
Recurrent nets and Language
Models

Bryan Pardo
Deep Learning

Northwestern University

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020

Dealing with time
• With a ”standard” feed-forward architecture, you process data from

within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes

and connections
• This doesn’t scale well

t-2 t-1 t output

Let’s look at that net.

t-2 t-1 t

𝐖!"#

𝐗!"#

𝐖!"$

𝐗!"$

𝐖!

𝐗!

• An entire new set of
weights for EACH time step.
• Audio is sampled at 44,100

times per second
• The number of past time

steps you could consider is
limited by the architecture.
• The number of weights to

learn quickly gets out of
control.

Take an idea from CNNs and HMMs

𝐖

𝐗!"# 𝐗!"$ 𝐗!

• Markov property: The state
of the world can be
captured by knowing
current state + immediately
previous state
• Markov models use

recurrent connections
• CNNs use the same set of

shared weights on different
parts of the input

Shared
weights

Distinct
inputs

𝐖 𝐖

Take an idea from CNNs and HMMs

• If all the windows share the
same input weights (like in a
feature map), then we only
have the same number of
weights as if we had a single
window.
• This is a recurrent net.
• How do you train this?
• Are there any obvious

limitations?

𝐖

𝐗𝒕

Out from t-1 In to t+1

Current output

Backprop through time: “Unrolling”
• Pick a number of steps over which you’re going to “unroll” the net.
• Treat it like you’re training a convolutional neural net
• Pick the number of steps based on your frenemy: Exponential decay

Getting influence from the past: Skip connections
(used in Highway networks)
• Widely used
• Limited by the length of the skip

Exponentially decaying influence

• If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.

Exploding and vanishing gradients

• What if the weight on the
recurrent connection is
greater than 1?

• What if the weight on the
recurrent link is less than 1?

• What if it is exactly 1?

𝐖

𝐗𝒕

Recurrent
connection

An RNN example: Language modeling

• In language modeling, the game is to be able to predict the next
word, given the previous N words.

• Examples
“Two plus two equals…”
“A stitch in time saves….”
“I never did…”

Our text encoding
• 1000 most common English words. + start + stop + other

• Encoding: 1003 element one-hot vector for each word in a sentence
• Word index determined by popularity
• Start = 1001
• Stop = 1002
• Other (any word not in the top 1000) = 1003

• Examples:

An apple is good for you. -> [1001, 48, 927, 24, 121, 7, 26, 1002]

Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1002]

https://1000mostcommonwords.com/1000-most-common-english-words/

The goal: predict the next token

• Each sentence is its own label.

• Given “An apple is…”, predict “good” as the next word.

• Our model output will be a probability distribution over the 1003
element vector (top 1000 words + start + stop + other).

• We can use cross-entropy loss, comparing the one-hot vector to the
probability vector output by the model.

Our network

An apple is good for you

good

INPUT:

Argmax output fruit is

t-2 t-1 t

4-node RNN
Hidden layer

Probability
distribution
over words

A RNN with 4 hidden nodes : how many weights?

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT LAYER

OUTPUT a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer

Output layer

Input +
prev state

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

Sigmoid activation

OUTPUT a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1) = [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1] this vector has 1003 + n elements

RNN: the math

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

Sigmoid activation

OUTPUT a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1) = [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1] this vector has 1003 + n elements

RNN: the math

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

OUTPUT a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1) = [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1]

𝑠& 𝑡 = 𝜎 6
'

𝑢'& 𝑥'(𝑡) 𝜎 𝑧 = (1 + 𝑒"()"$
Hidden node activation function

Each
node j

this vector has 1003 + n elements

RNN: the math

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
prev state

OUTPUT a 1003 element probability distribution over the set of words.

𝑤(𝑡) 𝑠(𝑡 − 1)

𝑠& 𝑡 = 𝜎 6
'

𝑢'& 𝑥'(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!

∑* 𝑒("𝑦) 𝑡 = 𝑔 6
&
𝑠&(𝑡)𝑣&)

RNN: the math

PREVIOUS STATE: an n dimensional vector, where each element
is the output of a hidden node at the previous time step t-1.

this vector has 1003 + n elements

Hidden node activation function

Each
node j

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1]

Softmax

Each
output k

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1)

𝑠& 𝑡 = 𝜎 6
'

𝑢'& 𝑥'(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠%(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!

∑* 𝑒("𝑦) 𝑡 = 𝑔 6
&
𝑠&(𝑡)𝑣&)

RNN: Predicting the next word

PREVIOUS STATE: an n dimensional vector, where each element
is the output of a hidden node at the previous time step t-1.

this vector has 1003 + n elements

Hidden node activation function

Each
node j

x 𝑡 = [𝑤 𝑡 , 𝑠 𝑡 − 1]

Softmax

Each
output k

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 + 1) = argmax
)

[𝑦$ 𝑡 ,…,𝑦) 𝑡 ,…,𝑦* 𝑡]

Recurrent neural network-based language model (Interspeech 2010)

What if we use a more realistically sized net?

• Dictionary size = 50,000
• Hidden states = 100

• 50,000*100*2 = 10,000,000

• It’s just that easy to have 10 million weights.

• Adding a couple of extra hidden layers (even fully connected ones)
doesn’t cost you much, compared to the dictionary size.

