
Cross-Modal Embeddings
in Music and Audio

CS352 Spring 2025

May 28, 2025

Annie Chu

Things we’ll cover
1. Embeddings Recap
2. What is multimodality?
3. Multimodal Embedders (we’ll look primarily at CLAP)

3.1.Training Methodology
3.2.Evaluation tasks
3.3.Case Study: Text2FX

4. Visualizing embeddings
5. Get started with CLAP

Recap: Audio Embeddings

A (trained) embedding net

embedding NN
aka “encoder”

input audio representation

N-D Embedding Space

N = 2

embeddings
A (trained) embedding net

 [0.218, -0.572]

vector encodes semantic or structural
information about the input

take
embedding
from this
layer

A (trained) embedding net

Training an embedding net

Loss ∝ Df(x1, x2)

x1

x2

Training an embedding net

Loss ∝ M − Df(x1, x2)

x1
x2

Training an embedding net

Training an embedding net

Embeddings extracted as general-purpose feature vector

Any deepnet to “encode” audio in a relevant
semantic space, even say instrument classifier

we’ll take embeddings from penultimate layer

Don’t have to train an embedder explicitly

Input Audio Representations — we have options

raw waveform input

or spectrogram

Any deepnet to “encode” audio in a relevant
semantic space, even say instrument classifier

we’ll take embeddings from penultimate layer

13

Encoder Architectures— some options
Any deepnet to “encode” audio in a relevant semantic space

Encoder Architectures— some options
Any deepnet to “encode” audio in a relevant semantic space

transformerRNNCNN

https://www.researchgate.net/publication/
364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?
_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

local patterns (timbre, onsets) sequence dynamics
(time dependencies)

global attention over time

https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

The point of embedding spaces

● Low-dimensional
representations of high-
dimensional data that
captures semantic
relationships between
items

● similar items closer
together in the
embedding space and
dissimilar items further
apart

source: google

The point of embedding spaces

● Low-dimensional
representations of high-
dimensional data that
captures semantic
relationships between
items

● similar items closer
together in the
embedding space and
dissimilar items further
apart

source: google

In the audio space, it might look like this

encoder [0.818, 0.472, -.843, 0.674, -0.341, 0.889, -1.202, 0.423, -0.097]

encoder [0.957, 0.434, -0.784, 1.259, -0.019, 0.612, 0.887, -1.234, 0.308]

encoder [0.134, 0.087, 1.421, -0.703, 0.432, -1.112, 0.556, 0.732, -0.268]

bright tonality

percussive-ness

And we can do this for other modalities

What do we mean by modality?

Multimodal systems combine two or more modalities to
form richer representations

Mode
distinct source
of information

audio
environmental sound,

speech, music

text
words, language

image
pixels, shapes,

colors

video
visual frames +

temporal motion

sensors
GPS, accelerometer,

etc

Text Embedding Space

vectors capture semantic relationships
image source

vector offsets =
consistent vector
transformations
reusable across
space

(“embedding math”)

https://www.kolena.com/guides/4-types-of-machine-learning-embeddings-and-4-embedding-models/

So what if we add combine multiple modalities?

Why do we care about multimodality?

Faithfulness to natural human
interaction

● Broader human experience
is multimodal

Complementary information

● Different modalities can
compensate information
the other is missing

prosody example:
 text modality can capture what a person is

saying, but not how they’re saying it

Multimodal Embeddings

Shared semantic vector
space for across multiple
modalities (e.g.,audio, text,
video, symbolic)

Different modalities,
same embedding space

example of shared text-image embedding space

Multimodal Embedder Overview

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text

Let’s look at some audio+X
multimodal models

CLAP
Contrastive Language-Audio
Pretraining

26

B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

Audio is FreeSound 16770__dobroide__20060307paddling.wav

Audio+Text

flat

cat meowing

fast

funky

Shared Text-Audio embedding space

27
✅ a joint embedding space aligning audio

concepts with corresponding text ✅

whisper

distorted clarinet

coin dropping

muffled rumble

guitar rif

dog barking

Audio+Visual

Audio-visual Generalised Zero-shot Learning with Cross-modal Attention and Language

