Recurrent nets and Language Models

Bryan Pardo
Deep Learning
Northwestern University
Dealing with time

• With a "standard" feed-forward architecture, you process data from within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes and connections
• This doesn’t scale well
Let’s look at that net.

- An entire new set of weights for EACH time step.
- Audio is sampled at 44,100 times per second
- The number of past time steps you could consider is limited by the architecture.
- The number of weights to learn quickly gets out of control.
Take an idea from CNNs and HMMs

- Markov property: The state of the world can be captured by knowing current state + immediately previous state
- Markov models use recurrent connections
- CNNs use the same set of shared weights on different parts of the input
Take an idea from CNNs and HMMs

- If all the windows share the same input weights (like in a feature map), then we only have the same number of weights as if we had a single window.
- This is a recurrent net.
- How do you train this?
- Are there any obvious limitations?
Backprop through time: “Unrolling”

- Pick a number of steps over which you’re going to “unroll” the net.
- Treat it like you’re training a convolutional neural net.
- Pick the number of steps based on your frenemy: Exponential decay.
Getting influence from the past: Skip connections (used in Highway networks)

• Widely used
• Limited by the length of the skip
Exponentially decaying influence

• If your network needs to connect information from a distant timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.
Exploding and vanishing gradients

- What if the weight on the recurrent connection is greater than 1?
- What if the weight on the recurrent link is less than 1?
- What if it is exactly 1?
An RNN example: Language modeling

• In language modeling, the game is to be able to predict the next word, given the previous N words.

• Examples
 “Two plus two equals...”
 “A stitch in time saves....”
 “I never did...”
Our text encoding

• 1000 most common English words. + start + stop + other

• Encoding: 1003 element one-hot vector for each word in a sentence
 • Word index determined by popularity
 • Start = 1001
 • Stop = 1002
 • Other (any word not in the top 1000) = 1003

• Examples:

 An apple is good for you. -> [1001, 48, 927, 24, 121, 7, 26, 1002]

 Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1003, 1002]
The goal: predict the next token

• Each sentence is its own label.

• Given “An apple is…”, predict “good” as the next word.

• Our model output will be a probability distribution over the 1003 element vector (top 1000 words + start + stop + other).

• We can use cross-entropy loss, comparing the one-hot vector to the probability vector output by the model.
Our network

Argmax output

Probability distribution over words

4-node RNN Hidden layer

INPUT: An apple is good for you

fruit

is
good

node RNN

Hidden layer

Probability distribution over words
A RNN with 4 hidden nodes: how many weights?

OUTPUT a 1003 element probability distribution over the set of words.

Input word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).

Previous state \(s(t-1) \): a vector of the output from each hidden unit from time \(t-1 \).

[0.01, 0.0000098, ..., 0.0023, ..., 0.001, 0.000053] Softmax activation

[0, 0, 0, ..., 1, ..., 0, 0, 0] Sigmoid activation

[.2, 0, .001, .3]
RNN: the math

OUTPUT: A 1003 element probability distribution over the set of words.

Output layer: [0.01, .0000098, ..., 0.0023, ..., 0.0010, 0.000053] Softmax activation

All hidden nodes are fully connected to the output layer

Hidden layer

Sigmoid activation

Input + prev state

Input word \(w(t) \): A 1003 element one-hot vector encoding word \(t \).

Previous state \(s(t-1) \): A vector of the output from each hidden unit from time \(t-1 \).

\[
x(t) = [w(t), s(t-1)] \quad \text{this vector has } 1003 + n \text{ elements}
\]

\[
w(t) \quad s(t-1) = [s_1(t-1), ..., s_n(t-1)]
\]
RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

\[[0.01, 0.0000098, \ldots, 0.0023, \ldots, 0.001, 0.000053] \]

Softmax activation

INPUT word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).

Previous state \(s(t - 1) \): a vector of the output from each hidden unit from time \(t-1 \).

\[x(t) = [w(t), s(t - 1)] \]

this vector has 1003 + \(n \) elements

\[w(t) \]

\[s(t - 1) = [s_1(t - 1), \ldots, s_n(t - 1)] \]
RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

Output layer

\[[0.01, \ldots, 0.0000098, \ldots, 0.0023, \ldots, 0.0010, 0.000053] \]
Softmax activation

Hidden layer

Each node \(j \)

\[
s_j(t) = \sigma \left(\sum_i u_{ij} x_i(t) \right)
\]

Hidden node activation function

\[\sigma(z) = (1 + e^{-z})^{-1} \]

Input + prev state

\[
x(t) = [w(t), s(t - 1)]
\]

this vector has 1003 + \(n \) elements

\[
w(t)
\]

\[
s(t - 1) = [s_1(t - 1), \ldots, s_n(t - 1)]
\]

Previous state \(s(t-1) \): a vector of the output from each hidden unit from time \(t-1 \)

INPUT word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).
RNN: the math

OUTPUT a 1003 element probability distribution over the set of words.

\[y_k(t) = g\left(\sum_j s_j(t) v_{jk} \right) \]

where \(g(z) = \frac{e^{z_k}}{\sum_m e^{z_m}} \) is the Softmax function.

\[\sigma(z) = (1 + e^{-z})^{-1} \]

is the Hidden node activation function.

