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Things we’ll cover

1. Embeddings Recap

2. What is multimodality”?

3. Multimodal Embedders (we’ll look primarily at CLAP)
3.1.Training Methodology
3.2.Evaluation tasks
3.3.Case Study: Text2FX

4. Visualizing embeddings

5. Get started with CLAP



Recap: Audio Embeddings
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A (trained) embedding net

vector encodes semantic or structural
information about the input
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Training an embedding net
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Training an embedding net
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Training an embedding net
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Training an embedding net

> 552 »




Don’t have to train an embedder explicitly
Embeddings extracted as general-purpose feature vector
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Input Audio Representations — we have options

0.819245 0.539102 0.391284 0.181923 0.519247 0.912043 0.291529 0.519284 0.710153

—
hidden layer 1 hidden layer 2 [hidden layer 3
input layer
V) -
= _ ::_"_: 7
> _,/_r 2 output layer
-_— = ;: @
&) "“‘2 i
™
raw waveform input B
&
A

Any deepnet to “encode” audio in a relevant
semantic space, even say instrument classifier

or spectrogram

we’ll take embeddings from penultimate layer



Encoder Architectures— some options

Any deepnet to “encode” audio in a relevant semantic space
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Encoder Architectures— some options

Any deepnet to “encode” audio in a relevant semantic space
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In the audio space,

s
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it might look like this
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And we can do this for other modalities



What do we mean by modality?

: image
pixels, shapes,

‘ . I colors
audio
environmental sound,

speech, music Mode video
distinct source —"" »  visual frames +

. . temporal motion
| of information

W,
/ \ = sensors
«@al GPS, accelerometer,
[

etc

text
words, language

Multimodal systems combine two or more modalities to
form richer representations



Text Embedding Space
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https://www.kolena.com/guides/4-types-of-machine-learning-embeddings-and-4-embedding-models/

So what if we add combine multiple modalities?




Why do we care about multimodality?

Faithfulness to natural human

interaction
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saying, but not how they’re saying it



Multimodal Embeddings
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Multimodal Embedder Overview
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Let’s look at some audio+X
multimodal models



Audio+Text

CLAP

Contrastive Language-Audio
Pretraining

Audio is FreeSound 16770__dobroide__20060307paddling wav

CLAP SLEARNING AUDIO CONCEPTS FROM NATURAL LANGUAGE SUPERVISION
Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, Huaming Wang

Microsoft
{benjaminm, sdeshmukh, malismail, huawang } @ microsoft.com

Contrastive Pretraining
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Text — audio pairs
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Encoder
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B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1-5.
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Shared Text-Audio embedding space
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a joint embedding space aligning audio

concepts with corresponding text
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Audio+Visual

Audio-Visual
coherence

wood thrush
& calling

playing
'x squash

striking / ! | elephant
striking bowling bowling; i (trumpeting

© playing squash

! /
o elephant rumpeling \ ’
\'4

wood thrush calling

Figure 1. Our audio-visual (generalised) ZSL framework aligns
an audio-visual embedding with the corresponding textual label
embedding via cross-modal attention. It can classify videos from
previously unseen classes (e.g. elephant trumpeting) by predict-
ing the class (red) whose textual label embedding (purple cross) is
closest to the audio-visual embedding (blue star).


https://openaccess.thecvf.com/content/CVPR2022/papers/Mercea_Audio-Visual_Generalised_Zero-Shot_Learning_With_Cross-Modal_Attention_and_Language_CVPR_2022_paper.pdf
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( Embedding Layer
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Figure 5: Architecture of correspondence learning net-

work. The network is trained to optimize the similarity

Learning Audio—Sheet Music Correspondences for Cross-Modal (in embedding s ace) between corresponding audio
Retrieval and Piece Identification g sp p g

https://transactions.ismir.net/articles/10.5334/tismir. 12?7 and sheet image snippets by minimizing a pair-wise
ref=https%3A%2F %2F githubhelp.com ranking loss.



https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com
https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com

What are multimodal embeddings useful for?

Joint embedding space

The results of the image search are the y

e Retrieval (audio <> text // “music that sounds
like this description”) 5 the Fseywsmbedding

Query: “painting of a mountain O
landscape at sunset” 0,0

e Automatic tagging/captioning (audio — text)

e Multimodal generation (text = audio)
example of retrieval (image)

e Bridging audio with symbolic representations
(e.g., MIDI, sheet music)

once modalities are embedded in the same space, we can
map between them in flexible, meaningful ways



How do we train multimodal models?



First we need data



Training Data

AudioCaps:
Generating Captions

for Audio in the Wild

We need (a lot)
of paired data

[Audio Classification] rumble | vehicle | speech | car | outside

|Video Captioning] A bus passing by with some people
walking by in the afternoon.

example text-audio datasets: |Audio Captioning| A muffled rumble with man and woman
AudioCaps (Kim et al., 2019) talking in the background while a siren blares in the distance.
(audio <> text_captions)
source: AudioSet (Youtube)

file_name caption_1 caption_2 caption_3 caption_4
Clotho (Drossos et al,, 2019)
. . The loud
(audio_event <> text_captions) N  buzzof
A muddled A televigion Loud television static
source: Freesound Distoried AM Radio no noise of broken  blares the static dips in -
storte adlonoisewav channel of the rhythm of a and out of constanly
TV static TV. focus cf‘nanges
. pitch and
Audealize (Seetharaman & Pardo, 2017) volume

(audio_FX_parameters <> text_descriptors)

clotho example
source: Crowdsourced P


https://aclanthology.org/N19-1011.pdf
https://arxiv.org/abs/1910.09387
https://interactiveaudiolab.github.io/assets/papers/seetharaman_pardo_audealize_jaes.pdf
https://audiocaps.github.io/#example

Audealize

(Seetharaman & Pardo, 2017)
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muffled  loudg lindo blaring
melancholy i ric h yo
romantic ety
hate ang
enchanting cow
caring muddy punch
woody
‘calm’ learnec from 22 contributions. Map built with 394 words. Nearby words have similar effects.

= Hide traditional interface

'IIIII""".O

P Play recorded actions © Record my interface actions

ettt TN

© 2014-2015 Interactive Audio _ab

This work was funded in part by National Science Foundation Grant number 11S-1116384



Next we need to embed our data
(in their respective modalities)
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Now we need to ALIGN the
single-modality embeddings spaces
Into a cross-modal embedding space



now we're in this alignment part

audio-only
A
o % A
B P % \ »o0 a8
& projector A A.
i W audio_encoder s Lo
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‘a drum roll’

L oo
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How? We need to set a training objective aka
what do we want the model to learn.



