Cross-Modal Embeddings in Music and Audio

CS352 Spring 2025 May 28, 2025 Annie Chu

Things we'll cover

- 1. Embeddings Recap
- 2. What is multimodality?
- 3. Multimodal Embedders (we'll look primarily at CLAP)
 - 3.1. Training Methodology
 - 3.2. Evaluation tasks
 - 3.3.Case Study: Text2FX
- 4. Visualizing embeddings
- 5. Get started with CLAP

Recap: Audio Embeddings

A (trained) embedding net

input audio representation

A (trained) embedding net

vector encodes semantic or structural information about the input

Don't have to train an embedder explicitly

Embeddings extracted as general-purpose feature vector

Any deepnet to "encode" audio in a relevant semantic space, even say instrument classifier

we'll take embeddings from penultimate layer

Input Audio Representations — we have options

or spectrogram

we'll take embeddings from penultimate layer

Encoder Architectures – some options

Any deepnet to "encode" audio in a relevant semantic space

Encoder Architectures – some options

Any deepnet to "encode" audio in a relevant semantic space

CNN

local patterns (timbre, onsets)

sequence dynamics (time dependencies)

R

R

Ν

Ν

Audio

Encoder

global attention over time

Spectrogram

The point of embedding spaces

- Low-dimensional representations of highdimensional data that captures semantic relationships between items
- similar items closer together in the embedding space and dissimilar items further apart

source: google

The point of embedding spaces

- Low-dimensional representations of highdimensional data that captures semantic relationships between items
- similar items closer together in the embedding space and dissimilar items further apart

source: google

In the audio space, it might look like this

And we can do this for other modalities

What do we mean by modality?

Multimodal systems combine two or more modalities to form richer representations

Text Embedding Space

vectors capture semantic relationships

So what if we add combine multiple modalities?

Why do we care about multimodality?

Faithfulness to natural human interaction

 Broader human experience is multimodal

Complementary information

 Different modalities can compensate information the other is missing

text modality can capture what a person is saying, but not how they're saying it

Multimodal Embeddings

Different modalities, same embedding space

Shared semantic vector space for across multiple modalities (e.g.,audio, text, video, symbolic)

example of shared text-image embedding space

Multimodal Embedder Overview

Let's look at some audio+X multimodal models

CLAP CLARNING AUDIO CONCEPTS FROM NATURAL LANGUAGE SUPERVISION

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, Huaming Wang

Microsoft {benjaminm, sdeshmukh, malismail, huawang}@microsoft.com

Contrastive Pretraining

B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

Shared Text-Audio embedding space

Audio+Visual

Audio-Visual coherence

Figure 1. Our audio-visual (generalised) ZSL framework aligns an audio-visual embedding with the corresponding textual label embedding via cross-modal attention. It can classify videos from previously unseen classes (*e.g. elephant trumpeting*) by predicting the class (red) whose textual label embedding (purple cross) is closest to the audio-visual embedding (blue star).

Audio-visual Generalised Zero-shot Learning with Cross-modal Attention and Language

Audio+Symbolic

Learning Audio–Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification <u>https://transactions.ismir.net/articles/10.5334/tismir.12?</u> <u>ref=https%3A%2F%2Fgithubhelp.com</u>

Figure 5: Architecture of correspondence learning network. The network is trained to optimize the similarity (in embedding space) between corresponding audio and sheet image snippets by minimizing a pair-wise ranking loss.

What are multimodal embeddings useful for?

- **Retrieval** (audio <> text // "music that sounds \bullet like this description")
- Automatic tagging/captioning (audio → text)
- **Multimodal generation** (text \rightarrow audio)
- Bridging audio with symbolic representations (e.g., MIDI, sheet music)

once modalities are embedded in the same space, we can map between them in flexible, meaningful ways

Joint embedding space

example of retrieval (image)

landscape at sunset"

How do we train multimodal models?

