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Things we’ll cover
1. Embeddings Recap 
2. What is multimodality? 
3. Multimodal Embedders (we’ll look primarily at CLAP) 

3.1.Training Methodology 
3.2.Evaluation tasks 
3.3.Case Study: Text2FX 

4. Visualizing embeddings 
5. Get started with CLAP



Recap: Audio Embeddings



A (trained) embedding net



embedding NN 
aka “encoder”

input audio representation

N-D Embedding Space 

N = 2

embeddings
A (trained) embedding net



  [0.218, -0.572]

vector encodes semantic or structural 
information about the input

take 
embedding 
from this 
layer

A (trained) embedding net



Training an embedding net



Loss ∝ Df(x1, x2)

x1

x2

Training an embedding net



Loss ∝ M − Df(x1, x2)

x1
x2

Training an embedding net



Training an embedding net



Embeddings extracted as general-purpose feature vector

Any deepnet to “encode” audio in a relevant 
semantic space, even say instrument classifier 

we’ll take embeddings from penultimate layer

Don’t have to train an embedder explicitly



Input Audio Representations — we have options

raw waveform input

or spectrogram

Any deepnet to “encode” audio in a relevant 
semantic space, even say instrument classifier 

we’ll take embeddings from penultimate layer
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Encoder Architectures— some options
Any deepnet to “encode” audio in a relevant semantic space



Encoder Architectures— some options
Any deepnet to “encode” audio in a relevant semantic space

transformerRNNCNN

https://www.researchgate.net/publication/
364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?
_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

local patterns (timbre, onsets) sequence dynamics 
(time dependencies)

global attention over time

https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/364288810_Automated_audio_captioning_an_overview_of_recent_progress_and_new_challenges?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ


The point of embedding spaces

● Low-dimensional 
representations of high-
dimensional data that 
captures semantic 
relationships between 
items 

● similar items closer 
together in the 
embedding space and 
dissimilar items further 
apart

source: google



The point of embedding spaces
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In the audio space, it might look like this

encoder   [0.818, 0.472,  -.843, 0.674, -0.341, 0.889, -1.202, 0.423, -0.097]

encoder   [0.957, 0.434, -0.784, 1.259, -0.019, 0.612, 0.887, -1.234, 0.308]

encoder   [0.134, 0.087, 1.421, -0.703, 0.432, -1.112, 0.556, 0.732, -0.268]

bright tonality

percussive-ness



And we can do this for other modalities



What do we mean by modality?

Multimodal systems combine two or more modalities to 
form richer representations

Mode  
distinct source 
of information

audio  
environmental sound, 

speech, music

text  
words, language

image  
pixels, shapes, 

colors

video  
visual frames + 

temporal motion

sensors  
GPS, accelerometer, 

etc



Text Embedding Space

vectors capture semantic relationships
image source

vector offsets = 
consistent vector 
transformations 
reusable across 
space 

(“embedding math”) 

https://www.kolena.com/guides/4-types-of-machine-learning-embeddings-and-4-embedding-models/


So what if we add combine multiple modalities? 



Why do we care about multimodality?

Faithfulness to natural human 
interaction 

● Broader human experience 
is multimodal 


Complementary information  

● Different modalities can 
compensate information 
the other is missing 

prosody example: 
 text modality can capture what a person is 

saying, but not how they’re saying it



Multimodal Embeddings

Shared semantic vector 
space for across multiple 
modalities (e.g.,audio, text, 
video, symbolic)

Different modalities, 
same embedding space

example of shared text-image embedding space



Multimodal Embedder Overview

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text



Let’s look at some audio+X 
multimodal models



CLAP  
Contrastive Language-Audio 
Pretraining

26

B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP 
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

Audio is FreeSound 16770__dobroide__20060307paddling.wav

Audio+Text



flat

cat meowing

fast

funky 

Shared Text-Audio embedding space

27
✅  a joint embedding space aligning audio 

concepts with corresponding text ✅

whisper

distorted clarinet

coin dropping

muffled rumble

guitar riff

dog barking



Audio+Visual

Audio-visual Generalised Zero-shot Learning with Cross-modal Attention and Language

Audio-Visual 
coherence

https://openaccess.thecvf.com/content/CVPR2022/papers/Mercea_Audio-Visual_Generalised_Zero-Shot_Learning_With_Cross-Modal_Attention_and_Language_CVPR_2022_paper.pdf


Audio+Symbolic

Learning Audio–Sheet Music Correspondences for Cross-Modal 
Retrieval and Piece Identification 
https://transactions.ismir.net/articles/10.5334/tismir.12?
ref=https%3A%2F%2Fgithubhelp.com 

https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com
https://transactions.ismir.net/articles/10.5334/tismir.12?ref=https%3A%2F%2Fgithubhelp.com


What are multimodal embeddings useful for?

