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Diffusion Models became SOTA in 2021-ish

https://cvpr2022-tutorial-diffusion-models.github.io
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Diffusion/Score models

• Assume a dataset  𝑋 = {𝑥!, …𝑥"} where each 𝑥# is an i.i.d. draw from 
a probability distribution 𝑝 𝑥 .

• An example dataset would be pictures of cats.

• We want to learn 𝑝(𝑥), so we can make new things like the ones in 
the data set (i.e. more cat pictures)

• We do this by adding (Gaussian) noise to the samples in our data set 
and learning a function that can de-noise to generate things like our 
samples.



Two processes

• Forward diffusion: add noise to a true data point
• Backward diffusion: denoise from a noise sample

https://cvpr2022-tutorial-diffusion-models.github.io



As t increases, we get more Guassian



Forward process (noising up 4 images)

Image from https://yang-song.net/blog/2021/score/



Reverse (generating 4 images from noise)

Image from https://yang-song.net/blog/2021/score/



Disclaimer: I’m going to focus on score-based

•Why? I like the math better.

• Don’t worry. Score models are the same thing as diffusion 
models. 



The goal of our generative model

• Assume a dataset of  items {𝑥!, 𝑥$, … , 𝑥"}

• Each 𝑥!	is drawn from an unknown distribution 𝑝(𝑥)

• The goal is to make an estimate of	𝑝 𝑥 such that drawing samples 
from the estimate gives things that seem like they came from	𝑝(𝑥).



Let’s define our estimate function

• Define our estimate of probability function 𝑝(𝑥)	as follows:

𝑝(𝑥) ≈ 𝑓(𝑥) =
(𝑝 𝑥
𝑍

• …where 𝑍 is a normalizing constant that ensures𝑓(𝑥) sums to 1

• In the end, we’re going to want to lose Z and just learn /𝑝 𝑥



Learning our estimate

• Let’s parameterize this by 𝜃.  These are the learned parameters.
• Approximate the true distribution by varying the parameters 𝜃 to 

maximize the probability of each sample 𝑥# 	in the data.
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There are 3 ways deal with 𝑍! 

RESTRICTING MODEL ARCHITECTURE TO MAKE CALCULATING POSSIBLE
causal convolutions in autoregressive models

GUESTIMATE 𝑍%  
variational inference in VAEs

AVOID NEEDING TO KNOW 𝑍%  
Score models



Score Function ∇&𝑝(𝑥) 
• The score of a probability function is the gradient of that function.

Image from https://yang-song.net/blog/2021/score/



Markov Chain

• A stochastic model 
describing a sequence of 
possible events where the 
probability of each event 
depends only on the state 
attained in the previous step.

• What happens next depends 
only on the current state.

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg



Markov Chain Equilibrium Distribution

• If you sample from the 
Markov Chain over and over, 
you end up with this 
distribution

• Example: Four is the magic 
number (spelling letters 
chain)

https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg



Markov chain Monte Carlo (MCMC)

• MCMC algorithms are for sampling from a probability distribution 
you can’t model directly.

•  A Markov Chain with the desired distribution as its equilibrium 
distribution, lets you sample of the desired distribution by 
recording states from the chain. 

• To work, an MCMC algorithm need a way of ensuring each step 
gets closer to the desired distribution.



Langevin Dynamics

• Named for French physicist Paul Langevin 
(Lahn-je-vahn)

• Langevin dynamics provides an MCMC 
procedure to sample from a distribution  
using only its score function 

• It initializes the chain from an arbitrary 
prior distribution and then iterates to 
converge on p(x) 

https://yang-song.net/blog/2021/score/



We do this by learning the gradient of p(x)

Image from https://yang-song.net/blog/2021/score/



Learning the score: ∇& (𝑝(𝑥)

• Assume we can approximate data distribution p(x), up to some 
normalizing factor Z:   

            𝑝 𝑥 = !"($)
&

Take the log:           log 𝑝 𝑥 = log !" #
$

                         = log( .𝑝 𝑥 ) − log(𝑍)

Rearrange:  log 𝑝 𝑥 + log(𝑍) = log( .𝑝 𝑥 )



Learning the score: ∇& (𝑝(𝑥)
From the previous slide:       log 𝑝 𝑥 + log(𝑍) = log( /𝑝 𝑥 )

…Now let’s take gradients 

∇&(log 𝑝 𝑥 + log(𝑍)) = ∇& log /𝑝 𝑥
          ∇&log 𝑝 𝑥 = ∇&log( /𝑝 𝑥 )

Z drops out, since it is a constant with respect to x.
So, we can skip learning Z….which was  the intractable part.

