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Sound object labeling

Dog barking
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Goal

• Building a system that automatically labels an 
audio event

An array of real values
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Dog barking



Tasks

• Audio classification
Dog barking

Car engine

Door knock

• Sound Event Detection (SED)

Car engine
Door knock

Dog barking

time 4



MACHINE LEARNING: 
CLASSIFICATION
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Supervised learning from data

Car engine
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Car engineClassification 
model
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Supervised Learning

• Regression
– A target function maps X onto 

continuous real values Y.

• Classification
– A target function maps X onto 

discrete class labels Y.

Dog barking

Door knock
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Overview of general classification tasks

Input data Label

“Cat image”

“Piano sound”

Classifier

- Decision Tree

- Nearest Neighbor

- Neural Networks
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Feature 
representation

!⃗ = <a1, a2, …, an >
A vector of numbers

…that represent 
attributes of the 
example, like 
fundamental 
frequency, or 
amplitude.



Overview of general classification tasks

• Example: Classifying a customer to Good or Bad

Customer

Input data

!⃗ = <a1 ,  a2>

a1: # of accounts
a2: salary

Feature 
representation

a1

a2

Feature space

Classifier

Good
or

Bad

Label
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Different Classifiers

• Different classifications need different 
classifiers.

RightLeft 

Red
Blue

Bryan Pardo, EECS 352 Spring 2012 10



Feature selection is important

• How things cluster depend on what you are 
measuring.

Bad feature representations Good feature representations
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Which of these go together?
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Which of these go together?

13
Body size

Length 
of legs



Which of these go together?
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# of legs

Furry



Nearest Neighbor (NN) Classifier

• When you see a new instance ! to classify, find 
the most similar training example and assign 
its label to the instance.

• How do you tell what things are similar?
1. Extract proper features.
2. Measure distance / similarity in the feature space.
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Nearest Neighbor (NN) Classifier

X

The nearest neighbor

Feature 2

Feature 1

: Class-1 : Class-2 

X is classified into class-1

A new instance to classify
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Nearest Neighbor (NN) Classifier

X

The nearest neighbor

Feature 2

Feature 1

: Class-1 : Class-2 

X is classified into class-2

A new instance to classify
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Nearest Neighbor (NN) Classifier

Feature 2

Feature 1

: Class-1 : Class-2 
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The decision boundary



How do we measure distance?

• Euclidian distance
– what people intuitively think of as �distance�

Dimension 1: x
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Lp norms

• Lp norms are all special cases of this function:
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L1 norms  = Manhattan Distance: p=1

L2 norms = Euclidean Distance: p=2



Cosine Similarity 
• Measure of similarity between two vectors
– Range from -1 (opposite) to 1 (same)
– Cosine distance = 1 – cosine similarity

• Cosine similarity between vector A and B:
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Feature Scaling
• Different scales of features can mislead 

distance measure.
E.g., Measuring distance between humans
- Feature 1: Height (0-7 feet)
- Feature 2: weight (0-150 kg)

(5.5 feet, 70 kg)

(6, 75kg) In this Euclidean space, the second 
feature dominates the distance, 
which might lead to mis-clustering.

Scaling each feature such that it 
ranges from 0 to 1 can help.



K-Nearest Neighbor (KNN) Classifier

• Consider multiple neighbors
• Assign most popular label among K nearest 

neighbors
• More robust to noisy data than NN (k=1)

X

feature 1

feature 2

Considering 4 nearest neighbors (k=4), 
most popular class is Class-1 

: Class-1 : Class-2 
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Choosing K

• Making K too small fits the output to the noise 
in the dataset (overfitting)

• Making K too large can make decision 
boundaries in classification indistinct 
(underfitting)

• Choose K empirically using cross-validation
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Choosing K
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Choosing K
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Choosing K
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Choosing K
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N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

29Bryan Pardo, Northwestern University, 
Machine Learning EECS 349 Fall 2011



N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

30Bryan Pardo, Northwestern University, 
Machine Learning EECS 349 Fall 2011



N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

31Bryan Pardo, Northwestern University, 
Machine Learning EECS 349 Fall 2011
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N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat
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Evaluation: Classification accuracy

• Evaluation on a dataset that has NOT been 
used in model building.

• Classification accuracy
– # of correct classifications / total # of examples 

• Example: comparing two classifiers
– Classifier 1: 80% of accuracy
– Classifier2: 78% of accuracy
– Which one would you pick for your system? 

• Classification accuracy might hide the details 
of the performance of your model.
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Evaluation: Confusion matrix

• Confusion matrix gives you a better 
understanding of  the behavior of your classifier.
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Piano violin Guitar
Piano 19 0 1
violin 0 15 5
Guitar 1 3 16

True label

Predicted label



Evaluation: Confusion matrix

• Confusion matrix gives you a better 
understanding of  the behavior of your classifier.
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Piano violin Guitar
Piano 19 0 1
violin 0 15 5
Guitar 1 3 16Tr
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Predicted label

Piano violin Guitar
Piano 20 0 0
violin 7 11 2
Guitar 1 0 19Tr
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l

Predicted label

Classification accuracy: 
50/60 = 83%

Classification accuracy: 
50/60 = 83%



Now that we know..