First we need data

Training Data

We need (a lot) of paired data

example text-audio datasets:

AudioCaps (Kim et al., 2019) (audio <> text_captions) source: AudioSet (Youtube)

<u>Clotho</u> (Drossos et al,, 2019) (audio_event <> text_captions) source: Freesound

<u>Audealize</u> (Seetharaman & Pardo, 2017) (audio_FX_parameters <> text_descriptors) source: Crowdsourced

<u>AudioCaps:</u> <u>Generating Captions</u> <u>for Audio in the Wild</u>

[Audio Classification] rumble | vehicle | speech | car | outside

[Video Captioning] A bus passing by with some people walking by in the afternoon.

[Audio Captioning] A muffled rumble with man and woman talking in the background while a siren blares in the distance.

file_name	caption_1	caption_2	caption_3	caption_4
Distorted AM Radio noise wav	A muddled noise of broken channel of the TV	A television blares the rhythm of a static TV.	Loud television static dips in and out of focus	The loud buzz of static constantly changes pitch and volume.

clotho example

Audealize

(Seetharaman & Pardo, 2017)

"calm" <> FX parameters (40-band EQ)

© 2014-2015 Interactive Audio Lab

This work was funded in part by National Science Foundation Grant number IIS-1116384

Next we need to embed our data (in their respective modalities)

Choose encoder

Choose encoder

Get embeddings

Now we need to ALIGN the single-modality embeddings spaces into a cross-modal embedding space

How? We need to set a training objective aka what do we want the model to learn.

<u>Training Objective</u> Contrastive Loss

Pull similar pairs together, push dissimilar pairs apart Let's take a look at contrastive learning in the audio-only domain

CLMR (Contrastive Learning of Musical Representations)

J. Spijkervet and J.A. Burgoyne, "Contrastive Learning of Musical Representations", in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

Goal: learn useful representations from musical audio (e.g., genre, instrumentation, dynamics) without paired labels

Data: (30s music clips + humanannotated tags)

- MagnaTagaTune (6.6k songs)
- MillionSongDataset (240k songs)

CLMR (Contrastive Learning of Musical Representations)

J. Spijkervet and J.A. Burgoyne, "Contrastive Learning of Musical Representations", in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

1 positive similar pair: via **data augmentations**

Multiple negative pairs: different audio files

Self-supervised contrastive training

CLMR (Contrastive Learning of Musical Representations)

J. Spijkervet and J.A. Burgoyne, "Contrastive Learning of Musical Representations", in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021

Figure 2: The complete framework operating on raw audio, in which the contrastive learning objective is directly formulated in the latent space of correlated, augmented examples of pairs of raw audio waveforms of music.

Evaluated via classification tasks

CLAP ©LEARNING AUDIO CONCEPTS FROM NATURAL LANGUAGE SUPERVISION

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, Huaming Wang

Microsoft {benjaminm, sdeshmukh, malismail, huawang}@microsoft.com

Now let's see it in action for audio <> text with CLAP

Contrastive Pretraining

B. Elizalde, S. Deshnukh, M. Al Ismail, and H. Wang, "Clap: Learning audio concepts from natural language supervision," in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

CLAP Dataset

number of pairs was 119k instead of 128k. The training datasets for the 4.6M collection are: WavCaps [6], AudioSet [2], FSD50K [12], Clotho [13], AudioCaps [14], MACS [15], WavText5k [5], SoundDesc [16], NSynth [17], FMA [18], Mosi [19], Meld [20], Iemocap [21], Mosei [22], MSP-Podcast [23], CochlScene [24], LJspeech [25], EpicK-itchen [26], Kinectics700 [27], findsounds.com. Details on GitHub.

4.6M audio-text pairs Gittub mostly general sound, some speech, some music

human-annotated

inferred captions (likely from metadata)

genre: electronic

Wind and a race car make noise, with a man speaking and the sound of accelerating and tire squealing.

WavCaps example (pulled from AudioSet)

A woman is rapping while a medium engine runs and a cat meows.