Audio-Visual
coherence

https://openaccess.thecvf.com/content/CVPR2022/papers/Mercea_Audio-Visual_Generalised_Zero-Shot_Learning_With_Cross-Modal_Attention_and_Language_CVPR_2022_paper.pdf

Audio+Symbolic

Learning Audio–Sheet Music Correspondences for Cross-Modal
Retrieval and Piece Identification
https://transactions.ismir.net/articles/10.5334/tismir.12?
ref=https%3A%2F%2Fgithubhelp.com

https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com
https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com

What are multimodal embeddings useful for?

● Retrieval (audio <> text // “music that sounds
like this description”)

● Automatic tagging/captioning (audio → text)

● Multimodal generation (text → audio)

● Bridging audio with symbolic representations
(e.g., MIDI, sheet music)

example of retrieval (image)

once modalities are embedded in the same space, we can
map between them in flexible, meaningful ways

How do we train multimodal models?

First we need data

Training Data

example text-audio datasets:
AudioCaps (Kim et al., 2019)

 (audio <> text_captions)

source: AudioSet (Youtube)

Clotho (Drossos et al,, 2019)

(audio_event <> text_captions)

source: Freesound

Audealize (Seetharaman & Pardo, 2017)

(audio_FX_parameters <> text_descriptors)

source: Crowdsourced

We need (a lot)
of paired data

AudioCaps:
Generating Captions
for Audio in the Wild

clotho example

https://aclanthology.org/N19-1011.pdf
https://arxiv.org/abs/1910.09387
https://interactiveaudiolab.github.io/assets/papers/seetharaman_pardo_audealize_jaes.pdf
https://audiocaps.github.io/#example

Audealize
(Seetharaman & Pardo, 2017)

“calm” <> FX parameters
 (40-band EQ)

Next we need to embed our data
(in their respective modalities)

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Choose encoder

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Choose encoder

encoders usually
pretrained

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Get embeddings

Now we need to ALIGN the
single-modality embeddings spaces
into a cross-modal embedding space

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text

now we’re in this alignment part

How? We need to set a training objective aka
what do we want the model to learn.

Training Objective
Contrastive Loss

Pull similar pairs together,
push dissimilar pairs apart

Let’s take a look at
contrastive learning in
the audio-only domain

https://www.v7labs.com/blog/contrastive-learning-guide

CLMR (Contrastive Learning of Musical Representations)

Goal: learn useful representations
from musical audio (e.g., genre,
instrumentation, dynamics) without
paired labels

Data: (30s music clips + human-
annotated tags)

• MagnaTagaTune (6.6k songs)

• MillionSongDataset (240k songs)

J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

A1
anchor audio

A1’

transformed version
of anchor

POSITIVE PAIR

Aj

different
audio file

NEGATIVE PAIR

CLMR (Contrastive Learning of Musical Representations)
J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

A1

A1’

anchor audio

transformed version
of anchor

different audio
files + their
transformed
versions too

POSITIVE PAIR

NEGATIVE PAIRS

1 positive similar pair:
via data
augmentations
Multiple negative
pairs: different audio
files

Self-supervised
contrastive training

CLMR (Contrastive Learning of Musical Representations)
J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

encoding audio

making augmented
positive pairs

contrastive learning
all positive pairs “attract”
all negative pairs “repel”

Evaluated via classification tasks

B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

Now let’s see it
in action for
audio <> text
with CLAP

CLAP Dataset

48

4.6M audio-text pairs
mostly general sound, some speech, some music

AudioSet ExampleWavCaps example
(pulled from AudioSet)

Wind and a race car make
noise, with a man speaking and
the sound of accelerating and
tire squealing.