Gradient=0
w.r.t. x



Using∇&𝑝 𝑥 	to generate a new example

• Start at a random point.

• Iteratively follow gradient ∇&𝑝(𝑥) to 
reach a point that looks like our 
training data. 

• Voila! a new sample is generated!

• All we need is an estimate of ∇&𝑝(𝑥).

Modified image from https://yang-song.net/blog/2021/score/
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Using ∇&𝑝 𝑥 	vs ∇&log(𝑝 𝑥 )

• We want the gradient ∇&𝑝 𝑥  of the probability function 𝑝 𝑥 	because it 
lets us start anywhere in the space and iteratively follow gradient ∇&𝑝(𝑥) 
to reach a point that looks like our training data. 

• So…learning	∇&𝑝 𝑥  it is as good as learning 𝑝 𝑥 			

• The	log	of	the	gradient	∇&log(𝑝 𝑥 )	also lets us play the same game.



Don’t worry, it will be imperfect.

• Our estimate ∇& /𝑝(𝑥) is only accurate where we have lots of data.
• For 1000 by 1000 pixel images, this 10^6 D space is mostly empty.
• Ergo, the estimate is mostly bad.

Image from https://yang-song.net/blog/2021/score/



What if we made more data to fill in the space? 

• If we add perturbed data, our sample would cover more of the space.
• If we perturb using a parametric noise distribution (e.g. Gaussian noise) we 

could account for it when we learn the gradient.

Image from https://yang-song.net/blog/2021/score/



Perturb at multiple scales

Image from https://yang-song.net/blog/2021/score/

Add (Gaussian) noise at different scales until your data fills the space



Walk it back

Image from https://yang-song.net/blog/2021/score/

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2nd most perturbed….then the 3rd 
most…until you reach what you hope is the original p(x)

Learn these steps with a neural network that outputs the noise 
gradient at each step. 



Relating this to the other view of diffusion

• When we typically talk diffusion, we discuss learning the mean 𝜇 and 
covariance matrix Σ for each Gaussian at each step in the diffusion 
process.

• If you know 𝜇 and Σ of a Gaussian, you can derive the gradient.

• The score is the gradient.

• So these are two views of the same thing.



What we’d hope to see.

Image from https://yang-song.net/blog/2021/score/

Start from the most perturbed (essentially an isotropic Gaussian)

Walk backwards from that to the 2nd most perturbed….then the 3rd 
most…until you reach what you hope is a sample from p(x)

We learn these steps with a neural network that outputs the noise 
gradient (AKA the score) at each step. 



What we’re minimizing

!
!"#

$

𝜆(𝑖)𝔼%!"(𝐱) 𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *

*

𝐥𝐞𝐚𝐫𝐧𝐞𝐝	𝐧𝐞𝐭𝐰𝐨𝐫𝐤	
𝐰𝐢𝐭𝐡	𝐩𝐚𝐫𝐚𝐦𝐭𝐞𝐫𝐬	𝜽

Input example at step t 
in the Lavengian process

…..The score function…..

The function determining the 
scale of noise being applied

How much weight to 
give this level in the 
noise scaling, when 
calculating loss

The number of levels in 
our noise scaling.



What we’re minimizing

!
!"#

$

𝜆(𝑖)𝔼%!"(𝐱) 𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *

*

Image from https://yang-song.net/blog/2021/score/

𝐥𝐞𝐚𝐫𝐧𝐞𝐝	𝐧𝐞𝐭𝐰𝐨𝐫𝐤	
𝐰𝐢𝐭𝐡	𝐩𝐚𝐫𝐚𝐦𝐭𝐞𝐫𝐬	𝜽

Input example at step t 
in the Langevin process

…..The score function…..

