REpeating Pattern Extraction
Technique (REPET)

EECS 352: Machine Perception of
Music & Audio
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Observation

e Repetition is a fundamental element in
generating and perceiving structure

[ ... in audio
http://http://

... iIn nature

en.wikipedia.org/wiki/
Campbéls "Solp Cans]




Observation

* Musical works are often characterized by an
underlying repeating structure over which
varying elements are superimposed

Propellerheads - History Repeating

time (s)
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Assumption

* There should be patterns that are more or less
repeating in time and frequency

Mixture Spectrogram
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 REpeating Pattern Extraction Technique!

1.

2. Derive a repeating model

3. Extract the repeating structure

Mixture Signal
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ldea

* Simple music/voice separation method!
= Repeating structure = background music
" Non-repeating structure = foreground voice
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REPET
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Practical Advantages

* Does not depend on special parametrizations
* Does not rely on complex frameworks
* Does not require external information




Practical Interests

e Karaoke gaming (need the music)
* Query-by-humming (need the voice)
e Audio remixing (need both components)
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Intellectual Interests

* Music understanding
* Music perception
* Simply based on repetition!
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Parallels

* Background subtraction in computer vision

AR 7 S 4

Sequence of
video frames

Compare
frames to
estimate a
background
model
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Parallels

* Background subtraction in computer vision

Extracted varying ¢
foreground scene

G G

Extracted fixed
background scene

Iy P oL Bl




Parallels

* Background subtraction in computer vision

. In audio, we also neMetdretS%Jéljentlfy the repetitions!

2 4 6 8 10 12
time (sec)
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Parallels

* Background subtraction in computer vision
. In audio, we also need to identify the repetitions!

Vocal Foreground

2 4 6 8 10 12
time (sec)
Musical Background

2 4 6 8 10 12
time (sec)
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Parallels

* Auditory segregation in human listeners

-9

Target identified as
the repeating object

Unknown audio mixtures
with the same target
and different distractors
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Parallels

Auditory segregation in human listeners

I 1 mixture:

L
=n I I 1 § | 2 mixtures:
3 mixtures:

0 1 2 3 5 10

Number of Mixtures 5 mixtures:

1 : —

R 10 mixtures:

2

3_

As the number of mixtures increases,
the target becomes more apparent...
[courtesy of Josh McDermott]

red/black = target/probe,
other colors = distractors



REPET
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frequency (kHz)

amplitude

1. Repeating Period

 We compute the autocorrelations of the
frequency rows of the mixture spectrogram

Autocorrelation Plots

tinge (s)

Spectrum at 10 kHz

O

time (s) lag (s)
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frequency (kHz)

1. Repeating Period

 We take the mean of the autocorrelation rows
and obtain the beat spectrum

Mixture Spectrogram Autocorrelation Plots
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1. Repeating Period

* The beat spectrum reveals the repeating
period p of the underlying repeating structure

Mixture Signal
1 :

2 4 6 8 10 12
time (s)
Beat Spectrum

p lag (s)
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REPET
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frequency (kHz)

correlation

2. Repeating Segment

* We then use the repeating period to segment
the mixture spectrogram at period rate

Mixture Spectrogram Segmented Spectrogram
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frequency (kHz)

2. Repeating Segment

 We derive a repeating segment model by
taking the element-wise median of segments

Mixture Spectrogram
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Segmented Spectrogram
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frequency (kHz)

2. Repeating Segment

* The median helps to derive a clean repeating
segment, removing the non-repeating outliers
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REPET
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3. Repeating Structure

 We take the element-wise min between the
repeating segment model and the segments

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

 We obtain a repeating spectrogram model for
the repeating background

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

* The repeating spectrogram should not have
values higher than the mixture spectrogram

Mixture Spectrogram Repeatlng Spectrogram Non- repeatlng Spectrogram
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frequency (kHz)

3. Repeating Structure

* We then divide, element-wise, the repeating
spectrogram by the mixture spectrogram

Mixture Spectrogram Repeating Spectrogram
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frequency (kHz)

3. Repeating Structure

 We obtain a soft time-frequency mask (with
values between 0 and 1)

Mixture Spectrogram Repeating Spectrogram Time-frequency Mask
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frequency (kHz)

3. Repeating Structure

* |n the soft t-f mask, the more/less a t-f bin is
repeating, the more it is weighted toward 1/0
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frequency (kHz)

3. Repeating Structure

 We could further derive a binary t-f mask by
fixing a threshold between 0 and 1

Mixture Spectrogram Repeating Spectrogram Time-frequency Mask
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3. Repeating Structure

 We multiply, element-wise, the t-f mask with
the mixture STFT to get the background STFT
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frequency (kHz)

3. Repeating Structure

* We obtain the repeating background signal by

inverting its STFT into the time domain

Mixture Spectrogram Background Spectrogram
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3. Repeating Structure

 We obtain the non-repeating foreground
signal by subtracting background from mixture
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Summary

* Repeating background = music component
* Non-repeating foreground = voice component

Background Signal
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Music/Voice Separation

e A variety of techniques has been proposed to
separate music and voice from a mixture

= Accompaniment modeling, Pitch-based inference,

Non-negative Matrix Factorization (NMF), etc.