P X
Negative ﬁ/ AN

Training Ob_ieCtive AnChor/,J. LEARNING ///".
. *— o— Negative
Contrastive Loss

e Anchor _ @
Positive Positive

Pull similar pairs together,
push dissimilar pairs apart



Let’s take a look at
contrastive learning in
the audio-only domain

https://www.v7labs.com/blog/contrastive-learning-guide



CLMR (Contrastive Learning of Musical Representations)

Negative f N\
o A4
Anchor g LEARNING e

Goal: learn useful representations . o Negalive

Anchor

from musical audio (e.g., genre, Positive Positive

instrumentation, dynamics) without
paired labels
transformed version

/ AP of anchor
Data: (30s music clips + human-

annotated tags) A

- MagnaTagaTune (6.6k songs) anchor audio -t Z’jfg;’,-ge,f}fe
« MillionSongDataset (240k songs) Aj

POSITIVE PAIR

NEGATIVE PAIR



CLMR (Contrastive Learning of Musical Representations)

1 positive similar pair:
via data
augmentations

Multiple negative
pairs: different audio
files

Self-supervised
contrastive training

Transform

Filter
Reverb
Polarity
Noise
Pitch
Gain
Delay
Crop

POSITIVE PAIR

of anchor
AT
different audio
A1 files + their
transformed

anchor audio | ‘ versions too

necarive PAIRS

transformed version




CLMR (Contrastive Learning of Musical Representations)

repel

contrastive learning — T G0 TTOTT0 50 Projeions N (TG>T0 Gy
all positive pairs “attract”
all negative pairs “repel”

‘gproj(‘)‘
A

8proj()
A

8proj() 8proj(’)
2 2

h; ) EEEEE--@ EEEEE--@ hjo Representations h;y EEEEE---E (55 = Y

encoding audio — —— genc() genc() genc() genc()

m — -—-W m
Augmented, correlated
exagmple: of raw au(tho X N XjN
, ﬂ
making augmented m

pOSItIVG pa Irs 0 Raw audio waveforms N

Figure 2: The complete framework operating on raw au-

dio, in which the contrastive learning objective is directly

formulated in the latent space of correlated, augmented ex-
Evaluated via classification tasks amples of pairs of raw audio waveforms of music.



Now let’s see it
In action for

audio <> text
with CLAP

CLAP SLEARNING AUDIO CONCEPTS FROM NATURAL LANGUAGE SUPERVISION
Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, Huaming Wang

Microsoft
{benjaminm, sdeshmukh, malismail, huawang } @microsoft.com

Contrastive Pretraining

— Text
m Paddling in the water [=>SESEEEg }
T

Text — audio pairs

A AT AT, AT ArTy

Audio A, ATy ApT, ATy AyT,
||I||l|l| — -
Encoder
Az AsTy AT, AgTy AsTy

Ay ATy AxTz AvTs ATy




number of pairs was 119k instead of 128k. The training
datasets for the 4.6M collection are: WavCaps [6], Au-
dioSet [2], FSD50K [12], Clotho [13], AudioCaps [14],
CLAP Dataset MACS [15], WavTextSk [5], SoundDesc [16], NSynth [17],
FMA [18], Mosi [19], Meld [20], Iemocap [21], Mosei [22],
MSP-Podcast [23], CochlScene [24], LIspeech [25], EpicK-
itchen [26], Kinectics700 [27], findsounds.com. Details on

4.6M audio-text pairs GitHub
mostly general sound, some speech, some music

inferred captions
human-annotated likely from metadata

’) genre:
electronic
Wind and a race car make A woman 1is rapping while

) This is an [electronic] song
FMA
noise, with a man speaking and a medium engine runs and

filename:
’) bass_synthetic
_033-047-050
the sound of accelerating and

tire squealing. a cat meows. This is the sound of
) [synthetic bass]
WavCaps example AudioSet Example
(pulled from AudioSet)

NSynth

48



CLAP’s Encoders

” Paddling in the water

Text — audio pairs

Qutput(Same dimension as tokenized text)

GPT 2 Model

nsformer Block

Feed Forward
NN

Layer
Normalization

Multi-Head

fine-tuned only

Image from Elizalde, et al. arXiv:2206.04769v1

&+

Text G PT 2 Attention
EnCOder Positional Embedding
(transformer)
Tokenized Text
Fnzade Audio Mal Spectragrem HTS AT Training Output
Group 1 éroup 2 éren 3 Group 4
> Patch-Embed [—— i S
. T treqaney i - ] P : | e
Audio HTSAT .............................................. pm— 5, Bl L Bl 5 | ) e
| - 5 o - E —| 3% £ 2
Encoder k A S f; 53 i3 il e
Tk = 5 ko = L any
(transformer) .[ErEmeEmpEE = |5 3| |52 ’ S T e
¢ res i o= 1 Iz (m2 50 w -t o Eurmt resence Yap 15 )
ER oo 8 omEL 5s LEK | —t aie wir
¥ ) g ! - ! = I s TP ey iod
p - I - > f
time frame T

Fig. 1: The model architecture of HTS-AT.
https://arxiv.org/pdf/2202.00874

trained, then fine-tuned

trained on 22 audio tasks (e.g,
classification, retrieval, captioning)

49



CLAP training—> fine-tuning encoders together

fine-tuning via contrastive

.. Text )
I'[ Paddling in the waterl Encoder learning
Text — audio pairs
Audio
.IIIII'I' Encoder

Audio is FreeSound 16770__dobroide__20060307paddling wav 50 Image from Elizalde, et al. arXiv:2206.04769v1



Single Pair Example (A1, T1)

.. Text
|-|- Paddllng in the WatEI"l Encoder ﬁ

T, T2 T3 TN
Text — audio pairs
A, AT, ATy - ATy
Audio A, ATy AT, ATy - ApTy
[} I nln ﬁ »
' III | Encoder
Az ATy AsT, AzT; Az Ty

|

Ay ATy AvT, AnTs - AnTy



4 A larn A ATy

Single Pair Example (A1, T1) , b -

A3 AsTy AsT, AsTy AsTy

Ay AnTy AvT2 ANTs =~ AnTa

Language projection
matrix W,
(Dr X Dl)

Multimodal

embedding

D of text
N
Text
1 3 1 ’ 0.23 0.19
a guitar riff’ — —
g Encoder
Text embedding (D) Cosine
’ —— similarity
Audio embedding (D,) score
2 Audio
— >
Q J Encoder
B
Multimodal
embedding
of Audio

Audio projection
matrix W,
(DE X D_d)

https://huyenchip.com/2023/10/10/multimodal.html|



What if we do this across a
batch of paired examples?