Each output \(k \)
\[y_k(t) = g\left(\sum_j s_j(t) v_{jk} \right) \]

INPUT word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).

\[w(t) \]

PREVIOUS STATE: an \(n \) dimensional vector, where each element is the output of a hidden node at the previous time step \(t-1 \).

\[s(t - 1) = [s_1(t - 1), ..., s_n(t - 1)] \]

This vector has 1003 + \(n \) elements.

Each node \(j \)
\[s_j(t) = \sigma\left(\sum_i u_{ij} x_i(t) \right) \]

Hidden layer

Input + prev state

Output layer
RNN: Predicting the next word

\[
prediction = \hat{w}(t + 1) = \arg\max_k y_k(t)\]

Each output \(k \),

\[
y_k(t) = g \left(\sum_j s_j(t) v_{jk} \right)
\]

Each node \(j \),

\[
s_j(t) = \sigma \left(\sum_i u_{ij} x_i(t) \right)
\]

\[
x(t) = [w(t), s(t - 1)]
\]

\[
w(t)
\]

INPUT word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).

\[
s(t - 1) = [s_1(t - 1), ..., s_n(t - 1)]
\]

PREVIOUS STATE: an \(n \) dimensional vector, where each element is the output of a hidden node at the previous time step \(t-1 \).

\[
g(z_k) = \frac{e^{z_k}}{\sum_m e^{z_m}}
\]

Softmax

\[
\sigma(z) = (1 + e^{-z})^{-1}
\]

Hidden node activation function

\[
Recurrent\ neural\ network-based\ language\ model\ (Interspeech\ 2010)
\]
What if we use a more realistically sized net?

• Dictionary size = 50,000
• Hidden states = 100

• 50,000*100*2 = 10,000,000

• It’s just that easy to have 10 million weights.

• Adding a couple of extra hidden layers (even fully connected ones) doesn’t cost you much, compared to the dictionary size.
This is an autoregressive model

• An autoregressive model forecasts the variable of interest using a linear combination of past values of the variable

• The term autoregression indicates that it is a regression of the variable against itself
A language model is a generative model

• If you have something that predicts the next word, you have something that can “generate” the next word.

• Sentence completion is possible

• Sentence generation is possible
Generating a new sentence with the model

- Pick an initialization token
- Random initialization $[s_1(t-1), \ldots, s_n(t-1)]$
- Sample from the conditional distribution output by the model
- She

START
Generating a new sentence with the model

Sample from the conditional distribution output by the model

Random initialization

\[[s_1(t - 1), \ldots, s_n(t - 1)]\]

She

likes

START

from model output at previous time step
Generating a new sentence with the model

Sample from the conditional distribution output by the model

Random initialization $[s_1(t-1), ..., s_n(t-1)]$
Generating a new sentence with the model

Sample from the conditional distribution output by the model

Random initialization

\[s_1(t - 1), \ldots, s_n(t - 1) \]
Perplexity

- A measure of how hard it is to guess the next word.
- The exponentiation of the cross-entropy

\[\text{Perplexity} = 2^{H(p)} = 2^{-\sum_x p(x) \log_2(q(x))} \]

- A commonly used measure of how well a language model is doing
- Measures how confused the model is (how many choices it has reduced the next word to)
Getting more context

• We predict/generate a new token, based on a prior sequence.

• Our generated output is contextually informed by the past

• But wait....if our training data is whole sentences, can’t we do the same thing from the ”future” (i.e. the next word or rest of sentence)?

• Sure we can. Just feed in the sequence backwards.
RNN: predicting the “past” based on the “future”

\[
prediction = \hat{w}(t - 1) = \max_k [y_1(t), \ldots, y_k(t), \ldots, y_m(t)]
\]

\[
y_k(t) = g \left(\sum_k s_j(t) v_{jk} \right)
\]

\[
g(z_k) = \frac{e^{z_k}}{\sum_m e^{z_m}}
\]

\[
s_j(t) = \sigma \left(\sum_i u_{ij} x_i(t) \right)
\]

\[
\sigma(z) = (1 + e^{-z})^{-1}
\]

\[
x(t) = w(t) + s(t + 1)
\]

\[
w(t)
\]

\[
s(t + 1) = [s_1(t + 1), \ldots, s_n(t + 1)]
\]

INPUT word \(w(t) \): a 1003 element one-hot vector encoding word \(t \).
Bidirectional RNN

- Inform output layer’s probability distribution using a forward layer and a backwards layer.

