Recurrent nets and Language
Models

Bryan Pardo
Deep Learning
Northwestern University

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020

Dealing with time

* With a "standard” feed-forward architecture, you process data from
within a window, ignoring everything outside the window.

* To get influence from the processing of earlier time steps, add nodes
and connections

* This doesn’t scale well

L anaes

5
-

*-Wr 5-") Y R | _.jnh.l.hw

Let’s look at that net.

* An entire new set of
weights for EACH time step.

e Audio is sampled at 44,100
times per second

* The number of past time
steps you could consider is
limited by the architecture.

* The number of weights to
learn quickly gets out of
control.

Take an idea from CNNs and HMMs

* Markov property: The state
of the world can be
captured by knowing
current state + immediately
previous state

Shared

weights

* Markov models use
recurrent connections

* CNNs use the same set of
shared weights on different
parts of the input

Distinct
inputs

Take an idea from CNNs and HMMs

Current output

* If all the windows share the
Out from t-1 > () >Intot+l same input weights (like in a

feature map), then we only

W have the same number of
weights as if we had a single
window.

e This is a recurrent net.
X¢ * How do you train this?

* Are there any obvious
limitations?

Backprop through time: “Unrolling”

* Pick a number of steps over which you’re going to “unroll” the net.
* Treat it like you’re training a convolutional neural net
* Pick the number of steps based on your frenemy: Exponential decay

Getting influence from the past: Skip connections
(used in Highway networks)

* Widely used
* Limited by the length of the skip

Exponentially decaying influence

* If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost

* Why? Exponential decay.

Exploding and vanishing gradients

Recurrent
connection

* What if the weight on the
recurrent connection is
greater than 1°?

* What if the weight on the
recurrent link is less than 17

* What if it is exactly 17

An RNN example: Language modeling

* In language modeling, the game is to be able to predict the next
word, given the previous N words.

* Examples
“Two plus two equals...”
“A stitch in time saves....”
“I never did...”

Our text encoding

* 1000 most common English words. + start + stop + other

* Encoding: 1003 element one-hot vector for each word in a sentence
* Word index determined by popularity
e Start =1001
* Stop = 1002
e Other (any word not in the top 1000) = 1003

* Examples:
An apple is good for you. ->[1001, 48, 927, 24, 121, 7, 26, 1002]

Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1002]

https://1000mostcommonwords.com/1000-most-common-english-words/

The goal: predict the next token

e Each sentence is its own label.
* Given “An apple is...”, predict “good” as the next word.

e Our model output will be a probability distribution over the 1003
element vector (top 1000 words + start + stop + other).

* WWe can use cross-entropy loss, comparing the one-hot vector to the
probability vector output by the model.

Our network

Argmax output

Probability
distribution
over words

4-node RNN
Hidden layer

INPUT:

fruit

is

good

An
t-2

o
|

apple
t-1

is

good

for

you

A RNN with 4 hidden nodes : how many weights?

OUTPUT a 1003 element probability distribution over the set of words.

outputlaver [0.01,.0000098, ...,.0023, ...,.001,0,.000053] softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer O O O O Sigmoid activation

ﬁ ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT LAYER
Input + 0,0,0,...,1,...,0,0,0] [.2,0,.001,.3]
prev state .
INPUT word w(t): a 1003 element Previous state s(t-1): a vector of the output

one-hot vector encoding word t. from each hidden unit from time t-1

RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

outputlaver [0.01,.0000098, ...,.0023, ...,.001,0,.000053] softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer O O O O Sigmoid activation

ﬁ x(t) — [W(t), S(t —_— 1)] this vector has 1003 + n elements
Input + w(t) s(t—1) =[s,(t—1),...,s,(t — 1)]

prev state .
INPUT word w(t): a 1003 element Previous state s(t-1): a vector of the output
one-hot vector encoding word t. from each hidden unit from time t-1

RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

outputlaver [0.01,.0000098, ...,.0023, ...,.001,0,.000053] softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer O O O O Sigmoid activation

ﬁ x(t) — [W(t), S(t —_— 1)] this vector has 1003 + n elements
Input + w(t) s(t—1) =[s,(t—1),...,s,(t — 1)]

prev state .
INPUT word w(t): a 1003 element Previous state s(t-1): a vector of the output
one-hot vector encoding word t. from each hidden unit from time t-1

RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

outputlaver [0.01,.0000098, ...,.0023, ...,.001,0,.000053] softmax activation

]

Hidden layer

1

Input +
prev state

w50 = o |) wy () o(2) = (1 + 7)1

i Hidden node activation function

x(t) — [W(t), S(t — 1)] this vector has 1003 + n elements
w(t) s(t—1) =[s,(t—1),...,s,(t — 1)]