Contrastive Loss in Full Batch— InfoNCE

For a batch of N matching text-audio pairs: m,,add,ing i the water |-
Each (audio, text) pair is a positive. T
. . . Text — audio pairs
The remaining N-1 text or audio A AT AL AT - A
items in the batch are treated as i Ao e A bt
negatives. A AT AT AT - A
Ay  AnTy AvTz ANTs - ATy
Eaudio—)text ——1lo exp(Sim(f(ai) g(tz))/T) A h Negatwe
i = & =N nenor S LEARNING —®
23 , exp(sim(f(ai), g(t;))/7) Negatlve
~@® Anchor _
InfoNCE loss Positive Positive

(for one audio -> text example)

We want the model to maximize the similarity between the matched pair
and minimize it between unmatched ones — all within the same batch.
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from 0

random vals
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TARGET

[“guitar riff”,
“piano riff”,
“drum roll”]
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TARGET Let’s just take one row

[“guitar riff”, "
“piano riff” oncoder || & I | |
’ P
“drum roll”] @ @ @

text_emb text_emb text_emb

[ w @ il’> "guitar riff" "piano riff" "drum roll"
w& _:> audio_guitar 1 O O
QJ\ ]

L audio L]
encoder




TARGET o _
we want to say this is a SIMILAR pair

[“guitar riff”, roxt "
“piano riff’, T [ Y '
“drum roll”] @

text_emb text_emb text_emb

[ w @ il’> "guitar riff" "piano riff" "drum roll"
WM =Nk 0 0
QJ\ ]

L audio

encoder

M
L
P




TARGET we can also say these are DISSIMILAR pairs

[“guitar riff”, roxt "
“piano riff”, = [ R | |
“drum roll”] @ @
text_emb text_emb text_emb
"guitar riff" "piano riff" "drum roll"
N o
| ' I' @ audio_guitar 1 0 O

QL]

L audio

encoder

M
L
P




Let’s calculate the InfoNCE loss at step 0 for this row (audio_guitar —> all_texts)

[“guitar riff” "
“piano riff’, = RN Y | ' ' @
“drum roll”] @ @

text

text_emb text_emb text_emb

[ w @ i> "guitar riff" "piano riff" "drum roll"

wa I== N Rt o 0.6 0.1

Q*] = e g5 |06 0.6

L I audio_drums 0.11 0.33 0.22



So let’s calculate the InfoNCE at step 0 looking at audio = audio_guitar

e, — ENR
encoder
“drum roll”] U U @

[ “"Q; gultarn plan:’:l‘ " dume:nll
00.-4@ wdosier 102 0.6 |01
& ] wiese |05 106 |0.6

L I maosme [0 41 033 |0.22
a_i = audio_guitar
t_i = “guitar riff”
Similarity scores
sim(audio_guitar, "guitar riff") = 0.20 « pos
sim(audio_guitar, "piano riff") = 0.60 < neg_1
sim(audio_guitar, "drum roll") = 0.10 « neg_2

say we set temperature T to 0.1

exp(sim(f(a;), §(1))/7)
T exp(sim(f(a), g()/7)

The numerator is the model's score for the correct match.
We raise it to the power of 1/t to exaggerate differences
— smaller = makes the softmax sharper

\—>exp(0.2/0.1) )

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1)

This is the total score across all candidates.
Since “piano riff” had a high similarity (0.6),
it dominates the denominator

Laudio—>text _ lo 62 _ lo 7.39
i ST 2t ere )T T %%\ 7301403431272

The model only assigns ~1.8% of the probability
mass to the correct caption. BAD — the model
isn’t confident in the right answer.

Laudio—>text

= —log

Ljaudio—»text — _ 10g <

paudiotet — _ 100 (12  _108(0.0179) ~ 4.02
i 413.54

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).
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then we’ll calculate this same
loss other audios in the batch
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and THEN all of them for the
flip side of text -> audio

[“guitar riff”,
“piano riff”,
“drum roll”]
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and then sum and take the average of all those losses
full InfoNCE loss at step 0

Lbatch =

1
2

N

i=1

i=1

N
audio—text text—audio
27 + 2L
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then we’ll backpropagate this loss and update our
weights and biases

1

Lbatch = E

N

i=1

i=1

N
audio—text text—audio
27 + 2L



Backpropagate to where? our trainable elements

-
5O _
audio_encoder

‘a guitar riff’

‘a piano riff’ »

‘a drum roll’

%»

text_encoder

audio-only
A

A
A A

text-only

$02 4

projector
(audio->shared)

$03%

projector
(text->shared)

loss
computed
in here

A
S e

2

shared audio-text




After xyz epochs of training....



AFTER SOME TRAINING (w InfoNCE loss)
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Full batch training overview, N=4

Text prompt

Audio
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Backpropagation
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Content Now we have something like this

dog barking  cat meowing

guitar riff whisper

muffled rumble

car rumbling®" droPPing

funky distorted clarinet
fresco

Sounds

WW
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Shared Text-Audio embedding space

nice ©

[

N )

whisper
coin dropping
flat

muffled rumble

fast  tetiiiem
fresco W dog barking distorted clarinet
funky

guitar riff
cat meowing

s

a joint embedding space aligning audio
concepts with corresponding text

72



How do we evaluate multimodal embedding models?




Things we want to check

CLAP embedding space

Cross-Modal Alignment (text <> audio)

whisper
coin dropping

flat

muffled rumble

fast i
fresco W dog barking distorted clarinet
funky

How well do the model's representations of
different modalities (e.g., audio and text) align

semantically? /

Does the sound of cat meow have a high
similarity score with the text “cat meowing”?

guitar riff

cat meowing

g

we can test this on core downstream tasks



CLAP core
downstream
tasks

Contrastive Pretraining

L

Text

Paddling in Lthe waler II-P T —‘
J

Text —audio pairs

i Ay Ay, ATy ApTy
Audio 2
Encoder

Az AsTy AgTy ATy

Ay ATy AuTr AvTy

Text to Audio Retrieval

Text Query
A crow crying Text
int the forest Encoder I
Audio 7,
Database
~_ e A AT -|||||.|-
—_— Encoder > Ay AT
| —
Az AgT,
Ax ATy

