REpeating Pattern Extraction Technique (REPET)

EECS 352: Machine Perception of Music & Audio

Observation

 Repetition is a fundamental element in generating and perceiving structure

... in nature

... in art

l
http://http://
en.wikipedia.org/wiki/
Campbell & RSÖUDOTEANS

... in audio

Observation

 Musical works are often characterized by an underlying repeating structure over which varying elements are superimposed

Observation

 Musical works are often characterized by an underlying repeating structure over which varying elements are superimposed

Assumption

 There should be patterns that are more or less repeating in time and frequency

Assumption

 The repeating patterns could be identified and extracted using a time-frequency mask

Idea

REpeating Pattern Extraction Technique!

- 1. Identify the repeating elements
- 2. Derive a repeating model

Idea

- Simple music/voice separation method!
 - Repeating structure = background music
 - Non-repeating structure = foreground voice

8

REPET

Practical Advantages

- Does not depend on special parametrizations
- Does not rely on complex frameworks
- Does not require external information

Practical Interests

- Karaoke gaming (need the music)
- Query-by-humming (need the voice)
- Audio remixing (need both components)

Intellectual Interests

- Music understanding
- Music perception
- Simply based on repetition!

• Background subtraction in computer vision

Sequence of video frames

Compare frames to estimate a background model

Zafar Rafii, Winter 2014

Background subtraction in computer vision

- Background subtraction in computer vision
 - In audio, we also need to identify the repetitions!

- Background subtraction in computer vision
 - In audio, we also need to identify the repetitions!

Auditory segregation in human listeners

and different distractors

Auditory segregation in human listeners

other colors = distractors

As the number of mixtures increases, the target becomes more apparent... [courtesy of Josh McDermott]

1 mixture:

2 mixtures:

3 mixtures:

5 mixtures:

10 mixtures

REPET

1. Repeating Period

 We compute the autocorrelations of the frequency rows of the mixture spectrogram

1. Repeating Period

 We take the mean of the autocorrelation rows and obtain the beat spectrum

1. Repeating Period

The beat spectrum reveals the repeating
 period p of the underlying repeating structure

REPET

2. Repeating Segment

 We then use the repeating period to segment the mixture spectrogram at period rate

2. Repeating Segment

 We derive a repeating segment model by taking the element-wise median of segments

2. Repeating Segment

 The median helps to derive a clean repeating segment, removing the non-repeating outliers

REPET

 We take the element-wise min between the repeating segment model and the segments

 We obtain a repeating spectrogram model for the repeating background

 The repeating spectrogram should not have values higher than the mixture spectrogram

 We then divide, element-wise, the repeating spectrogram by the mixture spectrogram

 We obtain a soft time-frequency mask (with values between 0 and 1)

 In the soft t-f mask, the more/less a t-f bin is repeating, the more it is weighted toward 1/0

 We could further derive a binary t-f mask by fixing a threshold between 0 and 1

 We multiply, element-wise, the t-f mask with the mixture STFT to get the background STFT

 We obtain the repeating background signal by inverting its STFT into the time domain

3. Repeating Structure

 We obtain the non-repeating foreground signal by subtracting background from mixture

Summary

- Repeating background ≈ music component
- Non-repeating foreground ≈ voice component

- A variety of techniques has been proposed to separate music and voice from a mixture
 - Accompaniment modeling, Pitch-based inference,
 Non-negative Matrix Factorization (NMF), etc.

Accompaniment modeling

 Modeling of the musical accompaniment from the non-vocal segments in the mixture

- → Need an accurate vocal/non-vocal segmentation!
- → Need a sufficient amount of non-vocal segments!

Pitch-based inference

 Separation of the vocals using the predominant pitch contour extracted from the vocal segments

- → Need an accurate predominant pitch detection!
- → Cannot extract unvoiced vocals!

- Non-negative Matrix Factorization (NMF)
 - Iterative factorization of the mixture spectrogram into non-negative additive basic components

- → Need to know the number of components!
- → Need a proper initialization!