AudioSet Example

This is an [electronic] song **FMA**

filename: bass_synthetic _033-047-050

This is the sound of [synthetic bass]

NSynth

trained, then fine-tuned

trained on 22 audio tasks (e.g, classification, retrieval, captioning)

CLAP training—> fine-tuning encoders together

Single Pair Example (A1, T1)

Single Pair Example (A1, T1)

https://huyenchip.com/2023/10/10/multimodal.html

What if we do this across a <u>batch</u> of paired examples?

Contrastive Loss in Full Batch→ InfoNCE

For a batch of N matching text-audio pairs:

- Each (audio, text) pair is a positive.
- The remaining **N-1** text or audio items in the batch are treated as **negatives**.

InfoNCE loss (for one audio -> text example)

 $\mathcal{L}^{ ext{audio}
ightarrow ext{text}}_i = -\log rac{\exp(ext{sim}(f(a_i),g(t_i))/ au)}{\sum_{i=1}^N \exp(ext{sim}(f(a_i),g(t_j))/ au)}$

We want the model to **maximize the similarity** between the matched pair and **minimize it** between unmatched ones — all within the same batch.

from 0

from 0

random vals

Let's just take one row

we want to say this is a SIMILAR pair

we can also say these are DISSIMILAR pairs

Let's calculate the InfoNCE loss at step 0 for this row (audio_guitar —> all_texts)

So let's calculate the InfoNCE at step 0 looking at audio = audio_guitar

L

a_i = audio_guitar t_i = "guitar riff"

Similarity scores

sim(audio_guitar, "guitar riff") = **0.20** ← pos sim(audio_guitar, "piano riff") = **0.60** ← neg_1 sim(audio_guitar, "drum roll") = **0.10** ← neg_2

$$say \ we \ set \ temperature \ T \ to \ 0.1$$

$$L_i^{audio \to text} = -\log\left(\frac{\exp(sim(f(a_i), g(t_i))/\tau)}{\sum_{j=1}^{N} \exp(sim(f(a_i), g(t_j))/\tau)}\right)$$
The numerator is the model's score for the correct match.
We raise it to the power of $1/\tau$ to exaggerate differences
 $-$ smaller τ makes the softmax sharper
$$u^{audio \to text} = -\log\left(\frac{e^2}{e^2 + e^6 + e^1}\right) = -\log\left(\frac{7.39}{7.39 + 403.43 + 2.72}\right)$$
The model only assigns $\sim 1.8\%$ of the probability
mass to the correct caption. BAD - the model
 $L_i^{audio \to text} = -\log\left(\frac{7.39}{413.54}\right) = -\log(0.0179) \approx 4.02$

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

So let's calculate the InfoNCE

Because the model gave higher similarity to the wrong caption (0.60) than the correct one (0.20), the loss is high (4.02).

and then sum and take the average of all those losses full InfoNCE loss at step 0

$$L_{batch} = \frac{1}{2} \left(\sum_{i=1}^{N} \mathscr{L}_{i}^{audio \to text} + \sum_{i=1}^{N} L_{i}^{text \to audio} \right)$$

then we'll backpropagate this loss and update our weights and biases

$$L_{batch} = \frac{1}{2} \left(\sum_{i=1}^{N} \mathscr{L}_{i}^{audio \to text} + \sum_{i=1}^{N} L_{i}^{text \to audio} \right)$$

Backpropagate to where? our trainable elements

After xyz epochs of training....

AFTER SOME TRAINING (w InfoNCE loss)

Full batch training overview, N=4

Content Now we have something like this

dog barking cat meowing guitar riff whisper muffled rumble car rumbling funky distorted clarinet fresco

Shared Text-Audio embedding space

How do we evaluate multimodal embedding models?