AwTy

Zero-Shot Classification

Classes

Dog barking
Rain falling j‘ Text
Encoder
Slrenwallin; ‘

Testing audio

Audio
—l Ay A Ay AT
.llllml Encoder g i
Dog barking
Audio Captioning

A campfire crackles as the flames burn branches

Testing audio
Audio

.lllllll. Encoder

Maps an audio embeddings to a
GPT2 input sequence

Aply



Downstream Tasks

Task Type

Description

Common Metrics

Cross-Modal
Retrieval

Match one modality (e.g., audio, image) to another (e.g.,
text) — e.g., "find the caption for this sound"

Recall@K, Precision@K, Median
Rank, mAP

Classification

Predict labels (e.g., “guitar”, “clapping”) using single-
modality embeddings with optional fine-tuning

Top-1 Accuracy, F1-score,
Precision, Recall

Captlonl_ng / Generate descriptive text from audio, image, or video BLEU, ROUGE, CIDEr, METEOR,
Generation SPICE
Auditory QA (VQA/ Answer multiple choice questions based on auditory input |QA Accuracy, Exact Match, VQA
AQA) and associated text Score

Zero-Shot Learning

Perform tasks with no labeled examples — often via
alignment in shared embedding space

Accuracy, F1-score, Recall@K
(task-dependent)

Human Evaluation

Collect subjective ratings of match quality, fluency, or
semantic correctness

Relevance, Fluency, Preference
Scores, Likert Ratings




4 N N
e ™
O Question: How does the structure of the melody
m change throughout the song?

(A) It's a 90s dance pop song
(B) The base melody stays the same, and other

melodies are layered on top
QA benCh marks (C) The song uses acoustic instruments

(D) The entire melody changes every verse

i N »
e.g. MuChoMusic PE
ooo (B) The base melody stays the same, and other
@ ) melodies are layered on top /4
. - ),
Figure 1. Multiple-choice questions in MuChoMusic
B. Weck, I. Manco, E. Benetos, E. Quinton, G. Fazekas, have four answer options of different levels of difficulty.

and D. Bogdanov, “MuchoMusic: Evaluating music
understanding in multimodal audio-language models,”
arXiv preprint arXiv:2408.01337, 2024. 7



Cross-Modal Retrieval

Task: Given audio, retrieve the matching text, or vice versa

rank-agnostic metrics

. . ex. Precision@5: 60% of top 5 retrieved
Number of relevant items in top K results are relevant

K

quality Precision@QK =

Number of relevant items in top K ex. Recall@1 = 70%
means correct text is

Total number of relevant items in dataset for the query top result 70% of the
time

coverage RecallQK =

Precision@K x RecallQK
Precision@K + Recall@K

both F1QK = 2 x

78



Cross-Modal Retrieval: Precision@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"”

Relevant
Rank Retrieved Audio Label (bird-
related)?
1|Birds chirping in forest |YES
2|City traffic and sirens no
3|Seagulls near the ocean yes
4 Children playing at a no
park
5 Songbirds in early yes

morning

79

Out of the results it retrieved, how
many were actually relevant?

Relevant items in Top 5: 3
Total retrieved (K): 5

Number of relevant items in top K
K

Precision@K =

Precision@5 = g = 0.6 or 60%



Cross-Modal Retrieval: Recall@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"”

Relevant
Rank Retrieved Audio Label (bird-
related)?
1|Birds chirping in forest |YES
2|City traffic and sirens no
3|Seagulls near the ocean yes
4 Children playing at a no
park
5 Songplrds in early yes
morning

Out of all the relevant items in the dataset,
how many did it manage to retrieve?

From ground truth metadata, say we know
there are 10 total bird-related audio clips

Relevant items retrieved: 3
Total relevant items in dataset: 10
Total retrieved (K): 5

Number of relevant items in top K

Recall@K =
Total number of relevant items in dataset for the query

Recall@5 = 130 = 0.3 or 30%

Only 3 of the 10 possible bird-related audio clips were retrieved in the top 5. So while Precision@5 was 60%, Recall@5 is only 30%
— showing that although our top results were reasonably accuratey the system missed many other relevant clips in the dataset.



Cross-Modal Retrieval: F1@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"”

Relevant
Rank Retrieved Audio Label (bird-
related)?
1|Birds chirping in forest |YES
2|City traffic and sirens no
3|Seagulls near the ocean yes
4 Children playing at a no
park
5 Songbirds in early yes

morning

How balanced was the system’s
accuracy and coverage?

Precision@K - Recall@K
Precision@K + Recall@QK

F1eK =2-

0.6-0.3  0.36

F1@5 =2 - = =04
5 0.6 +0.3 0.9 0
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Cross-Modal Retrieval

Task: Given audio, retrieve the matching text, or vice versa

rank-based metrics

Q
Mean MRR — L Z 1 what rank was the
reciprocal rank Q po rank of first relevant item for query q first relevant item?

R: Total number of relevant items

avg precision 1 & . : . for the query
(per query) P = R Z Precision@k - 1[item at k is relevant] N Total number of returned items
k=1 (can be all or top-K)
1[-]: 1 if item is relevant, 0

M AP 1 Q otherwise
earn mAP = = ) AP

Q qz:; ! do relevant items appear fairly
early in the ranked list?
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Cross-Modal Retrieval: MRR

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"”

Relevant
Rank Retrieved Audio Label (bird-
related)?
1|Birds chirping in forest |YES
2|City traffic and sirens no
3|Seagulls near the ocean yes
4 Children playing at a no
park
5 Songbirds in early yes

morning

How soon was the first relevant item
retrieved?

First relevant rank: 1

1

(If first relevant was at
rank 3, MRR = 1/3=0.3)
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Cross-Modal Retrieval: Average Precision

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"”

Relevant
Rank Retrieved Audio Label (bird-
related)?
1|Birds chirping in forest |YES
2|City traffic and sirens no
3|Seagulls near the ocean yes
4 Children playing at a no
park
5 Songbirds in early yes

morning

Where did the relevant results appear
in the ranking?

Relevant ranks: 1,3,5

Calculate precision at every relevant position
P@1=1/1=1

P@3 = 2/3 = 0.67

P@5 =3/5=0.6

_ 1.0+0.667 + 0.6
- 3

AP ~ 0.756

if we had multiple queries, we’d do the
same for them then take avg for mAP
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How else have people used CLAP? Fun applications

Text-to-Audio Generation: Controlling a Synthesizer 1 Aps embedding space as loss space

Spray Bees buzzing Police car siren

- S()ll”d 0]( 'Cl H EllC()pl?I” 3 Compulte Similarily

Synthesized Audio
[TTITTTTT T T ] 3 7 ~
[ TaRRT T T T[T LI T} SYNTHAX L=={" 1)
AR T T T T T i) ’
SRR T T T TRENG
m wawiia /

Machine gun Train horn Chainsaw

st et et st e et e

Figure 1. CTAG leverages a virtual modular synthesizer to gener-
ate sounds capturing the semantics of user-provided text prompts
in a sketch-like way, rather than being acoustically literal. Spec-
trograms of auditory outputs corresponding to six text prompts
showcase the range of sounds this approach can yield, accompa-
nied by a fully interpretable and controllable parameter space.