● Retrieval (audio <> text // “music that sounds 
like this description”)


● Automatic tagging/captioning (audio → text)


● Multimodal generation (text → audio)


● Bridging audio with symbolic representations 
(e.g., MIDI, sheet music)

example of retrieval (image)

once modalities are embedded in the same space, we can 
map between them in flexible, meaningful ways



How do we train multimodal models?



First we need data 



Training Data

example text-audio datasets: 
AudioCaps (Kim et al., 2019)


 (audio <> text_captions) 

source: AudioSet (Youtube)


Clotho (Drossos et al,, 2019)

(audio_event <> text_captions) 


source: Freesound


Audealize (Seetharaman & Pardo, 2017)

(audio_FX_parameters <> text_descriptors) 


source: Crowdsourced

We need (a lot) 
of paired data

AudioCaps: 
Generating Captions 
for Audio in the Wild

clotho example

https://aclanthology.org/N19-1011.pdf
https://arxiv.org/abs/1910.09387
https://interactiveaudiolab.github.io/assets/papers/seetharaman_pardo_audealize_jaes.pdf
https://audiocaps.github.io/#example


Audealize 
(Seetharaman & Pardo, 2017) 

“calm” <> FX parameters      
  (40-band EQ) 



Next we need to embed our data  
(in their respective modalities)



audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Choose encoder



audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Choose encoder

encoders usually 
pretrained



audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

transformer

RNN

CNN

Get embeddings



Now we need to ALIGN the  
single-modality embeddings spaces 
into a cross-modal embedding space



audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text

now we’re in this alignment part



How? We need to set a training objective aka 
what do we want the model to learn.



Training Objective 
Contrastive Loss

Pull similar pairs together, 
push dissimilar pairs apart



Let’s take a look at 
contrastive learning in 
the audio-only domain

https://www.v7labs.com/blog/contrastive-learning-guide



CLMR (Contrastive Learning of Musical Representations)

Goal: learn useful representations 
from musical audio (e.g., genre, 
instrumentation, dynamics) without 
paired labels


Data: (30s music clips + human-
annotated tags)

• MagnaTagaTune (6.6k songs)

• MillionSongDataset (240k songs)

J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

A1
anchor audio  

A1’

transformed version 
of anchor

POSITIVE PAIR

Aj

different 
audio file

NEGATIVE PAIR



CLMR (Contrastive Learning of Musical Representations)
J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

A1

A1’

anchor audio

transformed version 
of anchor

different audio 
files + their 
transformed 
versions too

POSITIVE PAIR

NEGATIVE PAIRS

1 positive similar pair: 
via data 
augmentations 
Multiple negative 
pairs: different audio 
files


Self-supervised 
contrastive training




CLMR (Contrastive Learning of Musical Representations)
J. Spijkervet and J.A. Burgoyne, “Contrastive Learning of Musical Representations”, in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

encoding audio

making augmented 
positive pairs

contrastive learning 
all positive pairs “attract” 
all negative pairs “repel”

Evaluated via classification tasks



B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP 
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

Now let’s see it 
in action for 
audio <> text 
with CLAP



CLAP Dataset
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4.6M audio-text pairs 
mostly general sound, some speech, some music

AudioSet ExampleWavCaps example 
(pulled from AudioSet)

Wind and a race car make 
noise, with a man speaking and 
the sound of accelerating and 
tire squealing.