Things we want to check

we can test this on core downstream tasks

Downstream Tasks

Task Type	Description	Common Metrics
Cross-Modal Retrieval	Match one modality (e.g., audio, image) to another (e.g., text) — e.g., "find the caption for this sound"	Recall@K, Precision@K, Median Rank, mAP
Classification	Predict labels (e.g., "guitar", "clapping") using single- modality embeddings with optional fine-tuning	Top-1 Accuracy, F1-score, Precision, Recall
Captioning / Generation	Generate descriptive text from audio, image, or video	BLEU, ROUGE, CIDEr, METEOR, SPICE
Auditory QA (VQA/ AQA)	Answer multiple choice questions based on auditory input and associated text	QA Accuracy, Exact Match, VQA Score
Zero-Shot Learning	Perform tasks with no labeled examples — often via alignment in shared embedding space	Accuracy, F1-score, Recall@K (task-dependent)
Human Evaluation	Collect subjective ratings of match quality, fluency, or semantic correctness	Relevance, Fluency, Preference Scores, Likert Ratings

QA benchmarks

e.g. MuChoMusic

B. Weck, I. Manco, E. Benetos, E. Quinton, G. Fazekas, and D. Bogdanov, "MuchoMusic: Evaluating music understanding in multimodal audio-language models," arXiv preprint arXiv:2408.01337, 2024.

Figure 1. **Multiple-choice questions** in MuChoMusic have four answer options of different levels of difficulty.

Cross-Modal Retrieval

Task: Given audio, retrieve the matching text, or vice versa

rank-agnostic metrics

b

quality Precision@K =Number of relevant items in top K
Kex. Precision@5: 60% of top 5 retrieved
results are relevantcoverage Recall@K =Number of relevant items in top K
Total number of relevant items in dataset for the queryex. Recall@1 = 70%
means correct text is
top result 70% of the
time

oth
$$F1@K = 2 imes rac{ ext{Precision@K imes Recall@K}}{ ext{Precision@K + Recall@K}}$$

Cross-Modal Retrieval: Precision@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"

Rank	Retrieved Audio Label	Relevant (bird- related)?
1	Birds chirping in forest	YES
2	City traffic and sirens	no
3	Seagulls near the ocean	yes
4	Children playing at a park	no
5	Songbirds in early morning	yes

Out of the results it retrieved, how many were actually relevant?

Relevant items in Top 5: 3 Total retrieved (K): 5

$$ext{Precision@K} = rac{ ext{Number of relevant items in top K}}{K}$$
 $ext{Precision@5} = rac{3}{5} = 0.6 ext{ or } 60\%$

Cross-Modal Retrieval: Recall@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"

Rank	Retrieved Audio Label	Relevant (bird- related)?
1	Birds chirping in forest	YES
2	City traffic and sirens	no
3	Seagulls near the ocean	yes
4	Children playing at a park	no
5	Songbirds in early morning	yes

Out of all the relevant items in the dataset, how many did it manage to retrieve?

From ground truth metadata, say we know there are <u>10 total bird-related</u> audio clips

Relevant items retrieved: 3 Total relevant items in dataset: 10 Total retrieved (K): 5

 $\label{eq:Recall@K} Recall@K = \frac{\mbox{Number of relevant items in top } K}{\mbox{Total number of relevant items in dataset for the query}}$

$${
m Recall}@5 = rac{3}{10} = 0.3 \ {
m or} \ 30\%$$

Only 3 of the 10 possible bird-related audio clips were retrieved in the top 5. So while **Precision@5 was 60%**, **Recall@5 is only 30%** — showing that although our top results were reasonably accurate₀ the system **missed many other relevant clips** in the dataset.

Cross-Modal Retrieval: F1@K

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"

Rank	Retrieved Audio Label	Relevant (bird- related)?
1	Birds chirping in forest	YES
2	City traffic and sirens	no
3	Seagulls near the ocean	yes
4	Children playing at a park	no
5	Songbirds in early morning	yes

How balanced was the system's accuracy and coverage?