Mixture
H »l Music/Voice
Separation

\_

»
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Music/Voice Separation

 Accompaniment modeling

» Modeling of the musical accompaniment from the
non-vocal segments in the mixture

Mixture spectrogram  Vocal/non-vocal segmentation Music spectrogram

) = [ -

— Need an accurate vocal/non-vocal segmentation!
— Need a sufficient amount of non-vocal segments!
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Music/Voice Separation

* Pitch-based inference

= Separation of the vocals using the predominant
pitch contour extracted from the vocal segments

Mixture spectrogram Predominant pitch detection Voice spectrogram

—> Need an accurate predominant pitch detection!
—> Cannot extract unvoiced vocals!
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Music/Voice Separation

* Non-negative Matrix Factorization (NMF)

" |terative factorization of the mixture spectrogram
into non-negative additive basic components

Mixture spectrogram  Bases Activations Music & voice spectrograms

— Need to know the number of components!
— Need a proper initialization!
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Evaluation

* REPET [Rafii et al., 2013]

= Automatic period finder
= Soft time-frequency masking

 Competitive method [Durrieu et al., 2011]
= Source-filter modeling with NMF framework
= Unvoiced vocals estimation

 Data set [Hsu et al., 2010]
= 1,000 song clips (from karaoke Chinese pop songs)
= 3 voice-to-music mixing ratios (-5, 0, and 5 dB)



Durrieu + High-pass

Durrieu
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Evaluation

 Conclusions

= REPET can compete with state-of-the-art (and
more complex) music/voice separation methods

" There is room for improvement (+ high-pass, +
optimal period, + vocal frames)

" Average computation time: 0.016 second for 1
second of mixture! (vs. 3.863 seconds for Durrieu)



Examples

 REPET vs. Durrieu (source-filter + NMF)

Music estimate (Durrieu) Voice estimate (Durrieu)
1 —— 1
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Examples

 REPET vs. Ozerov (accompaniment modeling)

Music estimate (Ozerov) Voice estimate (Ozerov)
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Examples

 REPET vs. Virtanen (NMF + pitch-based)

Music estimate (Virtanen) Voice estimate (Virtanen)
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Examples

e REPET (more examples...)

RJD2 - Ghostwriter
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Thank you!
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Extensions

* REPET works well on excerpts with a relatively
stable repeating background (e.g., 10 s verse)

Mixture

Verse

REPET

4

Repeating background

T
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Extensions

* For full-track songs, the repeating background
is likely to vary over time (e.g., verse/chorus)

Full mixture

Full repeating background
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Prior Segmentation

 We could do a prior segmentation of the song
and apply REPET to the individual sections

Full mixture

. Full repeating background :

Zafar Rafii, Winter 2014 55



Sliding Window

 We could apply REPET to local sections of the
song over time via a fixed sliding window

Full mixture
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Adaptive REPET

 We could directly adapt REPET along time by
locally modeling the repeating background

Full mixture

Adaptive REPET

Full repeating background
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Adaptive REPET
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Original REPET
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Generalization

 REPET (and its extension) assumes
periodically repeating patterns

Mixture

REPET

¥

Periodically
repeating background

T
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Generalization

* Repetitions can also happen intermittently or
without a global (or local) period

Mixture

—
V

Non-periodically
repeating background

LI
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Generalization

* |nstead of looking for periodicities, we can
look for similarities, using a similarity matrix

Mixture

' | | ’ Similarity matrix

Beat spectrum/spectrogram
Non-periodically

repeating background

LI I
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Generalization

* The similarity matrix is a matrix where each
bin measures the (dis)similarity between any
two elements of a sequence given a metric

Similarity matrix

Sequence

Ll

L I ;
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Je[lwis+

Je|lwissIp+



REPET-SIM
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Adaptive REPET

Mixture Spectrogram V Beat Spectrogram B
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REPET + Pitch

* REPET models the background rhythm

Mixture spectrogram “Period” Rhythmic mask Background rhythm
5\| \\\
c
QL . R
Y > >
o
L \ \
S~ S
time repetitions
(in time)
* Pitch-based methods model the lead melody
Mixture spectrogram Melodic mask Lead melody
>0 “Pitch”
g g _/- - _/-
. : 3 |
time harmonics
(in frequency)
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REPET + Pitch

* Auditory processing in human listeners
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