A woman is rapping while 
a medium engine runs and 
a cat meows.

inferred captions 
(likely from metadata)

NSynth

filename: 
bass_synthetic
_033-047-050

This is the sound of 
[synthetic bass]

FMA
This is an [electronic] song

genre: 
electronic

human-annotated



CLAP’s Encoders

Image from Elizalde, et al. arXiv:2206.04769v1 49

GPT2
(transformer)

fine-tuned only

HTSAT
(transformer)

https://arxiv.org/pdf/2202.00874

trained on 22 audio tasks (e.g, 
classification, retrieval, captioning)

trained, then fine-tuned



CLAP training—> fine-tuning encoders together 

Image from Elizalde, et al. arXiv:2206.04769v1Audio is FreeSound 16770__dobroide__20060307paddling.wav 50

fine-tuning via contrastive 
learning



Single Pair Example (A1, T1)



Single Pair Example (A1, T1)

Audio 
Encoder

Text 
Encoder

Audio

Audio

‘a guitar riff’

https://huyenchip.com/2023/10/10/multimodal.html

Audio



What if we do this across a 
batch of paired examples? 



For a batch of N matching text-audio pairs: 

● Each (audio, text) pair is a positive. 
● The remaining N-1 text or audio 

items in the batch are treated as 
negatives.

Contrastive Loss in Full Batch→ InfoNCE

We want the model to maximize the similarity between the matched pair 
and minimize it between unmatched ones — all within the same batch. 

InfoNCE loss  
(for one audio -> text example)



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar

audio_piano

audio_drums

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

from 0

M
L
P

M
L
P



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 0.2 0.6 0.1

audio_piano 0.5 0.6 0.6

audio_drums 0.11 0.33 0.22

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

from 0

M
L
P

M
L
P

random vals



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

TARGET

M
L
P

M
L
P



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

TARGET

M
L
P

M
L
P

Let’s just take one row



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

TARGET

M
L
P

M
L
P

we want to say this is a SIMILAR pair



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 1 0 0

audio_piano 0 1 0

audio_drums 0 0 1

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

TARGET

M
L
P

M
L
P

we can also say these are DISSIMILAR pairs



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 0.2 0.6 0.1

audio_piano 0.5 0.6 0.6

audio_drums 0.11 0.33 0.22

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

M
L
P

M
L
P

Let’s calculate the InfoNCE loss at step 0 for this row (audio_guitar —> all_texts)



So let’s calculate the InfoNCE at step 0 looking at audio = audio_guitar

say we set temperature T to 0.1

a_i = audio_guitar 
t_i = “guitar riff” 

Similarity scores 
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2


Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02). 

The numerator is the model's score for the correct match. 
We raise it to the power of 1/τ to exaggerate differences 

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates. 
Since “piano riff” had a high similarity (0.6), 
it dominates the denominator

The model only assigns ~1.8% of the probability 
mass to the correct caption. BAD — the model 
isn’t confident in the right answer.

Laudio→text
i = − log

exp(sim( f (ai), g(ti))/τ)

∑N
j=1 exp(sim( f (ai), g(tj))/τ)

Laudio→text
i = − log ( exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1) )

Laudio→text
i = − log ( e2

e2 + e6 + e1 ) = − log ( 7.39
7.39 + 403.43 + 2.72 )

Laudio→text
i = − log ( 7.39

413.54 ) = − log(0.0179) ≈ 4.02



So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar 
t_i = “guitar riff” 

Similarity scores 
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2


Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02). 

The numerator is the model's score for the correct match. 
We raise it to the power of 1/τ to exaggerate differences 

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates. 
Since “piano riff” had a high similarity (0.6), 
it dominates the denominator

The model only assigns ~1.8% of the probability 
mass to the correct caption. BAD — the model 
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim( f (ai), g(ti))/τ)

∑N
j=1 exp(sim( f (ai), g(tj))/τ)

Laudio−>text
i = − log ( exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1) )

Laudio−>text
i = − log ( e2

e2 + e6 + e1 ) = − log ( 7.39
7.39 + 403.43 + 2.72 )

Laudio−>text
i = − log ( 7.39

413.54 ) = − log(0.0179) ≈ 4.02

then we’ll calculate this same 
loss other audios in the batch



So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar 
t_i = “guitar riff” 

Similarity scores 
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2


Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02). 

The numerator is the model's score for the correct match. 
We raise it to the power of 1/τ to exaggerate differences 

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates. 
Since “piano riff” had a high similarity (0.6), 
it dominates the denominator

The model only assigns ~1.8% of the probability 
mass to the correct caption. BAD — the model 
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim( f (ai), g(ti))/τ)

∑N
j=1 exp(sim( f (ai), g(tj))/τ)

Laudio−>text
i = − log ( exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1) )

Laudio−>text
i = − log ( e2

e2 + e6 + e1 ) = − log ( 7.39
7.39 + 403.43 + 2.72 )

Laudio−>text
i = − log ( 7.39

413.54 ) = − log(0.0179) ≈ 4.02

and THEN all of them for the 
flip side of text -> audio



So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar 
t_i = “guitar riff” 

Similarity scores 
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2


Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02). 

