
DEEP LEARNING AND AUDIO
Bryan Pardo

Interactive Audio Lab
Northwestern University

Deep Nets (AKA Neural Nets)

• Machine learners

• made of simple functions

• Organized in layers

• Very popular

Machine Learning in one slide

1. Pick data D, model M(𝐰) and objective function J(𝐃,𝐰)

2. Initialize model parameters 𝐰 somehow

3. Measure model performance with the objective function J(𝐃,𝐰)

4. Modify parameters 𝐰 somehow, hoping to improve J(𝐃,𝐰)

5. Repeat 3 and 4 until you stop improving or run out of time

The Perceptron
Rosenblatt, Frank. "The perceptron: A model for information storage and
organization in the brain." Psychological review 65.6 (1958): 386.

A single perceptron

w1

w3

w2

w4

w5

x1

x2

x3

x4

x5

x0
w0

In
pu

t v
ec

to
r

Bias x0=1

Step function

Sum of weighted input

ou
tp

ut

𝑓 𝑥 = 1 𝑖𝑓 0 <(
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

Weights define a hyperplane in the input space

-0.99
1

0.5x1

0.5x2

AND

0.5𝑥% +
05𝑥

& −
0.99 =

0

𝑥!

𝑥 "
1

10

1 region

0 region

𝑓 𝑥 = 1 𝑖𝑓 0 < (
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

Classifies any (linearly separable) data

-0.99
1

0.5x1

0.5x2

AND

0.5𝑥% +
05𝑥

& −
0.99 =

0

𝑥!

𝑥 "
1

10

1 region

0 region

𝑓 𝑥 = 1 𝑖𝑓 0 < (
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

Different logical functions are possible

-0.49
1

0.5x1

0.5x2

OR

0.5𝑥% + 05𝑥
& −

0.49 =
0

𝑥!

𝑥 "
1

10

1 region

0 region

𝑓 𝑥 = 1 𝑖𝑓 0 < (
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

And, Or, Not are easy to define

0
1

0x1

-1x2

NOT

−𝑥&= 0

𝑥 "
1

-1

0 region

1 region

𝑓 𝑥 = 1 𝑖𝑓 0 < (
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

Machine Learning in one slide

1. Pick data D, model M(𝐰) and objective function J(𝐃,𝐰)

2. Initialize model parameters 𝐰 somehow

3. Measure model performance with the objective function J(𝐃,𝐰)

4. Modify parameters 𝐰 somehow, hoping to improve J(𝐃,𝐰)

5. Repeat 3 and 4 until you stop improving or run out of time

A good objective (loss) function, 𝐽 𝐃,𝐰

𝐽(𝐃,𝐰) ≥ 0

𝐽 𝐃,𝐰 decreases as performance improves

𝐽(𝐃,𝐰) is differentiable, with respect to w

The gradient of 𝐽 is bounded… 𝟎 < 𝛻 𝐽 ≪ ∞

Required

Required
for gradient
descent

Really
helpful

Data weights

Example objective J : sum of squared errors (SSE)

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 8

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 0

Example objective J : sum of squared errors (SSE)

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 2 Gradient 0 in the blue region!

Example objective J : sum of squared errors (SSE)

Machine Learning in one slide

1. Pick data D, model M(𝐰) and objective function J(𝐃,𝐰)

2. Initialize model parameters 𝐰 somehow

3. Measure model performance with the objective function J(𝐃,𝐰)

4. Modify parameters 𝐰 somehow, hoping to improve J(𝐃,𝐰)

5. Repeat 3 and 4 until you stop improving or run out of time

Gradient Descent in one slide

1. Measure how the the objective function changes when we change
the current parameters 𝒘 slightly (measure the gradient with
respect to the weights).

2. Pick the next set of parameters to be close to the current set, but in
the direction that most changes the objection function for the
better (follow the gradient)

3. Repeat

Gradient Descent: Promises & Caveats

• Much faster than guessing new parameters randomly
• Finds the global optimum only if the objective function is convex

O
bj

ec
tiv

e
fu

nc
tJ

(w
)

w: the value of some parameter

Stochastic, Batch, Mini-Batch Descent

• In batch gradient descent, the objective function 𝐽 is a function of
both the parameters and ALL training samples, summing the total
error

• In stochastic gradient descent, 𝐽 is a function of the parameters and a
different single random training sample at each iteration

• In mini-batch gradient descent, random subsets of the data (e.g. 100
examples) are used at each step in the iteration. This is a common
approach today.