M. Cherep, N. Singh, and J. Shand, “Creative Text-to-Audio Generation

via Synthesizer Programming,” arXiv preprint arXiv:2406.00294, 2024. _ _
[Online]. Available: hitps://arxiv.org/abs/2406.00294 EXAMPLEs: https://ctag.media.mit.edu/



https://arxiv.org/abs/2406.00294
https://ctag.media.mit.edu/

How else have people used CLAP? Fun applications

Speech emotion recognition CLAP embeddings as input feature vector
[O Current SpeakerO Previous Speaker] ’ S‘I]ZD 1 2. Gated'stTM
s [T LSTH
" . =] XLSTM -0A1| [xLSTM -0T1| [xLSTM -0A2| [xLSTM -0T2|
@ e ,:: _ | Auwdio |[iERSCTTTTTT] > {[xSTM-1A1|[xLSTM -1T1| [xLSTM -1A2] | LS TM 172
: Encoder B TTTTTT] XLSTM -2A1| [xL.STM -2T1 | [xLSTM -ZAZHXLSTM 212
a,., ,,M,Aw - r O
tis I'm going to marry a blue blood. @ . :
W 8y T It“_*‘l | € ” wy ” w; || w; |
@ You're a lucky, lucky, man. b2 I—I e | Ws “ Ws | I We | | Ly |
e W —_— | | Wg ” Wy H Wi || Wi |
ties Wil you help me plan? @ @ {El- Gated Mechanism
' tes : . T
ok A e 3 Pretrained EE' Dm It
:h, totally. Yeah. lk IEI CLAP ' : L J ; F Layeri DED
. 5120 E . . o
0. Input J 1. Feature Extraction 4. Output 3. Post Adjustment

Y. Li, Q. Sun, S. M. Krishna Murthy, E. Alturki, and B. W. Schuller, “GatedxLSTM: A multimodal affective computing approach for
emotion recognition in conversations,” arXiv preprint arXiv:2503.20919, 2025. [Online]. Available: https://api.semanticscholar.org/
CorpusID:277349399



https://api.semanticscholar.org/CorpusID:277349399
https://api.semanticscholar.org/CorpusID:277349399

Let’s look at using CLAP for audio production

Can we take an audio source and make it sound “crunchy” or “warm”?



Text2FX

Harnessing CLAP Embeddings for
Text-Guided Audio Effects

Annie Chu, Patrick O Reilly, Julia Barnett, Bryan Pardo
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Text2FX: Harnessing CLAP Embeddings for Text-Guided
Audio Effects

Annie Chu Patrick O’Reilly
Northwestern University Northwestern University

Abstract—This work introduces Text2FX, a method that leverages
CLAP embeddings and differentiable digital signal processing to control
audio effects, such as equalization and reverberation, using open-
vocabulary natural language prompts (e.g., “make this sound in-your-face
and bold”). Text2FX operates without retraining any models, relying
instead on single-instance optimization within the existing embedding
space, thus enabling a ﬁtxlblt, scalable approach to open-vocabulary

and FX manip-
ulation. We show that CLAP encodes valuable information for controlling
audio effects and propose two optimization approaches using CLAP to
map text to audio effect parameters. While we demonstrate with CLAP,
this approach is applicable to any shared text- .mno embedding space.
Similarly, while we wi i
differentiable audio efect may be controlled. We conduct a istener study
with diverse text prompts and source audio to evaluate the quality and
alignment of these methods with human perception. Demos and code are
available at anniejchu.github.io/text2fx

Index Terms—intelligent audio production, audio effects, multimodal
embeddings, DDSP

I. INTRODUCTION

Audio effects (e.g., izati i ion) are
essential tools in modern audio production. From mainstream pop to
podeasts to film scores, audio effects (FX) are integral in shaping the
final sound. However, their complex and often unintuitive controls
(e.g., decay, cutoff frequency) can be extremely challenging for non-
experts and time-consuming for professionals. For instance, despite
its seemingly straigh a simple drum
recording into the ‘crunchy hyperpop’ drum sound of Charli XCX
may require a complex process involving the careful adjustment
of over 20 distinct effect parameters across multiple FX, such as
distortion, saturation, equalization, and compression.

Semantic audio production research aims to bridge the gap between
high-level concepts (c.g., “old time telephone’) and signal-level effect
parameters (e.g., controls of a parametric equalizer) [1]. Pre-decp-
learning cfforts, such as Sabin et al. [2] and Audealize [3], used
crowdsourcing to map natu:al language terms to specific effect

such as i (EQ) or ion (Reverb).
While effective, these methods produced closed-vocabulary mappings
limited to single FX, unable to generalize beyond new words or
phrases. This work also resulted in word-parameter setting datasets
for single FX, such as SocialFX [4] (EQ, Reverb, compression) and
SAFE (5] (four open-source plugins). Most recently, Balasubrama-
niam et al. [6] explored text-driven audio manipulation by training a
deep model on the EQ subset of Audealize [3]. However, as their
approach focuses on text-to-audio generation rather than directly
‘mapping text to effect parameters, it functions as a black box, limiting
users’ ability to shape the final result. Like earlier work, it is limited
by the closed vocabulary of single-word descriptors from training. We
seek to overcome these limitations by exploring method that enables
open-vocabulary text prompts to control any set of differentiable
effects without retraining for new words or FX.

‘This work was supported by NSF Award Number 2222369.

Julia Barnett Bryan Pardo
Northwestern University Northwestern University

Target Prompt teration 0

“This sound is bright” _)’\/O_.\;

Loss

Heration

toration 600
g
s
i __J»/O\'J
Frequency (Hz)
Fig. 1. Text2FX Example. A previous study [3] found listeners associate

“bright’ with boosting high frequencies (> 2 kHz) and cutting low ones (< 2
KHz). Optimizing the audio in a shared text-audio embedding space (CLAP)
towards the embedding for text ‘bright” achieves this:. Left: Optimization loss
curve. Right: Estimated settings for a 6-band parametric EQ.