 $F1@K = 2 \cdot \frac{Precision@K \cdot Recall@K}{Precision@K + Recall@K}$

$$F1@5 = 2 \cdot rac{0.6 \cdot 0.3}{0.6 + 0.3} = rac{0.36}{0.9} = 0.4$$

Cross-Modal Retrieval

Task: Given audio, retrieve the matching text, or vice versa

rank-based metrics

$$\begin{array}{ll} \textit{Mean} & \text{MRR} = \frac{1}{Q}\sum_{q=1}^{Q}\frac{1}{\text{rank of first relevant item for query } q} & \textit{what rank was the} \\ \textit{first relevant item?} \end{array}$$

avg precision (per query)

$$\mathrm{AP} = rac{1}{R}\sum_{k=1}^{N}\mathrm{Precision} @\mathrm{k} \cdot 1 [\mathrm{item} \ \mathrm{at} \ k \ \mathrm{is \ relevant}]$$

Mean AP

$$\mathrm{mAP} = rac{1}{Q}\sum_{q=1}^Q\mathrm{AP}_q$$

R: Total number of relevant items for the query *N*: Total number of returned items (can be all or top-K) *1[·]:* 1 if item is relevant, 0 otherwise

do relevant items appear fairly early in the ranked list?

Cross-Modal Retrieval: MRR

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"

Rank	Retrieved Audio Label	Relevant (bird- related)?
1	Birds chirping in forest	YES
2	City traffic and sirens	no
3	Seagulls near the ocean	yes
4	Children playing at a park	no
5	Songbirds in early morning	yes

How soon was the first relevant item retrieved?

First relevant rank: 1

$$\mathrm{MRR}=rac{1}{1}=1.0$$

(If first relevant was at rank 3, $MRR = 1/3 \approx 0.3$)

Cross-Modal Retrieval: Average Precision

Task: Given text query, retrieve matching audio clips

Text Query

"a flock of birds chirping in the morning"

Rank	Retrieved Audio Label	Relevant (bird- related)?
1	Birds chirping in forest	YES
2	City traffic and sirens	no
3	Seagulls near the ocean	yes
4	Children playing at a park	no
5	Songbirds in early morning	yes

Where did the relevant results appear in the ranking?

Relevant ranks: 1,3,5

Calculate precision at every relevant position P@1 = 1/1 = 1 P@3 = 2/3 = 0.67P@5 = 3/5 = 0.6

$$\mathrm{AP} = rac{1.0 + 0.667 + 0.6}{3} pprox 0.756$$

if we had multiple queries, we'd do the same for them then take avg for mAP

How else have people used CLAP? Fun applications

Text-to-Audio Generation: Controlling a Synthesizer

CLAP's embedding space as loss space

Bees buzzing

Train horn

Police car siren

Chainsaw

M. Cherep, N. Singh, and J. Shand, "Creative Text-to-Audio Generation via Synthesizer Programming," arXiv preprint arXiv:2406.00294, 2024. [Online]. Available: <u>https://arxiv.org/abs/2406.00294</u>

Figure 1. CTAG leverages a virtual modular synthesizer to generate sounds capturing the semantics of user-provided text prompts in a sketch-like way, rather than being acoustically literal. Spectrograms of auditory outputs corresponding to six text prompts showcase the range of sounds this approach can yield, accompanied by a fully interpretable and controllable parameter space.

EXAMPLEs: https://ctag.media.mit.edu/

How else have people used CLAP? Fun applications

Speech emotion recognition

CLAP embeddings as input feature vector

Y. Li, Q. Sun, S. M. Krishna Murthy, E. Alturki, and B. W. Schuller, "GatedxLSTM: A multimodal affective computing approach for emotion recognition in conversations," arXiv preprint arXiv:2503.20919, 2025. [Online]. Available: <u>https://api.semanticscholar.org/</u> CorpusID:277349399

Let's look at using CLAP for audio production

Can we take an audio source and make it sound "crunchy" or "warm"?

