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Dealing with time
• With a ”standard” feed-forward architecture, you process data from 

within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes 

and connections
• This doesn’t scale well
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Let’s look at that net.
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• An entire new set of 
weights for EACH time step.
• Audio is sampled at 44,100 

times per second
• The number of past time 

steps you could consider is 
limited by the architecture.
• The number of weights to 

learn quickly gets out of 
control.



Take an idea from CNNs and HMMs
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• Markov property: The state 
of the world can be 
captured by knowing 
current state + immediately 
previous state
• Markov models use 

recurrent connections
• CNNs use the same set of 

shared weights on different 
parts of the input

Shared 
weights

Distinct 
inputs
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Take an idea from CNNs and HMMs

• If all the windows share the 
same input weights (like in a 
feature map), then we only 
have the same number of 
weights as if we had a single 
window.
• This is a recurrent net.
• How do you train this? 
• Are there any obvious 

limitations?
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Backprop through time: “Unrolling”
• Pick a number of steps over which you’re going to “unroll” the net.
• Treat it like you’re training a convolutional neural net
• Pick the number of steps based on your frenemy: Exponential decay



Getting influence from the past: Skip connections 
(used in Highway networks)
• Widely used
• Limited by the length of the skip



Exponentially decaying influence

• If your network needs to connect information from a distant 
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay. 



Exploding and vanishing gradients

• What if the weight on the 
recurrent connection is 
greater than 1? 

• What if the weight on the 
recurrent link is less than 1?

• What if it is exactly 1?
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An RNN example: Language modeling

• In language modeling, the game is to be able to predict the next 
word, given the previous N words.

• Examples
“Two plus two equals…”
“A stitch in time saves….” 
“I never did…” 



Our text encoding
• 1000 most common English words. + start + stop + other

• Encoding: 1003 element one-hot vector for each word in a sentence
• Word index determined by popularity
• Start = 1001
• Stop = 1002
• Other (any word not in the top 1000) = 1003

• Examples:  

An apple is good for you. -> [1001, 48, 927, 24, 121, 7, 26, 1002]

Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1002] 

https://1000mostcommonwords.com/1000-most-common-english-words/


The goal: predict the next token

• Each sentence is its own label.

• Given “An apple is…”, predict “good” as the next word.

• Our model output will be a probability distribution over the 1003 
element vector (top 1000 words + start + stop + other).

• We can use cross-entropy loss, comparing the one-hot vector to the 
probability vector output by the model.



Our network

An                  apple                   is           good              for            you

good

INPUT:

Argmax output fruit is
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4-node RNN
Hidden layer

Probability 
distribution 
over words



A RNN with 4 hidden nodes : how many weights?

INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state  s(t-1): a vector of the output 
from each hidden unit from time t-1

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT  LAYER

OUTPUT  a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT  LAYER

Hidden layer

Output layer 

Input + 
prev state
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𝑤(𝑡) 𝑠(𝑡 − 1) = [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1 ] this vector has 1003 + n elements

RNN: the math
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RNN: the math

PREVIOUS STATE: an n dimensional vector, where each element
is the output of a hidden node at the previous time step t-1.

this vector has 1003 + n elements

Hidden node activation function

Each 
node j

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1 ]

Softmax

Each 
output k



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
prev state
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RNN: Predicting the next word

PREVIOUS STATE: an n dimensional vector, where each element
is the output of a hidden node at the previous time step t-1.

this vector has 1003 + n elements

Hidden node activation function

Each 
node j

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1 ]

Softmax

Each 
output k

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 + 1) = argmax
)

[𝑦$ 𝑡 ,…,𝑦) 𝑡 ,…,𝑦* 𝑡 ]

Recurrent neural network-based language model (Interspeech 2010)



What if we use a more realistically sized net?

• Dictionary size = 50,000
• Hidden states = 100

• 50,000*100*2 = 10,000,000

• It’s just that easy to have 10 million weights.

• Adding a couple of extra hidden layers (even fully connected ones) 
doesn’t cost you much,  compared to the dictionary size.



This is an autoregressive model

•An autoregressive model forecasts the variable of 
interest using a linear combination of past values of 
the variable

•The term autoregression indicates that it is a 
regression of the variable against itself



A language model is a generative model

• If you have something that predicts the next word, you have 
something that can “generate” the next word.

• Sentence completion is possible

• Sentence generation is possible



Generating a new sentence with the model

STARTPick an initialization token

She

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization 

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She
from model output at 
previous time step

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She likes

cheeseShe likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She likes            cheese

cheese
Sample from the conditional 
distribution output by the model

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

STOP

Continue till you 
generate a stop 
token



Perplexity

• A measure of how hard it is to guess the next word.
• The exponentiation of the cross-entropy

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2!(#) = 2%∑! #(')(()*"(+ ' )

• A commonly used measure of how well a language model is doing
• Measures how confused the model is (how many choices it has 

reduced the next word to)



Getting more context

• We predict/generate a new token, based on a prior sequence.

