
Sound object labeling

EECS 352 Machine perception of Music and Audio
Bongjun Kim
Winter, 2019

1

Sound object labeling

Dog barking

2

Goal

• Building a system that automatically labels an
audio event

An array of real values

3

Dog barking

Tasks

• Audio classification
Dog barking

Car engine

Door knock

• Sound Event Detection (SED)

Car engine
Door knock

Dog barking

time 4

MACHINE LEARNING:
CLASSIFICATION

5

Supervised learning from data

Car engine

!
"()

#

ℎ (!) ≈ "(!)Find a hypothesis function ℎ such that
On the training data D = {< %1, &1 >,… < %n, &n >}

= "(!)è

6

Car engineClassification
model

! = {%1, %2, …, %n} & = {&1, &2, … &n}

Car engineCar engineDog barking

ℎ ()

Training input Ground truth labels

Function we want to learn
(Target function)

Supervised Learning

• Regression
– A target function maps X onto

continuous real values Y.

• Classification
– A target function maps X onto

discrete class labels Y.

Dog barking

Door knock

7

Overview of general classification tasks

Input data Label

“Cat image”

“Piano sound”

Classifier

- Decision Tree

- Nearest Neighbor

- Neural Networks

8

Feature
representation

!⃗ = <a1, a2, …, an >
A vector of numbers

…that represent
attributes of the
example, like
fundamental
frequency, or
amplitude.

Overview of general classification tasks

• Example: Classifying a customer to Good or Bad

Customer

Input data

!⃗ = <a1 , a2>

a1: # of accounts
a2: salary

Feature
representation

a1

a2

Feature space

Classifier

Good
or

Bad

Label

9

Different Classifiers

• Different classifications need different
classifiers.

RightLeft

Red
Blue

Bryan Pardo, EECS 352 Spring 2012 10

Feature selection is important

• How things cluster depend on what you are
measuring.

Bad feature representations Good feature representations

11

Which of these go together?

12

Which of these go together?

13
Body size

Length
of legs

Which of these go together?

14
of legs

Furry

Nearest Neighbor (NN) Classifier

• When you see a new instance ! to classify, find
the most similar training example and assign
its label to the instance.

• How do you tell what things are similar?
1. Extract proper features.
2. Measure distance / similarity in the feature space.

15

Nearest Neighbor (NN) Classifier

X

The nearest neighbor

Feature 2

Feature 1

: Class-1 : Class-2

X is classified into class-1

A new instance to classify

16

Nearest Neighbor (NN) Classifier

X

The nearest neighbor

Feature 2

Feature 1

: Class-1 : Class-2

X is classified into class-2

A new instance to classify

17

Nearest Neighbor (NN) Classifier

Feature 2

Feature 1

: Class-1 : Class-2

18

The decision boundary

How do we measure distance?

• Euclidian distance
– what people intuitively think of as �distance�

Dimension 1: x

Di
m

en
sio

n
2:

 y

22)()(),(yyxx babaBAd -+-=

19

Lp norms

• Lp norms are all special cases of this function:

20

L1 norms = Manhattan Distance: p=1

L2 norms = Euclidean Distance: p=2

Cosine Similarity
• Measure of similarity between two vectors
– Range from -1 (opposite) to 1 (same)
– Cosine distance = 1 – cosine similarity

• Cosine similarity between vector A and B:

21

! " # = 	&!'#'
(

')*
! # = &!'+

(

')*
&#'+
(

')*

,-. !, # = 	 ! " #
! #

Feature Scaling
• Different scales of features can mislead

distance measure.
E.g., Measuring distance between humans
- Feature 1: Height (0-7 feet)
- Feature 2: weight (0-150 kg)

(5.5 feet, 70 kg)

(6, 75kg) In this Euclidean space, the second
feature dominates the distance,
which might lead to mis-clustering.

Scaling each feature such that it
ranges from 0 to 1 can help.