A woman is rapping while
a medium engine runs and
a cat meows.

inferred captions
(likely from metadata)

NSynth

filename:
bass_synthetic
_033-047-050

This is the sound of
[synthetic bass]

FMA
This is an [electronic] song

genre:
electronic

human-annotated

CLAP’s Encoders

Image from Elizalde, et al. arXiv:2206.04769v1 49

GPT2
(transformer)

fine-tuned only

HTSAT
(transformer)

https://arxiv.org/pdf/2202.00874

trained on 22 audio tasks (e.g,
classification, retrieval, captioning)

trained, then fine-tuned

CLAP training—> fine-tuning encoders together

Image from Elizalde, et al. arXiv:2206.04769v1Audio is FreeSound 16770__dobroide__20060307paddling.wav 50

fine-tuning via contrastive
learning

Single Pair Example (A1, T1)

Single Pair Example (A1, T1)

Audio
Encoder

Text
Encoder

Audio

Audio

‘a guitar riff’

https://huyenchip.com/2023/10/10/multimodal.html

Audio

What if we do this across a
batch of paired examples?

For a batch of N matching text-audio pairs:

● Each (audio, text) pair is a positive.
● The remaining N-1 text or audio

items in the batch are treated as
negatives.

Contrastive Loss in Full Batch→ InfoNCE

We want the model to maximize the similarity between the matched pair
and minimize it between unmatched ones — all within the same batch.

InfoNCE loss
(for one audio -> text example)

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar

audio_piano

audio_drums

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

from 0

M
L
P

M
L
P

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 0.2 0.6 0.1

audio_piano 0.5 0.6 0.6

audio_drums 0.11 0.33 0.22

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

from 0

M
L
P

M
L
P

random vals

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

TARGET

M
L
P

M
L
P

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

TARGET

M
L
P

M
L
P

Let’s just take one row

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

TARGET

M
L
P

M
L
P

we want to say this is a SIMILAR pair

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

TARGET

M
L
P

M
L
P

we can also say these are DISSIMILAR pairs

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 0.2 0.6 0.1

audio_piano 0.5 0.6 0.6

audio_drums 0.11 0.33 0.22

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

M
L
P

M
L
P

Let’s calculate the InfoNCE loss at step 0 for this row (audio_guitar —> all_texts)

So let’s calculate the InfoNCE at step 0 looking at audio = audio_guitar

say we set temperature T to 0.1

a_i = audio_guitar
t_i = “guitar riff”

Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

The numerator is the model's score for the correct match.
We raise it to the power of 1/τ to exaggerate differences

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio→text
i = − log

exp(sim(f (ai), g(ti))/τ)

∑N
j=1 exp(sim(f (ai), g(tj))/τ)

Laudio→text
i = − log (exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1))

Laudio→text
i = − log (e2

e2 + e6 + e1) = − log (7.39
7.39 + 403.43 + 2.72)

Laudio→text
i = − log (7.39

413.54) = − log(0.0179) ≈ 4.02

So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar
t_i = “guitar riff”

Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

The numerator is the model's score for the correct match.
We raise it to the power of 1/τ to exaggerate differences

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim(f (ai), g(ti))/τ)

∑N
j=1 exp(sim(f (ai), g(tj))/τ)

Laudio−>text
i = − log (exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1))

Laudio−>text
i = − log (e2

e2 + e6 + e1) = − log (7.39
7.39 + 403.43 + 2.72)

Laudio−>text
i = − log (7.39

413.54) = − log(0.0179) ≈ 4.02

then we’ll calculate this same
loss other audios in the batch

So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar
t_i = “guitar riff”

Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

The numerator is the model's score for the correct match.
We raise it to the power of 1/τ to exaggerate differences

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim(f (ai), g(ti))/τ)

∑N
j=1 exp(sim(f (ai), g(tj))/τ)

Laudio−>text
i = − log (exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1))