One perceptron: Only linear decisions

This is XOR.

It can’t learn XOR.

Combining perceptrons can make any
Boolean function

0
x0

0.6x1

0.6
x2

0
x0

1
x0

XOR1

1

-0.6

-0.6

…if you can set the weights & connections

Problem with a step function: Assignment of error

• Stymies multi-layer weight learning

• Limits us to a single layer of units

• Thus, only linear functions

• You can hand-wire XOR
perceptrons, but you can’t learn
XOR with perceptrons

𝑤!
𝑤"

𝑤#

𝑤$

𝑤%

1

1

1

𝑤&

𝑤'

𝑤(𝑥%

𝑥&
𝑤)

The Sigmoid Unit
Rumelhart, David E., James L. McClelland, and PDP Research
Group. Parallel distributed processing. Vol. 1. Cambridge, MA, USA::
MIT press, 1987.

Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid

𝑓 𝑥 = 1 𝑖𝑓 0 <(
!"#

$

𝑤!𝑥!

0 𝑒𝑙𝑠𝑒

𝑓 𝑥 = 𝐰'𝐱 =(
!"#

$

𝑤!𝑥!

𝑓 𝑥 =
1

1 + 𝑒((𝐰!𝐱)

A network of sigmoid units

• Small changes in input result in
output

• This gives us a gradient everywhere

• We can learn multiple layers of
weights.

• Combining layers gives non-linear
functions

𝑤!
𝑤"

𝑤#

𝑤$

𝑤%

1

1

1

𝑤&

𝑤'

𝑤(𝑥%

𝑥&
𝑤",#

Example objective J : sum of squared errors

SSE = (yi
i

n

∑ − h(xi))
2

g(x) > 0g(x) < 0

Gradient non-zero everywhere!

ℎ 𝑥 = 𝑓 𝑥 =
1

1 + 𝑒((𝐰!𝐱)

Multilayer Perceptron with sigmoid units

This is XOR.

A multilayer
perceptron with
sigmoid units CAN
learn XOR…or any
other arbitrary
Boolean function.

The promise of many layers

• Each layer learns an abstraction of its input representation (we hope)
•
• As we go up the layers, representations become increasingly abstract

• The hope is that the intermediate abstractions facilitate learning
functions that require non-local connections in the input space
(recognizing rotated & translated digits in images, for example)

• Modern neural networks are up to 100 layers deep

TanH: A shifted sigmoid

• Sigmoid

• TanH

𝑓 𝑥 =
1

1 + 𝑒+(𝐰!𝐱)

𝑓 𝑥 =
2

1 + 𝑒+#(𝐰!𝐱) − 1

Rectified Linear Unit (ReLU) & Soft Plus :

•ReLU

• Soft Plus

•Both can be combined in layers
to make non-linear functions

𝑓 𝑥 = max(0,𝐰0𝐱)

𝑓 𝑥 = ln(1 + 𝑒𝐰!𝐱)

Design choices

• Define the function you want to learn
• Determine an encoding for the data
• Pick a network architecture

• Number of layers (between 3 and 100)
• Activation functions function (tanh,ReLU, linear)
• Select how units connect within and between layers

• Pick a gradient descent algorithm
• Pick regularization approach (e.g. dropout)

Classifying images of digits

One possibility
INPUT LAYER HIDDEN LAYER OUTPUT LAYER

]

One input
per pixel

One hidden node per
potential shifted image
(ReLU)

One output node
per category
(Sigmoid)

1
2
3
4

6
5

Each node is connected to EVERY node in the prior layer
(it is just too many lines to draw)

Another possibility
INPUT LAYER HIDDEN LAYER OUTPUT LAYER

One input
per pixel

small number of nodes:
1 per important feature
(TanH)

A single linear node with
(scaled) output

Each node is connected to EVERY node in the prior layer
(it is just too many lines to draw)

Another possibility
INPUT LAYER HIDDEN 1

One input
per pixel

HIDDEN 2 HIDDEN 3

ReLU Max Pool Linear Sigmoid

HUGE DESIGN SPACE!