K-Nearest Neighbor (KNN) Classifier

• Consider multiple neighbors
• Assign most popular label among K nearest

neighbors
• More robust to noisy data than NN (k=1)

X

feature 1

feature 2

Considering 4 nearest neighbors (k=4),
most popular class is Class-1

: Class-1 : Class-2

23

Choosing K

• Making K too small fits the output to the noise
in the dataset (overfitting)

• Making K too large can make decision
boundaries in classification indistinct
(underfitting)

• Choose K empirically using cross-validation

24

Choosing K

25

feature 1

fe
at

ur
e

2

feature 1

fe
at

ur
e

2

K=1 K=20

Choosing K

26

fe
at

ur
e

2

feature 1

fe
at

ur
e

2

K=1 K=20

feature 1
Overfitting

Choosing K

27

fe
at

ur
e

2

feature 1

fe
at

ur
e

2

K=1 K=20

feature 1
Overfitting Underfitting

Choosing K

28

K=10

fe
at

ur
e

2

feature 1

N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

29Bryan Pardo, Northwestern University,
Machine Learning EECS 349 Fall 2011

N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

30Bryan Pardo, Northwestern University,
Machine Learning EECS 349 Fall 2011

N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

31Bryan Pardo, Northwestern University,
Machine Learning EECS 349 Fall 2011

N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

32Bryan Pardo, Northwestern University,
Machine Learning EECS 349 Fall 2011

N-fold cross validation
1) Split data into N groups
2) Train on N-1 groups
3) Validate on the Nth
4) Rotate, repeat

33Bryan Pardo, Northwestern University,
Machine Learning EECS 349 Fall 2011

Evaluation: Classification accuracy

• Evaluation on a dataset that has NOT been
used in model building.

• Classification accuracy
– # of correct classifications / total # of examples

• Example: comparing two classifiers
– Classifier 1: 80% of accuracy
– Classifier2: 78% of accuracy
– Which one would you pick for your system?

• Classification accuracy might hide the details
of the performance of your model.

34

Evaluation: Confusion matrix

• Confusion matrix gives you a better
understanding of the behavior of your classifier.

35

Piano violin Guitar
Piano 19 0 1
violin 0 15 5
Guitar 1 3 16

True label

Predicted label

Evaluation: Confusion matrix

• Confusion matrix gives you a better
understanding of the behavior of your classifier.

36

Piano violin Guitar
Piano 19 0 1
violin 0 15 5
Guitar 1 3 16Tr

ue
 la

be
l

Predicted label

Piano violin Guitar
Piano 20 0 0
violin 7 11 2
Guitar 1 0 19Tr

ue
 la

be
l

Predicted label

Classification accuracy:
50/60 = 83%

Classification accuracy:
50/60 = 83%

Now that we know..

• How to build a KNN classifier
• How to evaluate it

• We need to learn how to extract feature
representations from audio input to build audio
classification model.

37

Input data LabelClassifierFeature
representation

AUDIO EVENT CLASSIFICATION

38

Audio event classification

Input data Feature
representation

Classifier Label

!⃗ = <a1, a2, …, an > “Piano sound”- Nearest Neighbor

We need to convert waveform to feature representations to feed
in a classifier.

- We have already learned one of
feature representations: Spectrogram

39

Why not use the waveform as a feature?

• It is hard to find meaningful patterns

40

Why not use the waveform as a feature?

• It is hard to find meaningful patterns

41

Why not use the waveform as a feature?

• It is hard to find meaningful patterns
– It needs a very powerful model such as deep neural

networks which require millions of training data.

• Waveform is too big.
– 1 second of audio at 44.1kHZ è 44,100 values

Commonly used audio features

• Zero-crossing rate
– Time-domain feature
– Rate of sign changes in a signal
– Low for harmonic sounds, high for noisy sounds

43
* Figure: https://en.wikipedia.org/wiki/Zero_crossing

Commonly used audio features

• Zero-crossing rate

44

Guitar Snare drum White noise

Commonly used audio features

• Spectral centroid
– Frequency domain feature
– The weighted mean of the frequencies in the signal
– Known as a predictor of the “brightness” of a sound

45
* figure: https://librosa.github.io/librosa/generated/librosa.feature.spectral_centroid.html

Commonly used audio features

• Spectral centroid

46

Kick drum Snare drum

Automatic drum transcription

47

• Let’s build a drum transcription machine only
using spectral centroid features

Automatic drum transcription

48

• Onset detection
– librosa.onset.onset_detect

Automatic drum transcription

49

• Segmentation
– Cutting the recording every <onset−2048 samples>

(Onset[t − 1] − 2048 , Onset[t] − 2048)