The numerator is the model's score for the correct match. 
We raise it to the power of 1/τ to exaggerate differences 

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates. 
Since “piano riff” had a high similarity (0.6), 
it dominates the denominator

The model only assigns ~1.8% of the probability 
mass to the correct caption. BAD — the model 
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim( f (ai), g(ti))/τ)

∑N
j=1 exp(sim( f (ai), g(tj))/τ)

Laudio−>text
i = − log ( exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1) )

Laudio−>text
i = − log ( e2

e2 + e6 + e1 ) = − log ( 7.39
7.39 + 403.43 + 2.72 )

Laudio−>text
i = − log ( 7.39

413.54 ) = − log(0.0179) ≈ 4.02

and then sum and take the average of all those losses 
full InfoNCE loss at step 0

Laudio→text
batch =

N

∑
i=1

Laudio→text
i

Ltext→audio
batch =

N

∑
i=1

Ltext→audio
i

Lbatch =
1
2 (

N

∑
i=1

ℒaudio→text
i +

N

∑
i=1

Ltext→audio
i )



So let’s calculate the InfoNCE at step 0 looking at audio_guitar
say we set T to 0.1

a_i = audio_guitar 
t_i = “guitar riff” 

Similarity scores 
sim(audio_guitar, "guitar riff") = 0.20 ← pos

sim(audio_guitar, "piano riff") = 0.60 ← neg_1

sim(audio_guitar, "drum roll") = 0.10 ← neg_2


Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02). 

The numerator is the model's score for the correct match. 
We raise it to the power of 1/τ to exaggerate differences 

— smaller 𝜏 makes the softmax sharper

This is the total score across all candidates. 
Since “piano riff” had a high similarity (0.6), 
it dominates the denominator

The model only assigns ~1.8% of the probability 
mass to the correct caption. BAD — the model 
isn’t confident in the right answer.

Laudio−>text
i = − log

exp(sim( f (ai), g(ti))/τ)

∑N
j=1 exp(sim( f (ai), g(tj))/τ)

Laudio−>text
i = − log ( exp(0.2/0.1)

exp(0.2/0.1) + exp(0.6/0.1) + exp(0.1/0.1) )

Laudio−>text
i = − log ( e2

e2 + e6 + e1 ) = − log ( 7.39
7.39 + 403.43 + 2.72 )

Laudio−>text
i = − log ( 7.39

413.54 ) = − log(0.0179) ≈ 4.02

then we’ll backpropagate this loss and update our 
weights and biases

Laudio→text
batch =

N

∑
i=1

Laudio→text
i

Ltext→audio
batch =

N

∑
i=1

Ltext→audio
i

Lbatch =
1
2 (

N

∑
i=1

ℒaudio→text
i +

N

∑
i=1

Ltext→audio
i )



Backpropagate to where? our trainable elements

audio_encoder

audio-only

‘a guitar riff’

‘a piano riff’

‘a drum roll’

text_encoder text-only

projector

projector

(audio->shared)

(text->shared)

shared audio-text

loss 
computed 

in here



After xyz epochs of training….



[


] 

text_emb 
"guitar riff"

text_emb 
"piano riff"

text_emb 
"drum roll"

audio_guitar 0.92 0.34 0.12
audio_piano 0.40 0.89 0.18
audio_drums 0.15 0.22 0.94

[“guitar riff”,

“piano riff”,

“drum roll”] 

text 
encoder

audio 
encoder

AFTER SOME TRAINING (w InfoNCE loss)

M
L
P

M
L
P



Audio Audio

A
A
A

A

Full batch training overview, N=4



Sounds

Content
dog barking

guitar riff whisper
muffled rumble

car rumblingcoin dropping

fresco
funky distorted clarinet

71

Now we have something like this

cat meowing



flat

cat meowing

fastfresco
funky 

Shared Text-Audio embedding space

72
✅  a joint embedding space aligning audio 

concepts with corresponding text ✅

nice 😎👍
whisper

distorted clarinet

coin dropping

muffled rumble

guitar riff

dog barking



How do we evaluate multimodal embedding models?