Laudio−>text
i = − log (e2

e2 + e6 + e1) = − log (7.39
7.39 + 403.43 + 2.72)

Laudio−>text
i = − log (7.39

413.54) = − log(0.0179) ≈ 4.02

and THEN all of them for the
flip side of text -> audio

So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar
t_i = “guitar riff”

Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

The numerator is the model's score for the correct match.
We raise it to the power of 1/τ to exaggerate differences

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim(f (ai), g(ti))/τ)

∑N
j=1 exp(sim(f (ai), g(tj))/τ)

Laudio−>text
i = − log (exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1))

Laudio−>text
i = − log (e2

e2 + e6 + e1) = − log (7.39
7.39 + 403.43 + 2.72)

Laudio−>text
i = − log (7.39

413.54) = − log(0.0179) ≈ 4.02

and then sum and take the average of all those losses
full InfoNCE loss at step 0

Laudio→text
batch =

N

∑
i=1

Laudio→text
i

Ltext→audio
batch =

N

∑
i=1

Ltext→audio
i

Lbatch =
1
2 (

N

∑
i=1

ℒaudio→text
i +

N

∑
i=1

Ltext→audio
i)

So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar
t_i = “guitar riff”

Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

The numerator is the model's score for the correct match.
We raise it to the power of 1/τ to exaggerate differences

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim(f (ai), g(ti))/τ)

∑N
j=1 exp(sim(f (ai), g(tj))/τ)

Laudio−>text
i = − log (exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1))

Laudio−>text
i = − log (e2

e2 + e6 + e1) = − log (7.39
7.39 + 403.43 + 2.72)

Laudio−>text
i = − log (7.39

413.54) = − log(0.0179) ≈ 4.02

then we’ll backpropagate this loss and update our
weights and biases

Laudio→text
batch =

N

∑
i=1

Laudio→text
i

Ltext→audio
batch =

N

∑
i=1

Ltext→audio
i

Lbatch =
1
2 (

N

∑
i=1

ℒaudio→text
i +

N

∑
i=1

Ltext→audio
i)

Backpropagate to where? our trainable elements

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text

loss
computed

in here

After xyz epochs of training….

[

] 

text_emb
"guitar riff"

text_emb
"piano riff"

text_emb
"drum roll"

audio_guitar 0.92 0.34 0.12
audio_piano 0.40 0.89 0.18
audio_drums 0.15 0.22 0.94

[“guitar riff”,

“piano riff”,

“drum roll”] 

text
encoder

audio
encoder

AFTER SOME TRAINING (w InfoNCE loss)

M
L
P

M
L
P

Audio Audio

A
A
A

A

Full batch training overview, N=4

Sounds

Content
dog barking

guitar rif whisper
muffled rumble

car rumblingcoin dropping

fresco
funky distorted clarinet

71

Now we have something like this

cat meowing

flat

cat meowing

fastfresco
funky

Shared Text-Audio embedding space

72
✅ a joint embedding space aligning audio

concepts with corresponding text ✅

nice 😎👍
whisper

distorted clarinet

coin dropping

muffled rumble

guitar rif

dog barking

How do we evaluate multimodal embedding models?

Things we want to check

Cross-Modal Alignment (text <> audio)

How well do the model's representations of
different modalities (e.g., audio and text) align
semantically?

Does the sound of cat meow have a high
similarity score with the text “cat meowing”?

we can test this on core downstream tasks

CLAP embedding space

CLAP core
downstream
tasks

Downstream Tasks

Task Type Description Common Metrics
Cross-Modal
Retrieval

Match one modality (e.g., audio, image) to another (e.g.,
text) — e.g., "find the caption for this sound"

Recall@K, Precision@K, Median
Rank, mAP

Classification Predict labels (e.g., “guitar”, “clapping”) using single-
modality embeddings with optional fine-tuning