• Our generated output is contextually informed by the past

• But wait….if our training data is whole sentences, can’t we do the 
same thing from the ”future” (i.e. the next word or rest of sentence)?

• Sure we can. Just feed in the sequence backwards.



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
next state

𝑤(𝑡) 𝑠(𝑡 + 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 + 1)

𝑠& 𝑡 = 𝜎 6
'

𝑢'& 𝑥'(𝑡)

= [𝑠$(𝑡 + 1),… , 𝑠%(𝑡 + 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!

∑* 𝑒("
𝑦) 𝑡 = 𝑔 6

)
𝑠&(𝑡)𝑣&)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 − 1) = max
)
[𝑦$ 𝑡 ,…,𝑦) 𝑡 ,…,𝑦* 𝑡 ]

RNN: predicting the “past” based on the “future”



Bidirectional RNN

• Inform output layer’s 
probability distribution 
using a forward layer 
and a backwards layer

• The generated token(s) 
are influenced by both 
previous and 
subsequent context

An         apple              is           - for            you

good

INPUT:

OUTPUT:



Multi-layer RNN

• You can have multiple 
hidden layers, where 
layer n feeds into layer 
n+1

Image from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).



Long-Short Term Memories
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural 
computation 9.8 (1997): 1735-1780.



Here’s a problem. What can learn to do it?

• X is a finite-length sequence composed of tokens, where each token 
𝑥% ∈ ℝ ∪ 𝑎, 𝑏 .

• The length of X is unknown.

• Before beginning, the total = 0.

• Iterate through X and do the following
• If 𝑥- = 𝑎, add 𝑥-./to the total.
• If 𝑥- = 𝑏, return the total and reset the total to 0.



Let’s play

1,  3, -5, a, 5, -1, 8 , 2, 0, a, 9, b

a, -1, a, 100, b 

1,  3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, b

= 99

= 14

= 9



Feed-forward: Fixed-length time window

• If your network needs to connect information from outside the 
window, you lose.

1,  3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, ba, -1, a, 100, b 



RNN: exponentially decaying influence

• If your network needs to connect information from a distant 
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay. 

-5       a 5 -1      8     a       9     b



Long Short Term Memory Units (LSTMs)
• Added a way of storing data over many time steps without decay
• Let networks to handle problems with long term dependencies

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



LSTM training
• Error is propagated indefinitely through its memory cell, the constant error 

carousel (CEC)
• Error flow back through the unit is truncated at the incoming weights. 

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



An easy-to-follow-visual of a modern LSTM

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell state from 
prev. time step

Output state input 
from other LSTM cells

Network 
input

Output

Cell state at 
this timestep

Forget gates introduced in: Gers, F.A. 
et al (1999). "Learning to forget: 
Continual prediction with LSTM". 9th 
International Conference on Artificial 
Neural Networks: 1999



Forget Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Output  state 
passed in from 
other cells

New input vector



Input Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Cell State

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Output Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



The math of the modern LSTM

Image adapted from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).
Forget gates introduced in: Gers, F.A. et al (1999). "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks: 1999



How many weights for a single LSTM unit?

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 4 𝑥 + 4 ℎ + 3 + 4

Input gate

forget gate

memory

output gate

final output



How many weights for this network?
• Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

• Compare that to a vanilla RNN with the same number of layers and 
vocabulary size…. 

• Can we shrink closer to a vanilla RNN but keep advantages of an 
LSTM?



GRU: A simplified LSTM 

Images from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



GRU: The Math

Math based on: Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint 
arXiv:1412.3555 (2014)

Final output

A linear interpolation between previous output and candidate output

ℎ" = 1 − 𝑧" ℎ"#$ + 𝑧" 1ℎ"

Update gate 𝑧" = 𝜎 𝑊%𝐱" +𝑈%𝐡"#$

Determines how much to make the output be influenced by 
the previous hidden state vs the current input.

1ℎ" = 𝑡𝑎𝑛ℎ 𝑊&'𝐱" +𝑈&' (𝐫"⨀𝐡"#$ )Candidate output

Vector of all reset gates in 
the hidden layer

Vector of all outputs in the 
hidden layer𝑟"= 𝜎 𝑊(𝑥" +𝑈(ℎ"#$Reset gate

Determines how hard to reset this unit’s output



LSTM/GRU Plusses and Minuses

• Lets networks handle problems 
with long term dependencies
• This lets LSTMs (or GRU) solve 

problems simple recurrent 
architectures cannot

• Still has trouble with XOR (time-
delayed XOR where you XOR two 
inputs that are an unknown 
number of time steps apart)
• Lots of extra weights compared to 

regular cells
• Long and slow to train
• Not easy to inspect networks to 

understand them