Text2FX

Harnessing CLAP Embeddings for Text-Guided Audio Effects

Annie Chu, Patrick O'Reilly, Julia Barnett, Bryan Pardo

Text2FX: Harnessing CLAP Embeddings for Text-Guided Audio Effects

Annie Chu Pat Northwestern University North

Patrick O'Reilly Northwestern University

Julia Barnett Bryan Pardo Northwestern University Northwestern University

Abstract-This work introduces Text2FX, a method that leverages CLAP embeddings and differentiable digital signal processing to control audio effects, such as equalization and reverberation, using openvocabulary natural language prompts (e.g., "make this sound in-your-face and bold"). Text2FX operates without retraining any models, relying instead on single-instance optimization within the existing embedding space, thus enabling a flexible, scalable approach to open-vocabulary sound transformations through interpretable and disentangled FX manipulation. We show that CLAP encodes valuable information for controlling audio effects and propose two optimization approaches using CLAP to map text to audio effect parameters. While we demonstrate with CLAP, this approach is applicable to any shared text-audio embedding space. Similarly, while we demonstrate with equalization and reverberation, any differentiable audio effect may be controlled. We conduct a listener study with diverse text prompts and source audio to evaluate the quality and alignment of these methods with human perception. Demos and code are available at anniejchu.github.io/text2fx

Index Terms-intelligent audio production, audio effects, multimodal embeddings, DDSP

I. INTRODUCTION

Audio effects (e.g., equalization, reverberation, compression) are essential tools in modern audio production. From mainstream pop to podcasts to film scores, audio effects (FX) are integral in shaping the final sound. However, their complex and often unintuitive controls (e.g., dccay, cutoff frequency) can be extremely challenging for nonexperts and time-consuming for professionals. For instance, despite its seemingly straightforward description, transforming a simple drum recording into the 'crunchy hyperpop' drum sound of Charli XCX may require a complex process involving the careful adjustment of over 20 distinct effect parameters across multiple FX, such as distortion, saturation, quadization, and compression.

Semantic audio production research aims to bridge the gap between high-level concepts (e.g., 'old time telephone') and signal-level effect parameters (e.g., controls of a parametric equalizer) [1]. Pre-deeplearning efforts, such as Sabin et al. [2] and Audealize [3], used crowdsourcing to map natural language terms to specific effect parameters, such as equalization (EQ) or reverberation (Reverb). While effective, these methods produced closed-vocabulary mappings limited to single FX, unable to generalize beyond new words or phrases. This work also resulted in word-parameter setting datasets for single FX, such as SocialFX [4] (EQ, Reverb, compression) and SAFE [5] (four open-source plugins). Most recently, Balasubramaniam et al. [6] explored text-driven audio manipulation by training a deep model on the EQ subset of Audealize [3]. However, as their approach focuses on text-to-audio generation rather than directly mapping text to effect parameters, it functions as a black box, limiting users' ability to shape the final result. Like earlier work, it is limited by the closed vocabulary of single-word descriptors from training. We seek to overcome these limitations by exploring method that enables open-vocabulary text prompts to control any set of differentiable effects without retraining for new words or FX.

This work was supported by NSF Award Number 2222369.

Fig. 1. Text2FX Example. A previous study [3] found listeners associate bright with boosting high frequencies (> 2 kHz) and cutting low ones (< 2 kHz). Optimizing the audio in a shared text-audio embedding space (CLAP) towards the embedding for text 'bright' achieves this, Left: Optimization loss curve. Right: Estimated settings for a 6-band parametric EQ.

Recent large multimodal embedding models like CLAP [7] have made great strides in bridging natural language with audio. Trained on a diverse, extensive dataset of paired audio-text captions, CLAP features a joint embedding space aligning audio with corresponding textual descriptions. Though successfully applied to zero-shot classification and audio captioning [7], as well as text-to-audio generation [8], CLAP's ability to encode qualitative notions of audio FX—such as what constitutes a 'bright' sound– remains unexplored.

Differentiable digital signal processing (DDSP) [9, 10] allows traditional DSP parameters (e.g., falter coefficients, gain controls, and synthesis parameters) to be learned through gradient-based optimization. DDSP has been successfully applied in tasks including speech synthesis [11], synthesize-based sound generation [8], style transfer for audio FX (12], and mastering [13], but has not been applied to text-driven audio FX.

