Topic

Filters, Reverberation & Convolution

Lecture by: Fatemeh Pishdadian
Lecture Outline

- What’s an Impulse?
- LTI systems
- Frequency selective filters
- Delay and moving average
- Reverberation
The impulse function
Impulse response

• An “impulse” is this signal:

\[\delta[n] = \begin{cases}
1 & \text{if } n = 0 \\
0 & \text{else}
\end{cases} \]

• The next slide shows an impulse (top) and the frequency representation of that impulse you get by plotting the absolute value of the Fourier transform of that impulse.

• Note, the impulse shows energy at ALL frequencies of analysis.
Impulse function

sr: 100 Hz fmax: 49 Hz

\[x(t) \]

\[\text{time(s)} \]

\[|X(f)| \]

\[\text{spectrum} \]

\[\text{frequency(Hz)} \]

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Let’s look at the D.C offset

• Next slide, you’ll see a time-domain signal (top panel) that is all 1. This is a constant signal.

• When you take the FFT and display the magnitude spectrum (bottom panel), you get just one non-zero value, at the 0 frequency. This is the D.C. offset.

• The DC offset is basically the opposite of the impulse function from the previous slide: all times are non-zero, but only one frequency is non-zero.
DC Offset in time and frequency

sr: 100 Hz fmax: 0 Hz

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Making it more broadband

• Now, let’s take our DC offset and make it a touch more broadband.

• We’ll add energy in the frequency domain X by setting the 1st frequency of analysis (in both the positive and negative frequencies) to 1.

• Then, we do the inverse Fourier transform to see what the signal looks like.

• Note that, this changes what happens in the time domain. Now the energy starts to concentrate towards the middle.

Adding energy at low frequency

sr: 100 Hz fmax: 1 Hz

x(t)

|X(f)|
spectrum

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Rinse and repeat

• Over the next few slides, we’ll keep adding energy at new frequencies and then take the inverse Fourier transform to see what happens in the time domain.

• As the frequency representation become more broadband (i.e. multiple frequencies have a lot of energy), the time representation of the signal becomes more and more centered on a single point in time.
Getting more broadband

sr: 100 Hz fmax: 5 Hz

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Even broader

sr: 100 Hz fmax: 10 Hz

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Broader still

sr: 100 Hz fmax: 20 Hz

x(t)

|X(f)|

frequency(Hz)

time(s)

spectrum

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
How about a signal that has equal energy at all frequencies?

• Next slide, you’ll see a signal that has equal energy at all frequencies.
• As you can see, when we do that, we’re back to the impulse function.
Impulse function

sr: 100 Hz fmax: 49 Hz

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Linear, Time-invariant systems
A system is called linear if it satisfies the superposition property:

\[\text{SYS} \]

\[x_1[n] \rightarrow y_1[n] \]

\[x_2[n] \rightarrow y_2[n] \]

\[ax_1[n] + bx_2[n] \rightarrow ay_1[n] + by_2[n] \]
Linearity & Time Invariance

- A system is called time invariant if its behavior does not change over time:

\[x[n] \rightarrow \text{SYS} \rightarrow y[n] \]

\[x[n-k] \rightarrow \text{SYS} \rightarrow y[n-k] \]
LTI systems

• Why do we like to think of systems we work with as LTI?

• Examples of linear systems?

• Examples of time invariant systems?

(We’re going to assume rooms, like a classroom or a church, are LTI systems)
Impulse response

• Recall that an “impulse” is this signal:

\[\delta[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{else} \end{cases} \]

• The \textit{impulse response} \(h[n] \) of a system is the output of the system when the input is an impulse.

• The \textit{frequency response} \(H(\omega) \) of a system is the Fourier transform of its impulse response \(h[n] \).
Impulse response

• An LTI system is fully identified by its impulse response (or frequency response), because...

 o An arbitrary signal $x[n]$ is the sum of scaled and shifted impulse functions:

 $$ x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] $$

 o Then if we have $h[n]$, by assuming linearity and time invariance we can find the response to $x[n]$

 $$ y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] $$

Does this formula look familiar?
Impulse response

• Look! We’re back to convolution!

\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

Definition of convolution

\[(x * h)[n] \equiv \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

Does this formula look familiar?
Frequency selective filters

• Frequency selective filters we use in this course are a subset of LTI system.

• The output of filters will be computed via convolution in the time domain, or equivalently, via multiplication in the frequency domain.
Filtering, practically speaking

- I can filter a signal $x[n]$ with filter $h[n]$ get a filtered signal $y[n]$ by doing convolution between $x[n]$ and $g[n]$.
- Time-domain convolution takes $O(n^2)$ time. Too long!
- The circular convolution theorem says this…

$$y = h \ast x = \text{ifft}(H \cdot X)$$

- Therefore, we take the fft of h to get H and the fft of x to get X.
- Then we element-wise multiply X by H.
- Then we do the inverse fft on the result to get y.
One caveat

• Let’s say both x and h are n samples long.

• According to the definition of convolution, you should end up with something that is $2n-1$ samples long (Go back and look at the python code for of convolution in the course slides)

• For this to happen in frequency, you have to zero-pad both x and h to be length $2n-1$ when you do the Fourier transform.

• This is easy to do as a parameter you pass the fft function.
FIR Filter

• FIR means “Finite Impulse Response”

• Means it will stop making noise once you stop putting noise through it

• There are also Infinite Impulse Response (IIR) filters. These have feedback

• To find out more about IIR filters, take a DSP class.
Building a low-pass FIR filter

- Pick width of your LOW pass band

 (0 Hz to ω_c Hz, where ω_c can be up to the Nyquist rate)

- Create a desired frequency response (don’t forget the mirror frequencies above the Nyquist rate).