Things we want to check

Cross-Modal Alignment (text <> audio) 

How well do the model's representations of 
different modalities (e.g., audio and text) align 
semantically? 


Does the sound of cat meow have a high 
similarity score with the text “cat meowing”?


we can test this on core downstream tasks

CLAP embedding space



CLAP core 
downstream 
tasks



Downstream Tasks

Task Type Description Common Metrics
Cross-Modal 
Retrieval

Match one modality (e.g., audio, image) to another (e.g., 
text) — e.g., "find the caption for this sound"

Recall@K, Precision@K, Median 
Rank, mAP

Classification Predict labels (e.g., “guitar”, “clapping”) using single-
modality embeddings with optional fine-tuning

Top-1 Accuracy, F1-score, 
Precision, Recall

Captioning / 
Generation Generate descriptive text from audio, image, or video BLEU, ROUGE, CIDEr, METEOR, 

SPICE
Auditory QA (VQA/
AQA)

Answer multiple choice questions based on auditory input 
and associated text

QA Accuracy, Exact Match, VQA 
Score

Zero-Shot Learning Perform tasks with no labeled examples — often via 
alignment in shared embedding space

Accuracy, F1-score, Recall@K 
(task-dependent)

Human Evaluation Collect subjective ratings of match quality, fluency, or 
semantic correctness

Relevance, Fluency, Preference 
Scores, Likert Ratings
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QA benchmarks

e.g. MuChoMusic

B. Weck, I. Manco, E. Benetos, E. Quinton, G. Fazekas, 
and D. Bogdanov, “MuchoMusic: Evaluating music 
understanding in multimodal audio-language models,” 
arXiv preprint arXiv:2408.01337, 2024.



78

Cross-Modal Retrieval

both

rank-agnostic metrics

Task: Given audio, retrieve the matching text, or vice versa

quality
ex. Precision@5: 60% of top 5 retrieved 
results are relevant 

coverage
ex. Recall@1 = 70% 
means correct text is 
top result 70% of the 
time 
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Cross-Modal Retrieval: Precision@K
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant 

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a 
park no

5 Songbirds in early 
morning yes

Out of the results it retrieved, how 
many were actually relevant?

Relevant items in Top 5: 3 
Total retrieved (K): 5
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Cross-Modal Retrieval: Recall@K

Out of all the relevant items in the dataset, 
how many did it manage to retrieve?


From ground truth metadata, say we know 
there are 10 total bird-related audio clips

Relevant items retrieved: 3

Total relevant items in dataset: 10

Total retrieved (K): 5

Only 3 of the 10 possible bird-related audio clips were retrieved in the top 5. So while Precision@5 was 60%, Recall@5 is only 30% 
— showing that although our top results were reasonably accurate, the system missed many other relevant clips in the dataset.

Rank Retrieved Audio Label
Relevant 

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a 
park no

5 Songbirds in early 
morning yes

Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"
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Cross-Modal Retrieval: F1@K
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant 

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a 
park no

5 Songbirds in early 
morning yes

How balanced was the system’s 
accuracy and coverage?



82

Mean AP

avg precision 
(per query)

R: Total number of relevant items 
for the query 
N: Total number of returned items 
(can be all or top-K) 
1[⋅]: 1 if item is relevant, 0 
otherwise 

do relevant items appear fairly 
early in the ranked list?

Mean 
reciprocal rank

what rank was the 
first relevant item?

Cross-Modal Retrieval

rank-based metrics
Task: Given audio, retrieve the matching text, or vice versa
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Cross-Modal Retrieval: MRR
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant 

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a 
park no

5 Songbirds in early 
morning yes

How soon was the first relevant item 
retrieved?

First relevant rank: 1


(If first relevant was at 
rank 3, MRR = 1/3 ≈ 0.3)
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Cross-Modal Retrieval: Average Precision
Task: Given text query, retrieve matching audio clips

Text Query
"a flock of birds chirping in the morning"

Rank Retrieved Audio Label
Relevant 

(bird-
related)?

1 Birds chirping in forest YES
2 City traffic and sirens no
3 Seagulls near the ocean yes

4 Children playing at a 
park no

5 Songbirds in early 
morning yes

Where did the relevant results appear 
in the ranking?