Top-1 Accuracy, F1-score,
Precision, Recall

Captioning /
Generation Generate descriptive text from audio, image, or video BLEU, ROUGE, CIDEr, METEOR,

SPICE
Auditory QA (VQA/
AQA)

Answer multiple choice questions based on auditory input
and associated text

QA Accuracy, Exact Match, VQA
Score

Zero-Shot Learning Perform tasks with no labeled examples — often via
alignment in shared embedding space

Accuracy, F1-score, Recall@K
(task-dependent)

Human Evaluation Collect subjective ratings of match quality, fluency, or
semantic correctness

Relevance, Fluency, Preference
Scores, Likert Ratings

77

QA benchmarks

e.g. MuChoMusic

B. Weck, I. Manco, E. Benetos, E. Quinton, G. Fazekas,
and D. Bogdanov, “MuchoMusic: Evaluating music
understanding in multimodal audio-language models,”
arXiv preprint arXiv:2408.01337, 2024.

78

Cross-Modal Retrieval

both

rank-agnostic metrics

Task: Given audio, retrieve the matching text, or vice versa

quality
ex. Precision@5: 60% of top 5 retrieved
results are relevant

coverage
ex. Recall@1 = 70%
means correct text is
top result 70% of the
time

79

Cross-Modal Retrieval: Precision@K
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a
park no

5 Songbirds in early
morning yes

Out of the results it retrieved, how
many were actually relevant?

Relevant items in Top 5: 3
Total retrieved (K): 5

80

Cross-Modal Retrieval: Recall@K

Out of all the relevant items in the dataset,
how many did it manage to retrieve?

From ground truth metadata, say we know
there are 10 total bird-related audio clips

Relevant items retrieved: 3

Total relevant items in dataset: 10

Total retrieved (K): 5

Only 3 of the 10 possible bird-related audio clips were retrieved in the top 5. So while Precision@5 was 60%, Recall@5 is only 30%
— showing that although our top results were reasonably accurate, the system missed many other relevant clips in the dataset.

Rank Retrieved Audio Label
Relevant

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a
park no

5 Songbirds in early
morning yes

Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

81

Cross-Modal Retrieval: F1@K
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a
park no

5 Songbirds in early
morning yes

How balanced was the system’s
accuracy and coverage?

82

Mean AP

avg precision
(per query)

R: Total number of relevant items
for the query
N: Total number of returned items
(can be all or top-K)
1[⋅]: 1 if item is relevant, 0
otherwise

do relevant items appear fairly
early in the ranked list?

Mean
reciprocal rank

what rank was the
first relevant item?

Cross-Modal Retrieval

rank-based metrics
Task: Given audio, retrieve the matching text, or vice versa

83

Cross-Modal Retrieval: MRR
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a
park no

5 Songbirds in early
morning yes

How soon was the first relevant item
retrieved?

First relevant rank: 1

(If first relevant was at
rank 3, MRR = 1/3 ≈ 0.3)

84

Cross-Modal Retrieval: Average Precision
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a
park no

5 Songbirds in early
morning yes

Where did the relevant results appear
in the ranking?

Relevant ranks: 1,3,5

Calculate precision at every relevant position

P@1 = 1/1 = 1
P@3 = 2/3 = 0.67
P@5 = 3/5 = 0.6

if we had multiple queries, we’d do the
same for them then take avg for mAP

How else have people used CLAP? Fun applications

Text-to-Audio Generation: Controlling a Synthesizer

M. Cherep, N. Singh, and J. Shand, “Creative Text-to-Audio Generation
via Synthesizer Programming,” arXiv preprint arXiv:2406.00294, 2024.
[Online]. Available: https://arxiv.org/abs/2406.00294 EXAMPLEs: https://ctag.media.mit.edu/