In this paper, we explore whether CLAP embeddings contain actionable knowledge for natural language-based control of audio FX. To leverage this knowledge, we introduce Text2FX, a method that uses CLAP's knowledge, we introduce Text2FX and the audio FX through cross-modal optimization. Integrating CLAP with DDSP, Text2FX performs single-instance optimization within the audio FX parameter space, aligning the audio embedding with that of a given text description. Given an audio recording, a prompt (e.g., 'shrill and sharp'), and an FX chain (i.e., sequence of audio FX like EQ \rightarrow Reverb), Text2FX generates both the "effected" audio along with the interpretable, adjustable FX parameters apace.

Sound Semantics: How do we describe sound?

How do we make something sound bright?

Audio Effects (FX)

Audio FX are digital signal processing (DSP) based tools used to modify sound by transforming the audio signals

EO FLANGER fabfilter Pro **NOISE GATE** REVE 9.42 ms

Common Examples of Audio FX

COMPRESSOR

A D C D Capy Pasta

Some common types of audio FX

• EQ (Equalization) – Adjusts frequencies to balance tone

• **Reverb** – Creates a sense of space and depth.

Some common types of audio FX

- EQ (Equalization) Adjusts frequencies to balance tone
- **Reverb** Creates a sense of space and depth.

Some common types of audio FX

- EQ (Equalization) Adjusts frequencies to balance tone
- **Reverb** Creates a sense of space and depth.

and we can chain them!

back

All FX have DSP-based controls like these

disconnect between intuition and implementation

Text2FX: A Semantic Audio Production Tool

Can we use **CLAP** to connect **any high-level semantic text descriptor** (e.g., 'bright') to **low-level signal processing parameters** (e.g., EQ controls)?

A system that maps ANY high-level concept <> ANY set of FX knobs

(e.g., 'warm', 'dark and roomy')

(e.g., EQ, Reverb, Compression)

FX chain: EQ-only

which the user can then adapt and tweak

Single-Instance Optimization via CLAP Tuning

inspired by TagBox (Manilow et al., 2021)

great! done optimizing 🗸

Target Prompt "This sound is **bright**"

6 band Parametric EQ iteration 0 20 0 -20 iteration 200 20 0 -20 iteration 600 20 Gain (dB) 0 -20 100 10000 1000 Frequency (Hz)

Text2FX Optimization Example

Cool artifacts of this optimization algorithm

Single-Instance Optimization of FXparams

Given an **input sound** and **target descriptor**, find me the best audio FX parameters (FXparams) via

- (1) Randomly pick FXparams
- (2) Apply to input sound to get modified sound (A')
- (3) Run A' and T into CLAP
- (4) Use CLAP to quantify how close A' is to T
- (5) Use that to then adapt EQ parameters

Again!

- No training of a neural network
- Bypasses requirement of needing a large dataset
- Avoids generation of unwanted audio artifacts (only modifies FX parameters, not audio itself)

Listening Examples

TEXT2FX

What's the best way to steer embeddings in the CLAP space?

Two different approaches of accounting for initial audio content

2

see what CLAP knows

Text2FX-directional provide some context of the initial audio's texture

Text2FX-cosine

Most basic approach (no extra adaptation to account for content)

Cosine-loss

minimize of cosine distance between a single audio-text embedding pair

- T fixed, target <u>text</u> prompt
 A' modified, "effected" <u>audio</u>
- A fixed, input audio

Text2FX-cosine

Most basic approach (no extra adaptation to account for content)

Cosine-loss

minimize of cosine distance between a single audio-text embedding pair

- T fixed, target <u>text</u> prompt
 A' modified, "effected" <u>audio</u>
- A fixed, input audio

Modify the audio (via optimized FX params) such that it gets closer to the text itself

CLAP embedding space

Text2FX-cos EXAMPLE

Text2FX-cos EXAMPLE

Text2FX-directional

Give context, use two embedding pairs

Directional Loss From *DiffusionCLIP (Kim et al., 2022)*

Use an **extra contrasting text prompt as an anchor** to guide the optimization of modified audio

- T1 fixed, extra anchor text prompt
- T2 fixed, target <u>text</u> prompt
- A1 fixed, input audio
- A2 modified, "effected" audio

SUBJECTIVE EVALUATION

Listening Study

They both seem to work... Which one works better?