Evaluation

- **REPET** [Rafii et al., 2013]
 - Automatic period finder
 - Soft time-frequency masking
- Competitive method [Durrieu et al., 2011]
 - Source-filter modeling with NMF framework
 - Unvoiced vocals estimation
- Data set [Hsu et al., 2010]
 - 1,000 song clips (from karaoke Chinese pop songs)
 - 3 voice-to-music mixing ratios (-5, 0, and 5 dB)

Evaluation

D = Durrieu

D+H = Durrieu + High-pass

 $\mathbf{R} = \mathsf{REPET}$

R+H = REPET + High-pass

Evaluation

Conclusions

- REPET can compete with state-of-the-art (and more complex) music/voice separation methods
- There is room for improvement (+ high-pass, + optimal period, + vocal frames)
- Average computation time: 0.016 second for 1 second of mixture! (vs. 3.863 seconds for Durrieu)

REPET vs. Durrieu (source-filter + NMF)

REPET vs. Ozerov (accompaniment modeling)

REPET vs. Virtanen (NMF + pitch-based)

REPET (more examples...)

Demo

Thank you!

References

- J.-L. Durrieu, B. David, and G. Richard, "A Musically Motivated Mid-level Representation for Pitch Estimation and Musical Audio Source Separation," *IEEE Journal on Selected Topics on Signal Processing*, vol. 5, no. 6, pp. 1180-1191, October 2011.
- C.-L. Hsu and J.S. R. Jang, "On the Improvement of Singing Voice Separation for Monaural Recordings Using the MIR-1K Dataset," *IEEE Transactions on Audio, Speech, and Language Processing*, vol. 18, no. 2, pp. 310-319, February 2010.
- A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, and G. Richard, "Adaptive Filtering for Music/Voice Separation exploiting the Repeating Musical Structure," in 37th International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, March 25-30, 2012.
- J. H. McDermott, D. Wrobleski, and A. J. Oxenham, "Recovering Sound Sources from Embedded Repetition," in *National Academy of Sciences*, vol. 108, pp. 1188-1193, 2011.
- A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval, "Adaptation of Bayesian Models for Single-Channel Source Separation and its Application to Voice/Music Separation in Popular Songs," *IEEE Transactions on Audio, Speech, and Language Processing*, vol. 15, no. 5, pp. 1564-1578, July 2007.
- M. Piccardi, "Background Subtraction Techniques: a Review," *IEEE International Conference on Systems, Man and Cybernetics*, The Hague, Netherlands, October 10-13, 2004.
- Z. Rafii and B. Pardo, "A Simple Music/Voice Separation Method based on the Extraction of the Repeating Musical Structure," 36th International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 22-27, 2011.
- Z. Rafii and B. Pardo, "Music/Voice Separation using the Similarity Matrix," in 13th International Society for Music Information Retrieval, Porto, Portugal, October 8-12, 2012.
- Z. Rafii and B. Pardo, "REpeating Pattern Extraction Technique (REPET): A Simple Method for Music/Voice Separation," in *IEEE Transactions on Audio, Speech, and Language Processing*, Vol. 21, no. 1, pp. 22-27, January, 2013.
- T. Virtanen, A. Mesaros, and M. Ryynänen, "Combining Pitch-based Inference and Non-Negative Spectrogram Factorization in Separating Vocals from Polyphonic Music," *ISCA Tutorial and Research Workshop on Statistical and Perceptual Audition*, Brisbane, Australia, pp. 17-20, September 21, 2008.

Extensions

 REPET works well on excerpts with a relatively stable repeating background (e.g., 10 s verse)

Extensions

 For full-track songs, the repeating background is likely to vary over time (e.g., verse/chorus)

Verse Chorus Verse

Prior Segmentation

 We could do a prior segmentation of the song and apply REPET to the individual sections

Verse Chorus Verse

REPET REPET
Full repeating background

Sliding Window

 We could apply REPET to local sections of the song over time via a fixed sliding window

Adaptive REPET

 We could directly adapt REPET along time by locally modeling the repeating background

Adaptive REPET

Original REPET

 REPET (and its extension) assumes periodically repeating patterns

 Repetitions can also happen intermittently or without a global (or local) period

 Instead of looking for periodicities, we can look for similarities, using a similarity matrix

 The similarity matrix is a matrix where each bin measures the (dis)similarity between any two elements of a sequence given a metric

REPET-SIM

Adaptive REPET

REPET + Pitch

REPET models the background rhythm

Pitch-based methods model the lead melody

REPET + Pitch

Auditory processing in human listeners