Relevant ranks: 1,3,5


Calculate precision at every relevant position

P@1 = 1/1 = 1 
P@3 = 2/3 = 0.67 
P@5 = 3/5 = 0.6

if we had multiple queries, we’d do the 
same for them then take avg for mAP



How else have people used CLAP? Fun applications

Text-to-Audio Generation: Controlling a Synthesizer 

M. Cherep, N. Singh, and J. Shand, “Creative Text-to-Audio Generation 
via Synthesizer Programming,” arXiv preprint arXiv:2406.00294, 2024. 
[Online]. Available: https://arxiv.org/abs/2406.00294 EXAMPLEs: https://ctag.media.mit.edu/

CLAP’s embedding space as loss space

https://arxiv.org/abs/2406.00294
https://ctag.media.mit.edu/


How else have people used CLAP? Fun applications
Speech emotion recognition 

Y. Li, Q. Sun, S. M. Krishna Murthy, E. Alturki, and B. W. Schuller, “GatedxLSTM: A multimodal affective computing approach for 
emotion recognition in conversations,” arXiv preprint arXiv:2503.20919, 2025. [Online]. Available: https://api.semanticscholar.org/
CorpusID:277349399

CLAP embeddings as input feature vector 

https://api.semanticscholar.org/CorpusID:277349399
https://api.semanticscholar.org/CorpusID:277349399


Can we take an audio source and make it sound “crunchy” or “warm”?
Let’s look at using CLAP for audio production



88

Harnessing CLAP Embeddings for 
Text-Guided Audio Effects


Text2FX

Annie Chu, Patrick O’Reilly, Julia Barnett, Bryan Pardo



a guitar riff
a bright guitar riff

a guitar riff coming from underwater

a warm and mellow guitar riff

Sound Semantics: How do we describe sound?



Audio Effects (FX) 
Audio FX are digital signal 
processing (DSP) based tools 
used to modify sound by 
transforming the audio signals


How do we make something sound      tinny?

Common Examples of Audio FX

bright



• EQ (Equalization) – 
Adjusts frequencies to 
balance tone

Some common types of audio FX

eq

• Reverb – Creates a 
sense of space and 
depth.
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• EQ (Equalization) – 
Adjusts frequencies to 
balance tone

Some common types of audio FX

eq

reverb• Reverb – Creates a 
sense of space and 
depth.
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• EQ (Equalization) – 
Adjusts frequencies to 
balance tone

Some common types of audio FX

eq

reverb

reverbeq

this is an FX chain of length 2

and we can 
chain them!

• Reverb – Creates a 
sense of space and 
depth.

93
back



All FX have DSP-based controls like these

Confusing 
and 

unintuitive

Especially 
to novice 

users



‘old timey radio’ ??

disconnect between intuition and implementation

Key 
Problem

Example EQ FX in Protools

????????????



‘old timey radio’
✅

Enter Text2FX



Can we use CLAP to connect any high-level semantic 
text descriptor (e.g., ‘bright’) to low-level signal 
processing parameters (e.g., EQ controls)?

Text2FX: A Semantic Audio Production Tool



A system that maps

 ANY high-level concept <> ANY set of FX knobs

(e.g., ‘warm’, ‘dark and roomy’)                     (e.g., EQ, Reverb, Compression)

‘warm’
✅

‘old timey radio’
✅

‘in-your-face 
and bold’

✅

FX chain: EQ-only

FX chain: EQ —> Compression

FX chain: EQ —> Reverb —> Compression 

Text2FX



Make this sound… 

target text descriptor

2

like it’s on a 1920s 
radio

EQ Delay Dynamic Range 
CompressionReverb

another example of an FX chain, length = 4

e.g.

Text2FX 

which the user can then adapt and tweak

2

FX parameters

EQ Reverb

with specific FX chain

e.g.

Text2FX



Optimizing FXparams by Steering CLAP Embeddings

Given an input sound and target 
descriptor, find me the best audio 
FX parameters (FXparams) via


(1) Randomly pick FXparams 

(2) Apply to input sound to get 
“effected” sound (A’) 

(3) Generate CLAP embeddings 
for A’ and T  

(4) Measure distance between A’ 
and T (loss) 

(5) Backpropagate loss, adjust 
EQ parameters to minimize 
distance 

Again!

