning

Let’s run Bayes the other way...
L~ .

— logp(y | z) = logp(z | y) + logp(y) — log p(x)
—> V;logp(y | z) = Vilogp(z | y) — V;logp(z).

A little math

e Our formula for classifier-guided generation was this:

V:logpy(z | y) = Vi logp(z) + vV logp(y | z)

* From the previous slide we get:

V. logp(y | z) = V. logp(z | y) — V., logp(z)

* Let’s plug that into the guided generation formula.

Weighted self-guidance
* This gives us:
Vg logp,(z | y) = Vi logp(z) + v (Ve logp(z | y) — Vs logp(z))

* Or equivalently:

V. logpy(z | y) = (1 —v)Vzlogp(z) + vV, logp(z | y)

Using this formula

* Train a class-conditional diffusion model

* Around 20% of the time, randomly replace the true label with the
“anything” class label.

* Use this “anything” conditioning as a substitute for unconditioned
generation

* At generation time, use this formula for guidance:

V. logpy(z | y) = (1 —v)Vzlogp(x) + vV logp(z | y)

Next time

» We’'ll see how CLIP and guidance lead to GLIDE