INPUT word w(t): a 1003 element Previous state s(t-1): a vector of the output
one-hot vector encoding word t. from each hidden unit from time t-1

RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

e’k
e @ =g(Q, 5O 90k) =5 erm
ﬁ ° J Softmax m
Hidden layer EZZZ] Sj (t) -0 z uij Xi (t) O-(Z) — (1 + e_z)_l
[Hidden node activation function

ﬁ x(t) — [W(t), S(t —_— 1)] this vector has 1003 + n elements
Input + w(t) s(t—1) =[s,(t—1),...,s,(t — 1)]

prev state INPUT word w(t): a 1003 element PREVIOUS STATE: an n dimensional vector, where each element

one-hot vector encoding word t. is the output of a hidden node at the previous time step t-1.

RNN: Predicting the next woro

prediction = w(t + 1) = argmax
K

Output layer Each — . .
ﬁ Oiiputk ye(t) =g (z] Sj (t)vjk)
Hidden layer EZ((:;;] Sj (t) =0 (Z uij xi (t)>

}

V1), Yie ()00 Yim ()]

Softmax

og(z)=(1+e %1

Hidden node activation function

ﬁ x(t) — [W(t), S(t —_— 1)] this vector has 1003 + n elements

Input + W(t) S(t —

prev state

one-hot vector encoding word t. is the output

1) =[s;(t—1),..,s,(t — D]

INPUT word w(t): a 1003 element PREVIOUS STATE: an n dimensional vector, where each element

of a hidden node at the previous time step t-1.

Recurrent neural network-based language model (Interspeech 2010)

What if we use a more realistically sized net?

* Dictionary size = 50,000
* Hidden states = 100

* 50,000*100*2 =10,000,000
* [t’s just that easy to have 10 million weights.

» Adding a couple of extra hidden layers (even fully connected ones)
doesn’t cost you much, compared to the dictionary size.

This is an autoregressive model

* An autoregressive model forecasts the variable of
interest using a linear combination of past values of
the variable

* The term autoregression indicates that it is a
regression of the variable against itself

A language model is a generative model

* If you have something that predicts the next word, you have
something that can “generate” the next word.

* Sentence completion is possible

e Sentence generation is possible

Generating a new sentence with the model

She

Sample from the conditional /\/\/\
distribution output by the model

Random initialization

[s:(¢ =1, 55 (E = D] —>

Pick an initialization token START

Generating a new sentence with the model

She likes

Sample from the conditional /W\ &

distribution output by the model

Random initialization

[s:(t—1),...,s,(t—1)] —»

e

START She

from model output at
previous time step

Generating a new sentence with the model

She likes cheese
Sample from the conditional /W\ & A\/\
distribution output by the model

Random initialization

[s:(t—1),...,s,(t—1)] —»

e

START She likes

Generating a new sentence with the model

She

likes

cheese

STOP

Sample from the conditional /W\
distribution output by the model

A

)

Random initialization

[s:(t—1),...,s,(t—1)] —»

START

e

She

likes

cheese

o

Continue till you
generate a stop
token

Perplexity

* A measure of how hard it is to guess the next word.
* The exponentiation of the cross-entropy

Perplexity = 2H®) = 27 2xp(x)(logz(q(x))

* A commonly used measure of how well a language model is doing

* Measures how confused the model is (how many choices it has
reduced the next word to)

Getting more context

* We predict/generate a new token, based on a prior sequence.
* Our generated output is contextually informed by the past

* But wait....if our training data is whole sentences, can’t we do the
same thing from the "future” (i.e. the next word or rest of sentence)?

e Sure we can. Just feed in the sequence backwards.

RNN: predicting the “past” based on the “future”

prediction g w(t — 1) mlgx[yl (t),..., Vi (£),.c, ¥ (E)]
Output ayer ye(t) =g (zk j (t)vjk) 9(z) = > - ekzm
Hidden layer Sj (t) =0 (Z uij xi(t)) J(Z) — (1 + e_z)_l
1 x(t) = w(t) Hs(t + 1)
s w(t) sS(t+1) =[s,(t+1),...,s,(t +1)]

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Bidirectional RNN

* Inform output layer’s OUTPUT: good
probability distribution /AN RN A LA L

using a forward layer =
and a backwards layer

* The generated token(s)
are influenced by both
previous and
subsequent context

Iy
=~

INPUT: An apple is you

Multi-layer RNN

Outputs

* You can have multiple
hidden layers, where

b
1l

layer n feeds into layer N
\%
n+1 5,
\%Z,
Hidden Layers \

\

\
\ \‘
\%

Image from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).

Inputs

Long-Short Term Memories

Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural
computation 9.8 (1997): 1735-1780.