- The generated token(s) are influenced by both previous and subsequent context.

```
INPUT: An apple is - for you

OUTPUT: good
```
Multi-layer RNN

- You can have multiple hidden layers, where layer n feeds into layer $n+1$

Long-Short Term Memories

Here’s a problem. What can learn to do it?

• X is a finite-length sequence composed of tokens, where each token \(x_n \in \mathbb{R} \cup \{a, b\} \).

• The length of X is unknown.

• Before beginning, the total = 0.

• Iterate through X and do the following
 • If \(x_n = a \), add \(x_{n+1} \) to the total.
 • If \(x_n = b \), return the total and reset the total to 0.
Let’s play

\[
a, -1, a, 100, b = 99
\]

\[
1, 3, -5, a, 5, -1, 8, 2, 0, a, 9, b = 14
\]

\[
1, 3, a, -5, 0, 0, 0, 0, a, 5, -1, 7, 2, 0, a, 9, -12, b = 9
\]
Feed-forward: Fixed-length time window

• If your network needs to connect information from outside the window, you lose.
RNN: exponentially decaying influence

• If your network needs to connect information from a distant timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.
Long Short Term Memory Units (LSTMs)

- Added a way of storing data over many time steps without decay
- Let networks to handle problems with long term dependencies

LSTM training

- Error is propagated indefinitely through its memory cell, the constant error carousel (CEC)
- Error flow back through the unit is truncated at the incoming weights.

An easy-to-follow-visual of a modern LSTM

Forget Gate

Output state passed in from other cells

New input vector

Input Gate

Cell State

Output Gate

The math of the modern LSTM

\[
\begin{align*}
i_t &= \sigma (W_{xi} x_t + W_{hi} h_{t-1} + W_{ci} c_{t-1} + b_i) \\
f_t &= \sigma (W_{xf} x_t + W_{hf} h_{t-1} + W_{cf} c_{t-1} + b_f) \\
c_t &= f_t c_{t-1} + i_t \tanh (W_{xc} x_t + W_{hc} h_{t-1} + b_c) \\
o_t &= \sigma (W_{xo} x_t + W_{ho} h_{t-1} + W_{co} c_t + b_o) \\
h_t &= o_t \tanh (c_t)
\end{align*}
\]

How many weights for a single LSTM unit?

\[
\begin{align*}
\text{Input gate} & \quad i_t &= \sigma \left(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i \right) \\
\text{forget gate} & \quad f_t &= \sigma \left(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f \right) \\
\text{memory} & \quad c_t &= f_t c_{t-1} + i_t \tanh \left(W_{xc}x_t + W_{hc}h_{t-1} + b_c \right) \\
\text{output gate} & \quad o_t &= \sigma \left(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o \right) \\
\text{final output} & \quad h_t &= o_t \tanh(c_t)
\end{align*}
\]

\[
\text{number of weights} = 4|x| + 4|h| + 3 + 4
\]
How many weights for this network?

• Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

• Compare that to a vanilla RNN with the same number of layers and vocabulary size....

• Can we shrink closer to a vanilla RNN but keep advantages of an LSTM?
GRU: A simplified LSTM

GRU: The Math

A linear interpolation between previous output and candidate output

Final output

\[h_t = (1 - z_t) h_{t-1} + z_t \tilde{h}_t \]

Determines how much to make the output be influenced by the previous hidden state vs the current input.

Update gate

\[z_t = \sigma(W_z x_t + U_z h_{t-1}) \]

Candidate output

\[\tilde{h}_t = \tanh(W_{\tilde{h}} x_t + U_{\tilde{h}} (r_t \odot h_{t-1})) \]

Determines how hard to reset this unit’s output

Reset gate

\[r_t = \sigma(W_r x_t + U_r h_{t-1}) \]

LSTM/GRU Plusses and Minuses

- Lets networks handle problems with long term dependencies
- This lets LSTMs (or GRU) solve problems simple recurrent architectures cannot
- Still has trouble with XOR (time-delayed XOR where you XOR two inputs that are an unknown number of time steps apart)
- Lots of extra weights compared to regular cells
- Long and slow to train
- Not easy to inspect networks to understand them