Recent large multimodal embedding models like CLAP [7] have
made great strides in bridging natural language with audio. Trained
on a diverse, extensive dataset of paired audio-text captions, CLAP
features a joint embedding space aligning audio with corresponding
textual descriptions. Though successfully applied to zero—shol classi-
fication and audio captioning (7], as well as
(8], CLAP’s ability to encode qualitative notions of audio FX—such
as what constitutes a ‘bright’ sound— remains unexplored.

Differentiable digital signal processing (DDSP) [9, 10] allows
traditional DSP parameters (c.g., filter coefficients, gain controls, and
synthesis parameters) to be learned through gradient-based optimiza-
tion. DDSP has been successfully applied in tasks including speech
synthesis [11], synthesizer-based sound generation [8], style transfer
for audio FX [12], and mastering [13], but has not been applied to
text-driven audio FX.

In this paper, we explore whether CLAP embeddings contain
actionable knowledge for natural language-based control of audio
FX. To leverage this knowledge, we introduce Text2FX, a method
that uses CLAP’s learned representations to manipulate audio FX
through cross-modal optimization. Integrating CLAP with DDSP,
Text2FX performs single-instance optimization within the audio FX
parameter space, aligning the audio embedding with that of a given
text description. Given an audio recording, a prompt (e.g., ‘shrill
and sharp’), and an FX chain (i.e., sequence of audio FX like EQ
— Reverb), Text2FX generates both the “effected” audio along with
the i adjustable FX applied to achieve the




Sound Semantics: How do we describe sound?

/ A a bright guitar riff
a a guitar riff \

awarm and mellow guitar riff

A a guitar riff coming from underwater



How do we make something sound bright ?

Audio Effects (FX)

Audio FX are digital signal
processing (DSP) based tools
used to modify sound by
transforming the audio signals

Common Examples of Audio FX




Some common types of audio FX

» EQ (Equalization) — —
Adjusts frequencies to

balance tone

* Reverb - Creates a
sense of space and
depth.

91

eq

AM



Some common types of audio FX
» EQ (Equalization) - — —
Adjusts frequencies to M =4
balance tone
M — | reverb | —

* Reverb - Creates a
sense of space and
depth.




» EQ (Equalization) -
Adjusts frequencies to
balance tone

* Reverb - Creates a
sense of space and
depth.

and we can
chain them!

back

€q

reverb

eq —reverb |—»

this is an FX chain of length 2



All FX have DSP-based controls like these

[ Audio 1 [b] 7-Band EQ 3 || _bypass | RTAS

F[ <actorydetaut> | - [ +]@] compare | [auno | sate] AS)

Confusing
and
unintuitive

Especially
to novice
users




Key Example EQ FX in Protools

| Audio 1 [bj 7-Band EQ 3 J[ bypas IIAS

Problem =
7'" €@ 32 -22 16 10 6 -3 0

‘old timey radio’ 4 }}

disconnect between intuition and implementation



Enter Text2FX

| Audio 1 |o] 7
(3] <actoryoerack> [ -[+]@] compare 0

‘old timey radio’ f?}

0 _ E |___10.00] T
0—' =0 SRR
() () (7)) (2 (@)




Text2FX: A Semantic Audio Production Tool

Can we use CLAP to connect any high-level semantic
text descriptor (e.g., ‘bright’) to low-level signal
processing parameters (e.g., EQ controls)?



Text2FX

A system that maps
ANY high-level concept <> ANY set of FX knobs

(e.g., ‘warm’, ‘dark and roomy’) (e.g., EQ, Reverb, Compression)

‘in-your-face
and bold’

‘warm’

FX chain: EQ —> Reverb —> Compression

:ﬂg:ﬁa

‘old timey radio’ —p o= @_

FX chain: EQ-only



Dynamic Range

t EQ — Delay — Reverb — Compression

e.g. EQ — Reverb
inputs with specific FX chain outputs

*clean’ ‘effected’
input audio
audio
Text2FX
\ % this model added. ..
Make this sound... REVERB 0000

like it’s on a 1920s EQ O e e 0 0

radio
DRC OFF

target text descriptor

FX parameters

which the user can then adapt and tweak ‘



Single-Instance Optimization via CLAP Tuning

inspired by TagBox (Manilow et al., 2021)

Given an input sound and target
descriptor, find me the best audio
FX parameters (FXparams) via

(1) Randomly pick FXparams

(2) Apply to input sound to gef
“effected” sound (A’)

(3) Generate CLAP embeddings
for A’ and T

(4) Measure distance between A
and T (loss)

(5) Backpropagate loss, adjust
EQ parameters to minimize
distance

Again!

Text
embedder

Audio
embedder

T: “this sound is ik—

bright”

Parameter

settings

great! now
it’s a little
closer

| _teratono_

i iteration n

) Do it all agaip
0
20

J/

great! done optimizing



6 band Parametric EQ

iteration 0

Target Prompt
“This sound is bright”

o
o
0 100 200 300 400 500 600 ‘E
Iteration = i P
o |
. 100
Text2FX Optimization Example

1000 10000
Frequency (Hz)



Cool artifacts of this optimization algorithm

Single-Instance Optimization of FXparams

* No training of a neural network

* Bypasses requirement of needing a large
dataset

* Avoids generation of unwanted audio
artifacts (only modifies FX parameters, not
audio itself)
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Listening Examples



Example Target: underwater

FX chain:
Reverb

input audio

transformed audio

Text2FX

“underwater”

target text

FX parameters used to
transform audio




Example Target: dramatic

FX chain:
EQ ——Reverb

—’ _>

input audio .
transformed audio
Text2FX
“dramatic”
;¥K9 °%3

target text @

FX parameters used to transform audio




What’s the best way to steer
embeddings in the CLAP space?



Two different approaches of

accounting for initial audio
content

Text2FX-cosine

see what
CLAP knows

Text2FX-directional
provide some context
of the initial audio’s
texture



Text2FX-cosine

Most basic approach (no extra adaptation to account for content)

Cosine-loss

minimize of cosine distance
between a single audio-text
embedding pair

T — fixed, target text prompt
A’ — modified, “effected” audio
A — fixed, input audio

CLAP Embedding space

_ _Cosine
: loss

1
1
y

Text Audio Parameter
embedder embedder settings

T:“thissoundis | EQ |
bright”
A: -
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Gain (dB)

iteration 0

20
, J/\\/O_._\;

-20

iteration 200
20

0
0
100 1000 10000

Frequency (Hz)

J




Text2FX-cosine
Most basic approach (no extra adaptation to account for content)

Cosine-loss

minimize of cosine distance CLAP embedding space
between a single audio-text

embedding pair

T — fixed, target text prompt
A’ — modified, “effected” audio
A — fixed, input audio