]

1
2
3
4

6
5

OUTPUT

Convolutional networks

LeCun, Yann, and Yoshua Bengio. "Convolutional networks for images, speech, and
time series." The handbook of brain theory and neural networks3361.10 (1995):
1995.

How big is that magnitude spectrogram?

10
24

fr
eq

ue
nc

ie
s

600 time steps

= 614,400 inputs

30 seconds of audio
20 frames per second
22.5kHz
FFT padded to 2048
only frequencies below Nyquist

How many weights in a fully connected net?

M
 =

 1
02

4

N = 60

100
Nodes

1000
Nodes

61440
Nodes

2
Nodes

61440 1 1000
connections

1000 1 100
connections

100 1 2
connections

61,444,000 + 100,000 + 200 = 61,544,200 weights

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

To reduce the number of connections
Use a 3 second window, instead of 30

• If important relationships in the input fall
within a bounded region.

• Then we can bound the receptive field of
each node to a fixed region size

Fully	connected	between	layers
61440 inputs * 8 nodes = 491,520 weights

Receptive field on 1/8 of the input
7680 inputs * 8 nodes = 61440 weights

Small Fixed Windows (filter size/receptive field)

M
 =

 1
02

4
N = 60

Input Hidden Layer

A feature map (AKA a “channel”)
• If a feature is good to find in one region,

they may be good to find in other regions.

• Units looking at different sub-regions of
the input will look for the same feature if
they share weights.

• A set of nodes that share connection
weights is a feature map

491520: fully connected
61440: limited receptive field

7680: limited field + shared weights
M

 =
 1

02
4

N = 60

Input Hidden Layer

Multiple feature maps

• To look for multiple features, use
multiple feature maps.

• Each map will specialize on one thing.

• Even with many feature maps, you still
have far fewer weights

M
 =

 1
02

4
N = 60

Input Hidden Layer

Multiple feature maps

• To look for multiple features, use
multiple feature maps.

• Each map will specialize on one thing.

• Even with many feature maps, you still
have far fewer weights

M
 =

 1
02

4
N = 60

Input Feature map 2

Max Pool Layer: A kind of downsampling

•Max Pool 𝑓 𝑥 = max(𝑥!, 𝑥#, … 𝑥1)

LAYER N LAYER N+1

Max Pool Layer: A kind of downsampling

•Max Pool 𝑓 𝑥 = max(𝑥!, 𝑥#, … 𝑥1)

LAYER N LAYER N+1

Max Pool Layer: A kind of downsampling

•Max Pool 𝑓 𝑥 = max(𝑥!, 𝑥#, … 𝑥1)

LAYER N LAYER N+1

Max Pool Layer: A kind of downsampling

•Max Pool 𝑓 𝑥 = max(𝑥!, 𝑥#, … 𝑥1)

LAYER N LAYER N+1

Max Pool Layer: A kind of downsampling

•Max Pool 𝑓 𝑥 = max(𝑥!, 𝑥#, … 𝑥1)

LAYER N LAYER N+1

So…what is a convolutional net?

• A network with one or more layers that are feature maps

• A layer with feature maps is called a “convolutional layer”

• Often, convolutional layers are alternated with pooling layers.

• Since these nets have many fewer connections
• They train faster
• They need fewer training examples

RECURRENT NETS
Werbos, Paul J. "Backpropagation through time: what it does and how to do
it." Proceedings of the IEEE 78.10 (1990): 1550-1560.

Dealing with time
• With a ”standard” feed-forward architecture, you process data from

within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes

and connections
• This doesn’t scale well

t-1 t t+1

Weight sharing
• If all the windows share the same input weights (like in a feature

map), then we only have the same number of weights as if we had a
single window.

• This is a recurrent net.

t-1 t t+1

Exponentially decaying influence

• If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost

• This problem was solved by the LSTM

t-1 t t+1

Long Short Term Memory Units (LSTMs)

• Added a way of storing data over
many time steps without decay

• Let networks to handle problems
with long term dependencies

• Are too complicated to explain
right now.

A single LSTM memory unit