T

A’

hmm it’s 
pretty far

T
A’

rinse & repeat 
for n iterations

Let’s tweak 
them

great! now 
it’s a little 

closer

Do it all again!

great! done optimizing ✅

iteration n

iteration 1

iteration 0

Single-Instance Optimization via CLAP Tuning 

inspired by TagBox (Manilow et al., 2021)



Text2FX Optimization Example

input

6 band Parametric EQ



Cool artifacts of this optimization algorithm

• No training of a neural network


• Bypasses requirement of needing a large 
dataset


• Avoids generation of unwanted audio 
artifacts (only modifies FX parameters, not 
audio itself)
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Single-Instance Optimization of FXparams

Given an input sound and target 
descriptor, find me the best audio 
FX parameters (FXparams) via


(1) Randomly pick FXparams 

(2) Apply to input sound to get 
modified sound (A’) 

(3) Run A’ and T into CLAP 

(4) Use CLAP to quantify how 
close A’ is to T 

(5) Use that to then adapt EQ 
parameters 

Again!



Listening Examples



Example

input audio

target text

“underwater”

transformed audio

FX chain:

Text2FX

Reverb

FX parameters used to 
transform audio

Target: underwater



Example

input audio

target text

“dramatic”

transformed audio

FX chain:
EQ

Text2FX

Reverb

Target: dramatic

FX parameters used to transform audio



What’s the best way to steer 
embeddings in the CLAP space?

TEXT2FX



Two different approaches of 
accounting for initial audio 
content

Text2FX-cosine 1

see what 
CLAP knows  

Text2FX-directional 
provide some context 
of the initial audio’s 
texture

2



Text2FX-cosine 
Most basic approach (no extra adaptation to account for content)

‘bright’

Cosine-loss 

minimize of cosine distance 
between a single audio-text 
embedding pair


T — fixed, target text prompt 
A’— modified, “effected” audio 
A — fixed, input audio
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Text2FX-cosine 
Most basic approach (no extra adaptation to account for content)

Cosine-loss 

minimize of cosine distance 
between a single audio-text 
embedding pair


T — fixed, target text prompt 
A’ — modified, “effected” audio 
A — fixed, input audio

‘this is bright’

CLAP embedding space

Modify the audio (via optimized FX params) 
such that it gets closer to the text itself
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T
A

Text2FX-cos EXAMPLE

A

T: this sound is 
bright



T A

T: this sound is 
bright

Text2FX-cos EXAMPLE

   



Text2FX-directional 
Give context, use two embedding pairs

Directional Loss  
From DiffusionCLIP (Kim et al., 2022) 

Use an extra contrasting text 
prompt as an anchor to guide the 
optimization of modified audio

CLAP embedding space

T1
‘this is not warm’

T2
‘this is warm’

A1

A2

A2

T1 — fixed, extra anchor text prompt
T2 — fixed, target text prompt
A1 — fixed, input audio
A2 — modified, “effected” audio



T1
A1

T2

A2

T2: Hollow and far away 
T1: NOT hollow and far away

Text2FX-dir EXAMPLE



T1
A1

T2
A2

T2: Hollow and far away 
T1: NOT hollow and far away

Text2FX-dir EXAMPLE



They both seem to work… 
Which one works better?

SUBJECTIVE EVALUATION
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Listening Study



60 text prompts allocated across 3 FX chains

What audio samples? 30 Reference audio files (15 speech, 15 music)



4-way evaluation of each prompt/audio combo

mimics what a novice audio 
producer might do
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+2: The audio changed in the right direction

(i.e., definitely more warm than reference)


0: No noticeable change compared to the reference (neutral)


-2: The audio changed in the wrong or unrelated direction 

(i.e., changed, but definitely not more warm than reference)

The rating scale



Specifically we’ll compare for Text2FX 
(variants & aggregates) vs Random

•   Text2FX-Best: When the better performing variant succeeds
•   Text2FX-Both: When both variants succeed





Text2FX beats Random

HIGHER IS BETTER



Text2FX beats Random



Text2FX-Best drastically beats Random



‘warm’ ‘ethereal’ ‘cool 
and 

distant’

‘like it’s 
playing on an old 

1920s radio’

Prompt Types (4)

Breakdown of Listener Rating scores

rating 
scale

definitely
‘warm’

not warm 
at ALL

‘warm’

12 Total Prompt Categories

FX
 c

ha
in

s 
(3

)



Prompt Type 
Single-Concrete  

Multi-Imagery  

FX chain 
Reverb-only

Taking the system at its best — Text2FX-Best, are there particular strengths?