‘this is brightt

Modify the audio (via optimized FX params)
such that it gets closer to the text itself

7 "



Embedding space

Cosine
distance
loss

[
[
4

Text Audio Parameter
embedder embedder settings

| o

T: this sound is f
bright EQ <

Text2FX-cos EXAMPLE A: M




Embedding space

Cosine
distance
loss

[
[
4

Text Audio Parameter
embedder embedder settings

| o

T: this sound is f
bright EQ <

Text2FX-cos EXAMPLE A: M




Text2FX-directional

Give context, use two embedding pairs

Directional Loss
From DiffusionCLIP (Kim et al., 2022)

‘this is warm’

Use an extra contrasting text
prompt as an anchor to guide the
optimization of modified audio

‘this is not warm’

T1 — fixed, extra anchor text prompt

T2 — fixed, target text prompt .
A1 — fixed, input audio CLAP embedding space
A2 — modified, “effected” audio




Embedding space

Text
embedder

T2: Hollow and far away
T1: NOT hollow and far away

A1

Text2FX-dir EXAMPLE Ww

Directional
loss
|| | | || I

I
4

Audio

embedder

Parameter
settings

—4 1

Reverb

|

I

EQ
az|



Embedding space

Text
embedder

T2: Hollow and far away
T1: NOT hollow and far away

A1

Text2FX-dir EXAMPLE Ww

Directional
loss
|| | | || I

I
4

Audio

embedder

Parameter
settings

—4 1

Reverb

|

I

EQ
az|



SUBJECTIVE EVALUATION

Listening Study

They both seem to work...
Which one works better?



60 text prompts allocated across 3 FX chains

Single Words Multiwords

Concrete Abstract Combination Imagery

tinny, muffled, ethereal, soft yet vibrant, in-your-face and coming through an old telephone, coming from a speaker
EQ light, deep, crisp, eerie, grand bold, shrill and sharp, quiet and under a blanket, booming like a thunderstorm, delivered with

bright, mellow gentle, cool and smooth a softer feel, like a hazy surreal dream

boomy, spacious,  empty, booming and vast, clear but distant, coming from a cathedral, coming from a long hallway,

dry, cavernous, long, bold cozy and enveloping, heavy and coming from a small and intimate sound booth, like an
Reverb  echoey, dramatic, hollow and far-away explosion in a canyon, accompanied by a faint atmospheric

underwater, dry, haze in the background

reverberant

metallic, harsh dramatic barren and detached, warm and coming from a small cavern with a muffled echo, coming
EQ — cold, blaring, flufty, full-bodied, vibrant and powerful, from underwater in a swimming pool, coming from a broken
Reverb  bassy, grainy, powerful resonant and harmonious, high and speaker in an empty warehouse, like a shrill Victorian ghost,

breezy tinny like a distant radio broadcast with a warm lingering presence

What audio samples? 30 Reference audio files (15 speech, 15 music)



4-way evaluation of each prompt/audio combo

o Text2FX-cosine: FXparams optimized via cosine loss

o Text2FX-directional: FXparams optimized via directional loss
o« Random: Randomly assigned FXparams

o NOFX: The original reference audio without any FX




The rating scale

+2: The audio changed in the right direction
(i.e., definitely more warm than reference)

0: No noticeable change compared to the reference (neutral)

-2: The audio changed in the wrong or unrelated direction
(i.e., changed, but definitely not more warm than reference)

2.0

- 1.5

1.0

-0.5



Specifically we’ll compare for Text2FX
(variants & aggregates) vs Random

o Text2FX-cosine: FXparams optimized via cosine loss
o Text2FX-directional: FXparams optimized via directional loss

¢ Text2FX-Best: When the better performing variant succeeds
¢ Text2FX-Both: When both variants succeed



PERCENTAGE (%) OF EVALUATIONS RESULTING IN POSITIVE SCORES

Model EQ Reverb EQ — Reverb

Text2FX-cosine
Text2FX-directional
Random
Text2FX-Best
Text2FX-Both




PERCENTAGE (%) OF EVALUATIONS RESULTING IN POSITIVE SCORES

Model EQ Reverb EQ — Reverb
Text2FX-cosine 48.26 51 .61 AT
Text2FX-directional  45.49 95 23 SHLG
Random 22 ) 49.03 30.37

.‘ HIGHER IS BETTER

Text2FX beats



PERCENTAGE (%) OF EVALUATIONS RESULTING IN POSITIVE SCORES

Model EQ Reverb EQ — Reverb
Text2FX-cosine 48.26 51.61 47.24
Text2FX-directional  45.49 53.23 50.61
Random U 49.03 0207
Text2FX-Best 67.01 74.19 68.10
Text2FX-Both 26.74 30.65 29.75

Text2FX beats




PERCENTAGE (%) OF EVALUATIONS RESULTING IN POSITIVE SCORES

Model EQ Reverb EQ — Reverb
Text2FX-cosine 48.26 51.61 47.24
Text2FX-directional  45.49 53.23 50.61
Random U 49.03 0207
Text2FX-Best 67.01 7ak 1S, 68.10
Text2FX-Both 26.74 30.65 29.75

Text2FX-Best drastically beats




Breakdown of Listener Rating scores

definitely
12 Total Prompt Categories f- ‘warm’
Text2FX-cos - 0.20 -0.17 -0.11 0.28
EQ- I rexczrxair - 0.11 0.11 0.11 0.03

only

Reverb- | o cexdir- 0.48 0.11 0.43 0.33 0o Scale
only

~

Text2FX-best 1.13 0.37 0.82 0.77 --05

Text2FX-cos - -0.24 -0.07 -0.13 0.43 --1.0
Rg\?e;; Text2FX-dir - -0.04 18
-=2.0

FX chains (3)
v

Single-Concrete Single-Abstract Multi-Combo Multi-imagery li not ‘warm’
‘warm’ ‘ethereal’ ‘cool ‘like it’s at ALL
and playing on an old
distant’ 1920s radio’

Prompt Types (4)



Taking the system at its best — Text2FX-Best, are there particular strengths?

How well does Text2FX do?