CLAP’s embedding space as loss space

https://arxiv.org/abs/2406.00294
https://ctag.media.mit.edu/

How else have people used CLAP? Fun applications
Speech emotion recognition

Y. Li, Q. Sun, S. M. Krishna Murthy, E. Alturki, and B. W. Schuller, “GatedxLSTM: A multimodal affective computing approach for
emotion recognition in conversations,” arXiv preprint arXiv:2503.20919, 2025. [Online]. Available: https://api.semanticscholar.org/
CorpusID:277349399

CLAP embeddings as input feature vector

https://api.semanticscholar.org/CorpusID:277349399
https://api.semanticscholar.org/CorpusID:277349399

Can we take an audio source and make it sound “crunchy” or “warm”?
Let’s look at using CLAP for audio production

88

Harnessing CLAP Embeddings for
Text-Guided Audio Effects

Text2FX

Annie Chu, Patrick O’Reilly, Julia Barnett, Bryan Pardo

a guitar rif
a bright guitar rif

a guitar riff coming from underwater

a warm and mellow guitar rif

Sound Semantics: How do we describe sound?

Audio Effects (FX)
Audio FX are digital signal
processing (DSP) based tools
used to modify sound by
transforming the audio signals

How do we make something sound tinny?

Common Examples of Audio FX

bright

• EQ (Equalization) –
Adjusts frequencies to
balance tone

Some common types of audio FX

eq

• Reverb – Creates a
sense of space and
depth.

91

• EQ (Equalization) –
Adjusts frequencies to
balance tone

Some common types of audio FX

eq

reverb• Reverb – Creates a
sense of space and
depth.

92

• EQ (Equalization) –
Adjusts frequencies to
balance tone

Some common types of audio FX

eq

reverb

reverbeq

this is an FX chain of length 2

and we can
chain them!

• Reverb – Creates a
sense of space and
depth.

93
back

All FX have DSP-based controls like these

Confusing
and

unintuitive

Especially
to novice

users

‘old timey radio’ ??

disconnect between intuition and implementation

Key
Problem

Example EQ FX in Protools

????????????

‘old timey radio’
✅

Enter Text2FX

Can we use CLAP to connect any high-level semantic
text descriptor (e.g., ‘bright’) to low-level signal
processing parameters (e.g., EQ controls)?

Text2FX: A Semantic Audio Production Tool

A system that maps

 ANY high-level concept <> ANY set of FX knobs

(e.g., ‘warm’, ‘dark and roomy’) (e.g., EQ, Reverb, Compression)

‘warm’
✅

‘old timey radio’
✅

‘in-your-face
and bold’

✅

FX chain: EQ-only

FX chain: EQ —> Compression

FX chain: EQ —> Reverb —> Compression

Text2FX

Make this sound…

target text descriptor

2

like it’s on a 1920s
radio

EQ Delay Dynamic Range
CompressionReverb

another

e.g.

Text2FX

which the user can then adapt and tweak

2

FX parameters

EQ Reverb

with specific FX chain

e.g.

Text2FX

Optimizing FXparams by Steering CLAP Embeddings

Given an input sound and target
descriptor, find me the best audio
FX parameters (FXparams) via

(1) Randomly pick FXparams

(2) Apply to input sound to get
“effected” sound (A’)

(3) Generate CLAP embeddings
for A’ and T

(4) Measure distance between A’
and T (loss)

(5) Backpropagate loss, adjust
EQ parameters to minimize
distance

Again!

T

A’

hmm it’s
pretty far

T
A’

rinse & repeat
for n iterations

Let’s tweak
them

great! now
it’s a little

closer

Do it all again!

great! done optimizing ✅

iteration n

iteration 1

iteration 0

Single-Instance Optimization via CLAP Tuning

inspired by TagBox (Manilow et al., 2021)

Text2FX Optimization Example

input

6 band Parametric EQ

Cool artifacts of this optimization algorithm

• No training of a neural network

• Bypasses requirement of needing a large
dataset

• Avoids generation of unwanted audio
artifacts (only modifies FX parameters, not
audio itself)

102

Single-Instance Optimization of FXparams

Given an input
fi

(1) Randomly pick FXparams

(2) Apply to input sound to get
modified sound (A’)

(3) Run A’ and T into CLAP

(4) Use CLAP to quantify how
close A’ is to T

(5) Use that to then adapt EQ
parameters

Again!