Automatic drum transcription

50

• Extracting spectral centroid from each segment

SnareKick

Automatic drum transcription

51

Automatic drum transcription-2

52

• More challenging example

Automatic drum transcription-2

53

• Onset detection might not work that well on
this example, but let’s assume we have perfect
onset info

Automatic drum transcription-2

54

• Segmentation and feature extraction

• The previous example

Automatic drum transcription-2

55

• More challenging example

You can find more feature extraction functions in the Librosa package

Feature summarization

• Using summary statistics over time to represent

an audio expert as a single vector

56

5s

!⃗ = <a1, a2, …, an >

[SC1]

[SC2]
[SC3]

Mean([SC1, SC2, SC3, …, SCt]) = #1

!⃗ = <a1, a2 , a3 , a4 >
Variance([SC1, SC2, SC3, …, SCt]) = #2

Delta-mean([SC1, SC2, SC3, …, SCt])

= mean([SC2 − SC1, SC3 − SC2,…, SCt − SCt-1]) = #3

Delta-var([SC1, SC2, SC3, …, SCt])

= var([SC2 − SC1, SC3 − SC2,…, SCt − SCt-1]) = #4

*SC: Spectral Centroid

Feature summarization

• Example for multi dimensional features

57

…

Summarize
over time

Mean Variance

Concatenate

Example using a TINY spectrogram

58

1

.2

12

10

10

Mean
3.2

0.03

124.4

0

400

Variance
1 0 3 1 5

0 .4 0 .4 .2

0 29 1 20 10

10 10 10 10 10

0 0 0 50 0

fre
qu

en
cy

Time

Spectrogram

Example using a TINY spectrogram

1 0 3 1 5

0 .4 0 .4 .2

0 29 1 20 10

10 10 10 10 10

0 0 0 50 0

59

fre
qu

en
cy

Time

1

.05

2.5

0

0

Delta
-MeanSpectrogram

6.5

.13

515.3

0

1250

-1 3 -2 4

.4 -.4 .4 -.2

29 -28 19 -10

0 0 0 0

0 0 50 -50

Delta
Delta
-Variance

frame at (t+1) – frame at t

Example using a TINY spectrogram

60

1

.2

12

10

10

Mean
3.2

0.03

124.4

0

400

Variance
1

.05

2.5

0

0

Delta
-Mean

6.5

.13

515.3

0

1250

Delta
-Variance

è The final feature vector (concatenating them all):
[1, .2, 12, 10, 10, 3.2, 0.03, 124.4, 0, 400, 1, .05, 2.5, 0, 0, 6.5, .13, 515.3, 0, 1250]

Sound Event Detection by Classification

Car engine
Door knock

Dog barking

time

Context-window

Classification on each context window

61

Challenges
• Polyphonic environment, background noise

• Noisy labels

• Using a hierarchical relationship between audio labels

• Weakly labeled training dataset

• A small amount of labeled training dataset

• A large amount of unlabeled training dataset

62

Datasets for sound object labeling

• Urban sound dataset:
https://urbansounddataset.weebly.com/

• AudioSet: https://research.google.com/audioset/

• ESC: https://github.com/karoldvl/ESC-50

• DCASE: http://dcase.community/challenge2018/index

• IRMAS: https://www.upf.edu/web/mtg/irmas

• Vocal Imitation Set:
https://zenodo.org/record/1340763#.XEtAJs9KiRs

63

EXAMPLE: DOOR KNOCKING /
PHONE RINGING CLASSIFICATION

64

Training data

65

Feature extraction and summarization

• Zero-crossing rate and Spectral centroid
– window length = 2048, hop length = 1024
– Both features are represented as a single number

for each time frame. So we get two feature values
for each time frame (2-dimensional space)

– The number of time frames vary with the length
of each signal.

• To represent all the signals as the same size of
feature vectors, we do summarization.
– In this tutorial, I will take mean over frames.

66

Feature extraction and summarization

67

[ZCR, SC]
[ZCR, SC]

[ZCR, SC]

Mean over time frames
[mean(ZCR), mean(SC)]

Now we can map all the signals into 2-dimensional feature space

Plotting them in the feature space

68

Feature scaling

69

Testing examples

70

Plotting test examples

71

Nearest Neighbor classifier would perfectly work in this testing case