Here’s a problem. What can learn to do it?

e Xis a finite-length sequence composed of tokens, where each token
x, € RU{a,b}.

* The length of X is unknown.
» Before beginning, the total = 0.

* [terate through X and do the following
* If x,, = a, add x,,,1to the total.
* If x,, = b, return the total and reset the total to 0.

Let’s play
a,-1,a,100,b =99
1, 3,-5,a,5,-1,8,2,0,3,9,b =14

1, 3,a,-5,0,0,0,0,4a,5,-1,7,2,0,a,9,-12,b =9

Feed-forward: Fixed-length time window

* |f your network needs to connect information from outside the
window, you lose.

1, 3,3]-5,0,0,8, a,%500,8,2,0,3]9,-12, b

RNN: exponentially decaying influence

* If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost

* Why? Exponential decay.

Long Short Term Memory Units (LSTMs)

* Added a way of storing data over many time steps without decay
* Let networks to handle problems with long term dependencies

net, s.=S.+gy"

~~ | 9 gy"ﬂ@ h hy*
— |©—9>0>O—9

w
Wcj i in outj

y" y
wo AN, AN

Image from: Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

A\

LSTM training

* Error is propagated indefinitely through its memory cell, the constant error
carousel (CEC)

* Error flow back through the unit is truncated at the incoming weights.

net, S.=S.+gy"

~s 9 v (™) h ony
= |0—$50-0—s

Wcji yinj @ out @ W-
net,, net,,
Winii ﬁ /]\ N | outl ﬁ /]\ N

Image from: Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Lyl

An easy-to-follow-visual of a modern LSTM

Forget gates introduced in: Gers, F.A.

et al (1999). "Learning to forget: fo rg et gate Ce” State
Continual prediction with LSTM". 9th

International Conference on Artificial

Neural Networks: 1999

’ p

Cell state from #
H A Y
prev. time step *

.
1 Cell state at
¥ this timestep

' 4

Output state input

from other LSTM cells Output

Network

input iInput gate output gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Forget Gate

Q previous cell state

‘ forget gate output

Output state
passed in from
other cells

New input vector

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Input Gate

c previous cell state
° forget gate output

‘ input gate output

° candidate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell State

Q previous cell state
c forget gate output

‘ input gate output

e candidate
° new cell state

0-00-00

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Output Gate

e previous cell state
c forget gate output

0 input gate output

Q candidate
0 new cell state

° output gate output

G hidden state

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

The math of the modern LSTM

iy = 0 (Waizs + Whihi—1 + Weic—1 + b;)
\l/ \l/ fi =0 (Wgsxe + Whphi—1 + Wepci—1 + by)
= frce—1 + i tanh (Waexy + Whehe—1 + be)
0 (Waoxt + Whohi—1 + Weocr + b,)

hy = os tanh(cy)

o
~
I

Input Gate

Q
~
I

Vh,t

Forget Gate

(i
Z4AN

Image adapted from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).
Forget gates introduced in: Gers, F.A. et al (1999). "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks: 1999

How many weights for a single LSTM unit?

@@t + t—1 +m—l +H b;)

eewme fr =0 (Waste +Whifre—1 ch|ct—1 + bfp
memory G = ftct 1 + % tanh (W s + th}ht—l | b01

output gate Ot:U(_olxt Wholht—l Mt bo)

final output ht — ottanh Ct)

I

Input gate it —)

number of weights = 4|x| + 4|h| +3 + 4

How many weights for this network?

* Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

* Compare that to a vanilla RNN with the same number of layers and
vocabulary size....

* Can we shrink closer to a vanilla RNN but keep advantages of an
LSTM?

GRU: A simplified LSTM

LSTM GRU

forget gate cell state reset gate

--meememomomow
. LR
o= = - - ----

input gate output gate update gate

Images from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

GRU: The Math

A linear interpolation between previous output and candidate output

Final output h’t = (1 — Zt)ht—l + Ztﬁt

Determines how much to make the output be influenced by

the previous hidden state vs the current input.
Vector of all reset gates in

Update gate Zt = O-(M/th -|— Uth—l) the hidden layer

Candidate output ht

tanh(W#x; + Uz (r:Ohs_1))

Determines how hard to reset this unit’s output Vector of all outputs in the

Reset gate 'rtz O'(M/}Xt -I— Urht—l) hidden layer

Math based on: Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint
arXiv:1412.3555 (2014)

LSTM/GRU Plusses and Minuses

* Lets networks handle problems * Still has trouble with XOR (time-
with long term dependencies delayed XOR where you XOR two
* This lets LSTMs (or GRU) solve inputs that are an unknown
problems simple recurrent number of time steps apart)
architectures cannot * Lots of extra weights compared to
regular cells

* Long and slow to train

* Not easy to inspect networks to
understand them