Listening Examples

Example

input audio

target text

“underwater”

transformed audio

FX chain:

Text2FX

Reverb

FX parameters used to
transform audio

Target: underwater

Example

input audio

target text

“dramatic”

transformed audio

FX chain:
EQ

Text2FX

Reverb

Target: dramatic

FX parameters used to transform audio

What’s the best way to steer
embeddings in the CLAP space?

TEXT2FX

Two different approaches of
accounting for initial audio
content

Text2FX-cosine 1

see what
CLAP knows

Text2FX-directional
provide some context
of the initial audio’s
texture

2

Text2FX-cosine
Most basic approach (no extra adaptation to account for content)

‘bright’

Cosine-loss

minimize of cosine distance
between a single audio-text
embedding pair

T — fixed, target text prompt
A’— modified, “effected” audio
A — fixed, input audio

108

Text2FX-cosine
Most basic approach (no extra adaptation to account for content)

Cosine-loss

minimize of cosine distance
between a single audio-text
embedding pair

T — fixed, target text prompt
A’ — modified, “effected” audio
A — fixed, input audio

‘this is bright’

CLAP embedding space

Modify the audio (via optimized FX params)
such that it gets closer to the text itself

109

T
A

Text2FX-cos EXAMPLE

A

T: this sound is
bright

T A

T: this sound is
bright

Text2FX-cos EXAMPLE

Text2FX-directional
Give context, use two embedding pairs

Directional Loss
From DiffusionCLIP (Kim et al., 2022)

Use an extra contrasting text
prompt as an anchor to guide the
optimization of modified audio

CLAP embedding space

T1
‘this is not warm’

T2
‘this is warm’

A1

A2

A2

T1 — fixed, extra anchor text prompt
T2 — fixed, target text prompt
A1 — fixed, input audio
A2 — modified, “effected” audio

T1
A1

T2

A2

T2: Hollow and far away
T1: NOT hollow and far away

Text2FX-dir EXAMPLE

T1
A1

T2
A2

T2: Hollow and far away
T1: NOT hollow and far away

Text2FX-dir EXAMPLE

They both seem to work…
Which one works better?

SUBJECTIVE EVALUATION

115

Listening Study

60 text prompts allocated across 3 FX chains

What audio samples? 30 Reference audio files (15 speech, 15 music)

4-way evaluation of each prompt/audio combo

mimics what a novice audio
producer might do

117

+2: The audio changed in the right direction

(i.e., definitely more warm than reference)

0: No noticeable change compared to the reference (neutral)

-2: The audio changed in the wrong or unrelated direction

(i.e., changed, but definitely not more warm than reference)

The rating scale

Specifically we’ll compare for Text2FX
(variants & aggregates) vs Random

• Text2FX-Best: When the better performing variant succeeds
• Text2FX-Both: When both variants succeed

Text2FX beats Random

HIGHER IS BETTER

Text2FX beats Random

Text2FX-Best drastically beats Random

‘warm’ ‘ethereal’ ‘cool
and

distant’

‘like it’s
playing on an old

1920s radio’

Prompt Types (4)

Breakdown of Listener Rating scores

rating
scale

definitely
‘warm’

not warm
at ALL

‘warm’

12 Total Prompt Categories

FX
 c

ha
in

s
(3

)

Prompt Type
Single-Concrete

Multi-Imagery

FX chain
Reverb-only

Taking the system at its best — Text2FX-Best, are there particular strengths?

‘bright’

‘spacious’

‘harsh’

e.g.,

‘coming through an
old telephone’

‘like an explosion
in a canyon’

‘coming from underwater
in a swimming pool’

e.g.