Reverb-only

Prompt Type
Single-Concrete
EQ-
e.g., ‘bright’ only
‘spacious’ Text2FX-best 0.73 0.66 0.83
‘harsh’ =
[
Multi-lmagery
Reverb-
e.g. ‘{omin% tll:rough an only
old telephone Text2FX-best 0.37
‘like an explosion \_ |
in a canyon’
‘coming from underwater
in a swimming pool’ EQ —
FX chain Reverb

Text2FX-best
Single-Concrete Single-Abstract

‘warm’

‘ethereal’

Prompt

0.59

Multi-Combo

‘cool
and
distant’

0.86

Multi-imagery

‘like it’s
playing on an old
1920s radio’

2.0

-0.5

-0.0



Pronounced Advantage for EQ-only and EQ — Reverb FX Chains

How well does Text2FX do compared to Random?
2.0

EQ-
only

Text2FX-best -

-0.5
Reverb- -0.0
only
-0.5
-1.0
EQ —
Reverb --15
-=2.0

Single-Concrete Single-Abstract Multi-Combo Multi-imagery

Prompt



Comparing Text2FX-cos vs. Text2FX-dir

w Text2FX-dir

provides more EQ-
reliable performance only
w Text2FX-cos
produces more
polarizing Reverb-
transformations only
w Text2FX-dir may
generalize better
EQ —
- prompt type Reverb

- longer FX chain

Text2FX-cos -

Text2FX-dir -

Text2FX-best -

Text2FX-cos

Text2FX-dir -

Text2FX-best -

Text2FX-cos -

Text2FX-dir -

Text2FX-best -

0.20

0.11

0.48

-0.24

0.23

Single-Concrete

How well does Text2FX do?

-0.17

0.11

-0.01

-0.11

-0.07

-0.04

Single-Abstract

Prompt

-0.11 0.28
0.11 0.03
-0.07 0.07
0.43 0.33
-0.13 0.43
0.19 0.20
Multi-Combo Multi-lrhagery



Back to Embeddings



Something else we might wanna do is
visualize the embedding space itself

We can’t visualize 512 dimension vectors, but reduce to 3D through some techniques (“the
curse of dimensionality”)

*for any embeddings, not just cross-modal



Dimensionality reduction

Goal: Map high dimensional data onto lower-dimensional
data in a manner that preserves distances/similarities

Original Data (4 dims) Projection with PCA (2 dims)

Iris Data (red=setosa,green=versicolor,blue= wrgmlca) 124
24 a0 40 ) -." 05 24“ 11
B - { f' E: ' ...
N ..s"f . N uiit* . -.."'s:'a'-.
st ':.:f" :i . # ¢ 9 ...0. te
— - : oot ._":'
: ¢ T2l
.-jﬁg&- Sepal Width f ﬁ ff 7 i S .
S * sonepes "
F) S = i si“-":
A r"!' A
. ) . - 20 45 40 05 00 05 10 15 20 25
R ;ﬁﬂ i L L
g || Sl — Objective: projection should
T TR

EAIIEITE “‘preserve” relative distances

slide from Bryon Wallace Northeastern



PCA: Principal Component Analysis

TLDR; Linear technique that works to maximize global variance

PCA finds new axes (called principal components) along which the data varies
the most. These axes are linear combinations of the original features.

What it does: Finds the directions
with the most variation in data.

How? It uses eigenvectors and
eigenvalues of the covariance
matrix to find those directions

Variance

source: ibm


https://www.ibm.com/think/topics/principal-component-analysis

t-Distributed Stochastic Neighbor Embedding (t-SNE)

TLDR; Non-linear technique that preserves local structure by modeling pairwise similarities.

t-SNE arranges data in a way that keeps similar items close together in the low-
dimensional space, making clusters easy to see.

Computes pairwise similarities using ot = /f\\ T
Gaussian distributions in high dimensions >t | /) \ —> * e
and Student t-distributions in low J o\

Treniere
= rd

A4

dimensions, then minimizes distance
between distributions via KL divergence

2OBCERS Ocao

| \Working Of t-SNE|
V)




MNIST - PCA

30

20

-30

4

MNIST - TSNE




Uniform Manifold Approximation and Projection (UMAP)

TLDR; Non-linear technique that preserves both local + some global structure, scalable for large datasets.

UMAP constructs a weighted graph of the data’s local structure and then optimizes a
low-dimensional layout that preserves those relationships and the overall shape

Build a nearest-neighbor graph of the A

high-D data model local relationships, ¥

then learning a low-D embedding by am

minimizing a CE loss to aligns the .

graph structure with a similar graph in >

the lower-D space >
Step 1: Compute a graphical Step 2 (non-parametric): Learn an
representation of the dataset embedding that preserves the

structure of the graph



2D t-SNE projection 2D UMAP projection

perplexity: 100 @ n_neighbors: 15 @
time: 16m 1s min_dist: 0.1 ®
time: Tm 2s

Figure 6: A comparison between UMAP and t-SNE projections of a 3D woolly mammoth skeleton (50,000 points)
into 2 dimensions, with various settings for parameters. Notice how much more global structure is preserved with
UMARP particularly with larger values of n_neighbors .



Summary of PCA vs t-SNE vs UMAP

Feature

Type
Goal

Preserves

Interpretability
Speed

Deterministic

Best For

Limitations

Example use
case

PCA
Linear

Maximize global variance
Global variance patterns
High
Fast

Yes

Feature compression, initial
dimensionality reduction

Cannot capture non-linear
patterns

Reduce dimensionality of audio-
text embedding space for
downstream model input (feature
engineering)

t-SNE
Non-linear

Preserve local structure

Local clusters and pairwise similarity

Low
Slow

No

Visualizing cluster structure in
compact space for small-medium
datasets

Distorts global structure, sensitive to

parameters, slow for large datasets

Visualize clusters of similar sound-
text pairs (e.g., emotion categories,
spoken keywords)

UMAP
Non-linear

Preserve local and global structure

Local neighborhoods and global
layout

Medium
Fast

Mostly (some stochastic elements)

Exploring both local clusters and
broader relationships

Requires tuning, and still involves
some randomness

Understand large-scale
relationships in joint audio-visual-
text embeddings



When each might be good to use

Goal Best Technique
Quick overview, compression, noise filtering PCA
Visualizing clusters (e.g. categories) t-SNE
Maintaining shape + cluster structure UMAP
Handling very large or complex datasets UMAP

PCA (or UMAP but requires more

Feature engineering for ML models digging)



Key Parameters

Key Parameter

n_components
(dimensional
ity)

Neighborhood
Size

Cluster
Spread

random_state

PCA

Number of dimensions
to retain aka what data
to keep (important)

Not applicable

Not applicable

Optional, for
reproducibility

t-SNE UMAP

Output dimensionality mainly for Output dimensionality mainly
visualization (doesn’t impact the for visualization (doesn’t impact
relationship structure in original the relationship structure in
space) original space)

perplexity — how many n_neighbors — balances local
neighbors each point considers vs. global structure

min_dist — controls spacing

Not directly tunable between points in embedding

Affects layout stability Controls reproducibility



