Topic 5

Pitch, Tuning, Basics of scales

EECS 352: Machine Perception of Music and Audio Bryan Pardo 2008

Pitch (ANSI 1994 Definition)

 That attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high. Pitch depends mainly on the frequency content of the sound stimulus, but also depends on the sound pressure and waveform of the stimulus.

Pitch (Operational)

 A sound has a certain pitch if it can be reliably matched to a sine tone of a given frequency at 40 db SPL

Equal Temperament

- Octave is a relationship by power of 2.
- There are 12 half-steps in an octave

number of half-steps from the reference pitch

N

frequency of desired pitch

 $f = 2^{\overline{12}} f_{ref}$

frequency of the reference pitch

EECS 352: Machine Perception of Music and Audio Bryan Pardo 2008

Measurements

- 100 Cents in a half step
- 2 half steps in a whole step
- 12 half steps in an octave

A=440 Equal tempered tuning

Overtone Series

• Approximate notated pitch for the harmonics (overtones) of a frequency

EECS 352: Machine Perception of Music and Audio Bryan Pardo 2008

Musical Interval Names (from C)

Interval Names

Triads

Chords in the Major Scale

Scale-tone 7th chords of the C major scale

Inverting Triads

Circle of Fifths

Pythagorean Tuning

- The 3rd harmonic has a frequency 3 times that of the fundamental frequency.
- The name for the interval between the fundamental and the 3rd harmonic is an "octave + a perfect fifth".
- To make a perfect 5th, you can divide the frequency of the 3rd harmonic by 2. This drops it an octave.
- Therefore, one definition of the perfect 5th is defined as the ratio 3:2.
- Pythagorean tuning builds a scale by using the circle of 5ths and this ratio of 3:2

Pythagorean Tuning

- Intervals are based on the ratio 3:2 (the perfect fifth)
- Start with a frequency. This is the starting point of the scale.
- Get the 5th of the scale by multiplying that frequency by 3/2 (aka 1.5)
- Now, go around the circle of 5ths, building each consecutive frequency based on the one before it.
- This can give a diatonic scale, once you adjust for the really high octaves that result from repeatedly multiplying your frequency by 1.5

Pythagorean Tuning Example

Assume Middle C = 261 Hz. Find the frequencies in the C major scale using Pythagorean tuning. This scale is C, D, E, F, G, A, B, C

Pitch class	Initial frequency calculation	Freq in Hz	Divide by this to reach right octave again	Final result in Hz
С	261	261	1	261
G	1.5^1* 261	391.5	1	391.5
D	1.5^2 * 261	587.25	1	293.625
А	1.5^3 * 261	880.875	2	440.437
E	1.5^4 * 261	1321.312	4	330.328
В	1.5^5 * 261	1981.969	4	495.492
F	1.5^11 * 261	22575.86	64	352.748
С	1.5^12 * 261	33863.79	64	529.1217

Problem with Pythagorean Tuning

- One octave = 2f
- A perfect 5th = (3/2)f
- What happens if you go around the circle of 5ths to get back to your original pitch class?
- (3/2)^{12 =} 129.75
- Nearest octave is $2^7 = 128$
- 128 != 129.75

Problem with Equal temperament

 A perfect 5th is 7 half steps. If we define the frequency of a perfect 5th as 3/2, we can't reach that by doing 2^(7/12)

$$2^{\frac{7}{12}} = 1.4983 \neq 1.5 = \frac{3}{2}$$

Take away about tuning

- There are many tuning systems
 - Equal Temperament
 - Pythagorean
 - Just
 - Mean tone
 - Etc. and so on.
- Every tuning system has some "quirk" that makes one of the intervals a tiny bit off.
- Equal temperament is the easiest and most popular