- Take the IFFT of the frequency response

- This is your impulse response function.
An 8-point 250 Hz low-pass filter

Python Index

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

\[h[n] = \begin{bmatrix} 0.71 & 0.26 & -0.18 & 0.06 & 0.06 & 0.06 & -0.18 & 0.26 \end{bmatrix} \]

\[H[k] = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \]

DC offset

Nyquist frequency

Complex conjugates

Better index

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
</table>

Frequency of FFT

<table>
<thead>
<tr>
<th>0</th>
<th>S/N</th>
<th>2S/N</th>
<th>3S/N</th>
<th>4S/N</th>
<th>-3S/N</th>
<th>-2S/N</th>
<th>-S/N</th>
</tr>
</thead>
</table>

If \(S = 1000 \text{ Hz} \) and \(N = 8 \)

<table>
<thead>
<tr>
<th>0</th>
<th>125Hz</th>
<th>250Hz</th>
<th>375Hz</th>
<th>500Hz</th>
<th>-375Hz</th>
<th>-250Hz</th>
<th>-125Hz</th>
</tr>
</thead>
</table>

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
The same 8-point low-pass filter (another view)

Impulse Response $h[n]$

Frequency Response $H[k]$
What is reverberation?

• Reverberation is made of echoes

• Echoes are delayed copies of the original sound

• In the physical world these are caused by reflections off of walls and other surfaces

• In the digital world, this is done with impulse response functions and convolution
Example: Delay Operator
(aka a single echo)

\[h_d[n] = \delta[n-20] \]
Several delayed copies = a moving average
Moving average acts as a low-pass filter

- The moving average operator makes copies of the signal and sums them.

- You’re summing multiple, slightly-offset copies.

- This causes high-frequency events to average out in the wash (low-pass filtering).

- What would happen if the copies are offset by the exact period of some frequency in the audio?
A room is a filter

Carnegie Hall

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Reverberant Rooms

• …are louder (why?)

• …make speech harder to understand (why?)

• …may emphasize certain frequencies (why?)
They are all strongly related

• A room can be modeled as a filter

• **Reverb** is the effect of room/filter on sound signals

• Mathematically, adding reverb to sound signals (filtering) is performed via **convolution**
Making a convolution reverb

- The impulse response function of a room, h, captures the echoes (reverberation) that happen when you make a sound in that room.
- You can use h to filter an audio recording made elsewhere, x.
- If you do that, the echoes from the room will be applied to x and it will sound like x was recorded in that room.
- This is the basis of convolution reverb.

Bryan Pardo, 2019, Northwestern University EECS 352: Machine Perception of Music and Audio
Convolution Reverb in a nutshell

• Record an impulse in the room

• Estimate the impulse response of the room

• Record something in another quiet room (with the microphone up close to the source, so you avoid echoes)

• Apply convolution between your new recording and the impulse response function of the room you want to sound like you recorded in.
Getting $h[n]$: the impulse response

- Walk into a QUIET room with a recorder
- Turn on the recorder
- Clap your hands ONCE (this is your impulse)
- The recording captures the room’s impulse response
- …and other noise (air conditioner, etc.)
Estimating $h[n]$ in a perfect world

- Assume a balloon pop is an impulse. Call it $x[n]$.
- If $x[n]$ is an impulse, then it is a sequence with a 1 at time 0 and a 0 everywhere else.
- Record the balloon pop in a room. Call it $y[n]$.
- If there was no other noise and our recording didn’t distort, $y[n]$ is just the convolution of an impulse with $h[n]$.
- This means $y[n] = h[n]$.
Estimating the frequency response H

- Given no noise, we can estimate the impulse response $h[n]$ by estimating the frequency response $H[k]$ in the frequency domain

$$X[k]H[k] = Y[k]$$

$$H[k] = \frac{Y[k]}{X[k]}$$

If $x[n]$ is an impulse, then $X[k] = 1$ for all k. Therefore….

$$H[k] = Y[k]$$
Estimating the frequency response H

- But there is noise ...
- What do we do?
- We assume noise is uncorrelated to the signal or the filter
- We assume noise is unbiased (zero mean)
- We try lots of estimates and hope that the noise “washes out” when we average
Noise and Distortion

Source Signal \(X(w) \) → Filter \(H(\omega) \) → Distortion \(D(w) \) → Noise \(N(w) \) → Output Signal \(Y(w) \)

Distortion and noise make it a lot harder to estimate \(H \)
Estimating the frequency response H

- Assume we know what X is (because we made it) and what Y is (‘cause we recorded it).
- Hope noise and distortion are not correlated with X.
- Call “noise + distortion” N.
- Then...

$$X[k]H[k] + N[k] = Y[k]$$
Estimating H

- Estimate H a lot of times, in the hopes that the noise will wash out in the mix…

$$\hat{H}[k] \approx \frac{\langle Y[k]X[k]^* \rangle}{\langle X[k]X[k]^* \rangle}$$

where

$$\langle Y[k]X[k]^* \rangle = \frac{1}{N} \sum_{n=1}^{N} Y_n[k]X_n[k]^*$$

This gives the average value over N experiments. Note the * indicates a complex conjugate.
Caveats

• This only works on the frequencies where there was energy in the input signal X.

• If there wasn’t energy at a frequency then we’re out of luck.

• So, best to use a broadband sound for X.

• Recall: An impulse is broadband.