• How to build a KNN classifier 
• How to evaluate it

• We need to learn how to extract feature 
representations from audio input to build audio 
classification model.
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Input data LabelClassifierFeature 
representation



AUDIO EVENT CLASSIFICATION
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Audio event classification

Input data Feature 
representation

Classifier Label

!⃗ = <a1, a2, …, an > “Piano sound”- Nearest Neighbor

We need to convert waveform to feature representations to feed 
in a classifier.

- We have already learned one of 
feature representations: Spectrogram
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Why not use the waveform as a feature?

• It is hard to find meaningful patterns
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Why not use the waveform as a feature?

• It is hard to find meaningful patterns
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Why not use the waveform as a feature?

• It is hard to find meaningful patterns
– It needs a very powerful model such as deep neural 

networks which require millions of training data.

• Waveform is too big.
– 1 second of audio at 44.1kHZ è 44,100 values



Commonly used audio features

• Zero-crossing rate
– Time-domain feature
– Rate of sign changes in a signal
– Low for harmonic sounds, high for noisy sounds

43
* Figure: https://en.wikipedia.org/wiki/Zero_crossing



Commonly used audio features

• Zero-crossing rate

44

Guitar Snare drum White noise



Commonly used audio features

• Spectral centroid
– Frequency domain feature
– The weighted mean of the frequencies in the signal
– Known as a predictor of the “brightness” of a sound
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* figure: https://librosa.github.io/librosa/generated/librosa.feature.spectral_centroid.html



Commonly used audio features

• Spectral centroid
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Kick drum Snare drum



Automatic drum transcription

47

• Let’s build a drum transcription machine only 
using spectral centroid features



Automatic drum transcription
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• Onset detection
– librosa.onset.onset_detect



Automatic drum transcription
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• Segmentation
– Cutting the recording every <onset−2048 samples>

(Onset[t − 1] − 2048 , Onset[t] − 2048) 



Automatic drum transcription
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• Extracting spectral centroid from each segment

SnareKick



Automatic drum transcription
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Automatic drum transcription-2
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• More challenging example



Automatic drum transcription-2

53

• Onset detection might not work that well on 
this example, but let’s assume we have perfect 
onset info



Automatic drum transcription-2
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• Segmentation and feature extraction

• The previous example



Automatic drum transcription-2
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• More challenging example

You can find more feature extraction functions in the Librosa package



Feature summarization

• Using summary statistics over time to represent 

an audio expert as a single vector
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5s

!⃗ = <a1, a2, …, an >

[SC1]

[SC2]
[SC3]

Mean([SC1, SC2, SC3, …, SCt]) = #1

!⃗ = <a1, a2 , a3 , a4 >
Variance([SC1, SC2, SC3, …, SCt]) = #2

Delta-mean([SC1, SC2, SC3, …, SCt]) 

= mean([SC2 − SC1, SC3 − SC2,…, SCt − SCt-1]) = #3 

Delta-var([SC1, SC2, SC3, …, SCt]) 

= var([SC2 − SC1, SC3 − SC2,…, SCt − SCt-1]) = #4 

*SC: Spectral Centroid



Feature summarization

• Example for multi dimensional features 
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…

Summarize
over time

Mean Variance

Concatenate 



Example using a TINY spectrogram 
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Example using a TINY spectrogram 

1 0 3 1 5

0 .4 0 .4 .2

0 29 1 20 10

10 10 10 10 10

0 0 0 50 0
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Example using a TINY spectrogram 

60

1
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Mean
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Variance
1
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è The final feature vector (concatenating them all):
[1, .2, 12, 10, 10, 3.2, 0.03, 124.4, 0, 400, 1, .05, 2.5, 0, 0, 6.5, .13, 515.3, 0, 1250]



Sound Event Detection by Classification

Car engine
Door knock

Dog barking

time

Context-window

Classification on each context window
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Challenges
• Polyphonic environment, background noise

• Noisy labels

• Using a hierarchical relationship between audio labels

• Weakly labeled training dataset

• A small amount of labeled training dataset

• A large amount of unlabeled training dataset

62



Datasets for sound object labeling

• Urban sound dataset: 
https://urbansounddataset.weebly.com/

• AudioSet: https://research.google.com/audioset/

• ESC: https://github.com/karoldvl/ESC-50

• DCASE: http://dcase.community/challenge2018/index

• IRMAS: https://www.upf.edu/web/mtg/irmas

• Vocal Imitation Set: 
https://zenodo.org/record/1340763#.XEtAJs9KiRs
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EXAMPLE: DOOR KNOCKING / 
PHONE RINGING CLASSIFICATION
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Training data
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Feature extraction and summarization

• Zero-crossing rate and Spectral centroid
– window length = 2048, hop length = 1024
– Both features are represented as a single number 

for each  time frame. So we get two feature values 
for each time frame (2-dimensional space)

– The number of time frames vary with the length 
of each signal. 

• To represent all the signals as the same size of 
feature vectors, we do summarization.
– In this tutorial, I will take mean over frames.
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Feature extraction and summarization
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[ZCR, SC]
[ZCR, SC]

[ZCR, SC]

Mean over time frames
[mean(ZCR), mean(SC)]

Now we can map all the signals into 2-dimensional feature space



Plotting them in the feature space
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Feature scaling

69



Testing examples
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Plotting test examples
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Nearest Neighbor classifier would perfectly work in this testing case