The function determining the 
scale of noise being applied.
Here, 𝝈 is our standard deviation

How much weight to 
give this level in the 
noise scaling, when 
calculating loss.
Often a function of 𝝈

The number of levels in 
our noise scaling.



We’re minimizing this difference

https://cvpr2022-tutorial-diffusion-models.github.io

We know this because we have 
each data sample 𝐱𝟎  and we 
defined the parameters of the 
distribution 𝒒𝒕 applied at step t.

If we train 𝒔𝜽	 on the data, we 
hope to learn the gradient for 
each time step EVERYWHERE, not 
just at the points in the training 
data.

𝑠&(𝐱', 𝑡) − ∇(& log 𝑞'(𝐱'|𝐱)) *
*



After training, we run in reverse order

Image from https://yang-song.net/blog/2021/score/



Score network for 
CelebA

Image from https://yang-song.net/blog/2021/score/



Score network for 
CIFAR-10

Image from https://yang-song.net/blog/2021/score/



Where we are

• We can learn ∇&log( /𝑝 𝑥 ) with a diffusion model. 

• This lets us start anywhere in the space & walk the gradients to make 
a sample similar to one from the original distribution.

• This can take thousands of steps at generation time.



The generative modeling “tri-lemma”

https://cvpr2022-tutorial-diffusion-models.github.io



Many approaches to speeding up diffusion

• Teacher-student models to learn bigger steps 

• Run diffusion on VAE latent space

• Learn variable step size in training, then take bigger steps in 
generation

• Do continuous (infinite steps) and then…well…there’s lots there. No 
time to talk about it all, really. 



Conditioning Using a Classifier



Where we are

• We can learn ∇&log( /𝑝 𝑥 ) with a diffusion model. 

• This lets us start anywhere in the space & walk the gradients to make 
a sample similar to one from the original distribution.

• We have no way of controlling which part of the original distribution.



So…how do we get to this?

https://cvpr2022-tutorial-diffusion-models.github.io



Adding a conditioning variable  y

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

DOG

Gradient=0
w.r.t. x



…continued

From Sander Dielman’s https://benanne.github.io/2022/05/26/guidance.html

Gradient of the 
class-conditioned 
distribution

Gradient of the 
classifier’s label, 
given, example x

Gradient of the 
unconditional 
example x

Get this from our 
previously-trained 
diffusion model

Get this from any 
previously- trained 
classifier

• This lets us walk the gradients to make a sample like one from the 
original distribution that also would get labeled as a “dog” (or “cat” or 
whatever) by the classifier.



Use ∇& (𝑝(𝑥) + ∇&𝑝(𝑦|𝑥) to condition generation 

• Start at a random point.

• Iteratively follow the gradient ∇& /𝑝(𝑥) 
to reach a point like our training data. 

• Iteratively follow ∇&𝑝(𝑦|𝑥) to reach a 
point with class y

Modified image from https://yang-song.net/blog/2021/score/
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Weighting our classifier “Guidance”

Image from Dhariwal, Nichol, “Diffusion Models Beat GANs on Image Synthesis”, Neural Information Processing Systems, 2021

Class: Pembroke Welsh corgi𝛾 = 1 𝛾 = 10

https://arxiv.org/abs/2105.05233


The catch

• If the classifier can’t handle noisy inputs, it can’t provide good 
guidance

• Practically speaking, this can mean the classifier needs to be trained 
on the data generated by the diffusion process

• This means we can’t necessarily use any off-the-shelf classifier for 
guidance

• So what now??? 
•  …and how does CLIP play into things? 
• We’ll see with the GLIDE paper.



Classifier-free Conditioning



Let’s run Bayes the other way…

DOG



A little math

• Our formula for classifier-guided generation was this:

• From the previous slide we get: 

• Let’s plug that into the guided generation formula.



Weighted self-guidance

• This gives us: 

• Or equivalently:



Using this formula

• Train a class-conditional  diffusion model
• Around 20% of the time, randomly replace the true label with the 

”anything” class label.
• Use this “anything” conditioning as a substitute for unconditioned 

generation 
• At generation time, use this formula for guidance:



Next time 

• We’ll see how CLIP and guidance lead to GLIDE