‘bright’

‘spacious’

‘harsh’

e.g.,

‘coming through an 
old telephone’

‘like an explosion 
in a canyon’

‘coming from underwater 
in a swimming pool’

e.g.

‘warm’ ‘ethereal’ ‘cool 
and 

distant’

‘like it’s 
playing on an old 

1920s radio’



Pronounced Advantage for EQ-only and EQ → Reverb FX Chains



Comparing Text2FX-cos vs. Text2FX-dir

 Text2FX-dir 
provides more 
reliable performance

 Text2FX-cos 
produces more 
polarizing 
transformations

 Text2FX-dir may 
generalize better

- prompt type 
- longer FX chain



Back to Embeddings



Something else we might wanna do is 
visualize the embedding space itself

We can’t visualize 512 dimension vectors, but reduce to 3D through some techniques (“the 
curse of dimensionality”)

*for any embeddings, not just cross-modal



slide from Bryon Wallace Northeastern



PCA: Principal Component Analysis

What it does: Finds the directions 
with the most variation in data. 

How? It uses eigenvectors and 
eigenvalues of the covariance 
matrix to find those directions 

TLDR; Linear technique that works to maximize global variance

PCA finds new axes (called principal components) along which the data varies 
the most. These axes are linear combinations of the original features. 

source: ibm

https://www.ibm.com/think/topics/principal-component-analysis


t-Distributed Stochastic Neighbor Embedding (t-SNE)

Computes pairwise similarities using 
Gaussian distributions in high dimensions 
and Student t-distributions in low 
dimensions, then minimizes distance 
between distributions via KL divergence 

TLDR; Non-linear technique that preserves local structure by modeling pairwise similarities.

t-SNE arranges data in a way that keeps similar items close together in the low-
dimensional space, making clusters easy to see. 





Uniform Manifold Approximation and Projection (UMAP)

Build a nearest-neighbor graph of the 
high-D data model local relationships, 
then learning a low-D embedding by 
minimizing a CE loss to aligns the 
graph structure with a similar graph in 
the lower-D space

TLDR; Non-linear technique that preserves both local + some global structure, scalable for large datasets.

UMAP constructs a weighted graph of the data’s local structure and then optimizes a 
low-dimensional layout that preserves those relationships and the overall shape 
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Summary of PCA vs t-SNE vs UMAP
Feature PCA t-SNE UMAP

Type Linear Non-linear Non-linear

Goal Maximize global variance Preserve local structure Preserve local and global structure

Preserves Global variance patterns Local clusters and pairwise similarity Local neighborhoods and global 
layout

Interpretability High Low Medium

Speed Fast Slow Fast

Deterministic Yes No Mostly (some stochastic elements)

Best For Feature compression, initial 
dimensionality reduction

Visualizing cluster structure in 
compact space for small-medium 
datasets

Exploring both local clusters and 
broader relationships

Limitations Cannot capture non-linear 
patterns

Distorts global structure, sensitive to 
parameters, slow for large datasets

Requires tuning, and still involves 
some randomness

Example use 
case

Reduce dimensionality of audio-
text embedding space for 
downstream model input (feature 
engineering)

Visualize clusters of similar sound-
text pairs (e.g., emotion categories, 
spoken keywords)

Understand large-scale 
relationships in joint audio-visual-
text embeddings



When each might be good to use

Goal Best Technique

Quick overview, compression, noise filtering PCA

Visualizing clusters (e.g. categories) t-SNE

Maintaining shape + cluster structure UMAP

Handling very large or complex datasets UMAP

Feature engineering for ML models PCA (or UMAP but requires more 
digging)



Key Parameters

Key Parameter PCA t-SNE UMAP

n_components 
(dimensional
ity)

Number of dimensions 
to retain aka what data 
to keep (important)

Output dimensionality mainly for 
visualization (doesn’t impact the 
relationship structure in original 
space)

Output dimensionality mainly 
for visualization (doesn’t impact 
the relationship structure in 
original space)

Neighborhood 
Size Not applicable perplexity – how many 

neighbors each point considers
n_neighbors – balances local 
vs. global structure

Cluster 
Spread Not applicable Not directly tunable min_dist – controls spacing 

between points in embedding

random_state Optional, for 
reproducibility Affects layout stability Controls reproducibility