This is an autoregressive model

•An autoregressive model forecasts the variable of
interest using a linear combination of past values of
the variable

•The term autoregression indicates that it is a
regression of the variable against itself

A language model is a generative model

• If you have something that predicts the next word, you have
something that can “generate” the next word.

• Sentence completion is possible

• Sentence generation is possible

Generating a new sentence with the model

STARTPick an initialization token

She

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She
from model output at
previous time step

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She likes

cheeseShe likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She likes cheese

cheese
Sample from the conditional
distribution output by the model

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

STOP

Continue till you
generate a stop
token

Perplexity

• A measure of how hard it is to guess the next word.
• The exponentiation of the cross-entropy

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2!(#) = 2%∑! #(')(()*"(+ ')

• A commonly used measure of how well a language model is doing
• Measures how confused the model is (how many choices it has

reduced the next word to)

Getting more context

• We predict/generate a new token, based on a prior sequence.

• Our generated output is contextually informed by the past

• But wait….if our training data is whole sentences, can’t we do the
same thing from the ”future” (i.e. the next word or rest of sentence)?

• Sure we can. Just feed in the sequence backwards.

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
next state

𝑤(𝑡) 𝑠(𝑡 + 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 + 1)

𝑠& 𝑡 = 𝜎 6
'

𝑢'& 𝑥'(𝑡)

= [𝑠$(𝑡 + 1),… , 𝑠%(𝑡 + 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!

∑* 𝑒("
𝑦) 𝑡 = 𝑔 6

)
𝑠&(𝑡)𝑣&)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 − 1) = max
)
[𝑦$ 𝑡 ,…,𝑦) 𝑡 ,…,𝑦* 𝑡]

RNN: predicting the “past” based on the “future”

Bidirectional RNN

• Inform output layer’s
probability distribution
using a forward layer
and a backwards layer

• The generated token(s)
are influenced by both
previous and
subsequent context

An apple is - for you

good

INPUT:

OUTPUT:

Multi-layer RNN

• You can have multiple
hidden layers, where
layer n feeds into layer
n+1

Image from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).

Long-Short Term Memories
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural
computation 9.8 (1997): 1735-1780.

Here’s a problem. What can learn to do it?

• X is a finite-length sequence composed of tokens, where each token
𝑥% ∈ ℝ ∪ 𝑎, 𝑏 .

• The length of X is unknown.

• Before beginning, the total = 0.

• Iterate through X and do the following
• If 𝑥- = 𝑎, add 𝑥-./to the total.
• If 𝑥- = 𝑏, return the total and reset the total to 0.

Let’s play

1, 3, -5, a, 5, -1, 8 , 2, 0, a, 9, b

a, -1, a, 100, b

1, 3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, b

= 99

= 14

= 9

Feed-forward: Fixed-length time window

• If your network needs to connect information from outside the
window, you lose.

1, 3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, ba, -1, a, 100, b

RNN: exponentially decaying influence

• If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.

-5 a 5 -1 8 a 9 b

Long Short Term Memory Units (LSTMs)
• Added a way of storing data over many time steps without decay
• Let networks to handle problems with long term dependencies

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

LSTM training
• Error is propagated indefinitely through its memory cell, the constant error

carousel (CEC)
• Error flow back through the unit is truncated at the incoming weights.

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

An easy-to-follow-visual of a modern LSTM

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell state from
prev. time step

Output state input
from other LSTM cells

Network
input

Output

Cell state at
this timestep

Forget gates introduced in: Gers, F.A.
et al (1999). "Learning to forget:
Continual prediction with LSTM". 9th
International Conference on Artificial
Neural Networks: 1999

Forget Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Output state
passed in from
other cells

New input vector

Input Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell State

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Output Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

The math of the modern LSTM

Image adapted from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).
Forget gates introduced in: Gers, F.A. et al (1999). "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks: 1999

How many weights for a single LSTM unit?

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 4 𝑥 + 4 ℎ + 3 + 4

Input gate

forget gate

memory

output gate

final output

How many weights for this network?
• Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

• Compare that to a vanilla RNN with the same number of layers and
vocabulary size….

• Can we shrink closer to a vanilla RNN but keep advantages of an
LSTM?

GRU: A simplified LSTM

Images from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

GRU: The Math

Math based on: Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint
arXiv:1412.3555 (2014)

Final output

A linear interpolation between previous output and candidate output

ℎ" = 1 − 𝑧" ℎ"#$ + 𝑧" 1ℎ"

Update gate 𝑧" = 𝜎 𝑊%𝐱" +𝑈%𝐡"#$

Determines how much to make the output be influenced by
the previous hidden state vs the current input.

1ℎ" = 𝑡𝑎𝑛ℎ 𝑊&'𝐱" +𝑈&' (𝐫"⨀𝐡"#$)Candidate output

Vector of all reset gates in
the hidden layer

Vector of all outputs in the
hidden layer𝑟"= 𝜎 𝑊(𝑥" +𝑈(ℎ"#$Reset gate

Determines how hard to reset this unit’s output

LSTM/GRU Plusses and Minuses

• Lets networks handle problems
with long term dependencies
• This lets LSTMs (or GRU) solve

problems simple recurrent
architectures cannot

• Still has trouble with XOR (time-
delayed XOR where you XOR two
inputs that are an unknown
number of time steps apart)
• Lots of extra weights compared to

regular cells
• Long and slow to train
• Not easy to inspect networks to

understand them