‘warm’ ‘ethereal’ ‘cool
and

distant’

‘like it’s
playing on an old

1920s radio’

Pronounced Advantage for EQ-only and EQ → Reverb FX Chains

Comparing Text2FX-cos vs. Text2FX-dir

 Text2FX-dir
provides more
reliable performance

 Text2FX-cos
produces more
polarizing
transformations

 Text2FX-dir may
generalize better

- prompt type
- longer FX chain

Back to Embeddings

Something else we might wanna do is
visualize the embedding space itself

We can’t visualize 512 dimension vectors, but reduce to 3D through some techniques (“the
curse of dimensionality”)

*for any embeddings, not just cross-modal

slide from Bryon Wallace Northeastern

PCA: Principal Component Analysis

What it does: Finds the directions
with the most variation in data.

How? It uses eigenvectors and
eigenvalues of the covariance
matrix to find those directions

TLDR; Linear technique that works to maximize global variance

PCA finds new axes (called principal components) along which the data varies
the most. These axes are linear combinations of the original features.

source: ibm

https://www.ibm.com/think/topics/principal-component-analysis

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Computes pairwise similarities using
Gaussian distributions in high dimensions
and Student t-distributions in low
dimensions, then minimizes distance
between distributions via KL divergence

TLDR; Non-linear technique that preserves local structure by modeling pairwise similarities.

t-SNE arranges data in a way that keeps similar items close together in the low-
dimensional space, making clusters easy to see.

Uniform Manifold Approximation and Projection (UMAP)

Build a nearest-neighbor graph of the
high-D data model local relationships,
then learning a low-D embedding by
minimizing a CE loss to aligns the
graph structure with a similar graph in
the lower-D space

TLDR; Non-linear technique that preserves both local + some global structure, scalable for large datasets.

UMAP constructs a weighted graph of the data’s local structure and then optimizes a
low-dimensional layout that preserves those relationships and the overall shape

135

Summary of PCA vs t-SNE vs UMAP
Feature PCA t-SNE UMAP

Type Linear Non-linear Non-linear

Goal Maximize global variance Preserve local structure Preserve local and global structure

Preserves Global variance patterns Local clusters and pairwise similarity Local neighborhoods and global
layout

Interpretability High Low Medium

Speed Fast Slow Fast

Deterministic Yes No Mostly (some stochastic elements)

Best For Feature compression, initial
dimensionality reduction

Visualizing cluster structure in
compact space for small-medium
datasets

Exploring both local clusters and
broader relationships

Limitations Cannot capture non-linear
patterns

Distorts global structure, sensitive to
parameters, slow for large datasets

Requires tuning, and still involves
some randomness

Example use
case

Reduce dimensionality of audio-
text embedding space for
downstream model input (feature
engineering)

Visualize clusters of similar sound-
text pairs (e.g., emotion categories,
spoken keywords)

Understand large-scale
relationships in joint audio-visual-
text embeddings

When each might be good to use

Goal Best Technique

Quick overview, compression, noise filtering PCA

Visualizing clusters (e.g. categories) t-SNE

Maintaining shape + cluster structure UMAP

Handling very large or complex datasets UMAP

Feature engineering for ML models PCA (or UMAP but requires more
digging)

Key Parameters

Key Parameter PCA t-SNE UMAP

n_components
(dimensional
ity)

Number of dimensions
to retain aka what data
to keep (important)

Output dimensionality mainly for
visualization (doesn’t impact the
relationship structure in original
space)

Output dimensionality mainly
for visualization (doesn’t impact
the relationship structure in
original space)

Neighborhood
Size Not applicable perplexity – how many

neighbors each point considers
n_neighbors – balances local
vs. global structure

Cluster
Spread Not applicable Not directly tunable min_dist – controls spacing

between points in embedding

random_state Optional, for
reproducibility Affects layout stability Controls reproducibility