60 text prompts allocated across 3 FX chains

	Single Words		Multiwords		
-	Concrete	Abstract	Combination	Imagery	
EQ	tinny, muffled, light, deep, crisp, bright, mellow	ethereal, eerie, grand	soft yet vibrant, in-your-face and bold, shrill and sharp, quiet and gentle, cool and smooth	coming through an old telephone, coming from a speaker under a blanket, booming like a thunderstorm, delivered with a softer feel, like a hazy surreal dream	
Reverb	boomy, spacious, dry, cavernous, echoey, underwater, dry, reverberant	empty, long, bold	booming and vast, clear but distant, cozy and enveloping, heavy and dramatic, hollow and far-away	coming from a cathedral, coming from a long hallway, coming from a small and intimate sound booth, like an explosion in a canyon, accompanied by a faint atmospheric haze in the background	
$\mathbf{EQ} \rightarrow \mathbf{Reverb}$	metallic, harsh cold, blaring, bassy, grainy, breezy	dramatic fluffy, powerful	barren and detached, warm and full-bodied, vibrant and powerful, resonant and harmonious, high and tinny	coming from a small cavern with a muffled echo, coming from underwater in a swimming pool, coming from a broken speaker in an empty warehouse, like a shrill Victorian ghost, like a distant radio broadcast with a warm lingering presence	

What audio samples? 30 Reference audio files (15 speech, 15 music)

4-way evaluation of each prompt/audio combo

- Text2FX-cosine: FXparams optimized via cosine loss
- Text2FX-directional: FXparams optimized via directional loss
- **Random:** Randomly assigned FXparams a mimics what a novice audio producer might do
- **noFX:** The original reference audio without any FX

The rating scale

Specifically we'll compare for Text2FX (variants & aggregates) vs Random

- Text2FX-cosine: FXparams optimized via cosine loss
 Text2FX-directional: FXparams optimized via directional loss
- Text2FX-Best: When the better performing variant succeeds
- Text2FX-Both: When both variants succeed

Model	EQ	Reverb	$\mathbf{EQ} \rightarrow \mathbf{Reverb}$
Text2FX-cosine Text2FX-directional Random Text2FX-Best Text2FX-Both			

Model	EQ	Reverb	$\mathbf{EQ} \rightarrow \mathbf{Reverb}$
Text2FX-cosine	48.26	51.61	47.24
Text2FX-directional	45.49	53.23	50.61
Random	22.22	49.03	30.37

Text2FX beats Random

Model	EQ	Reverb	$\mathbf{EQ} \rightarrow \mathbf{Reverb}$
Text2FX-cosine	48.26	51.61	47.24
Text2FX-directional	45.49	53.23	50.61
Random	22.22	49.03	30.37
Text2FX-Best	67.01	74.19	68.10
Text2FX-Both	26.74	30.65	29.75

Text2FX beats Random

Model	EQ	Reverb	$\mathbf{EQ} \rightarrow \mathbf{Reverb}$
Text2FX-cosine	48.26	51.61	47.24
Text2FX-directional	45.49	53.23	50.61
Random	22.22	49.03	30.37
Text2FX-Best	67.01	74.19	68.10
Text2FX-Both	26.74	30.65	29.75

Text2FX-Best drastically beats Random

Breakdown of Listener Rating scores

Prompt Types (4)

Taking the system at its best — Text2FX-Best, are there particular strengths?

Pronounced Advantage for *EQ-only* and *EQ* \rightarrow *Reverb* FX Chains

How well does Text2FX do compared to Random?

Comparing Text2FX-cos vs. Text2FX-dir

How well does Text2FX do?

Text2FX-dir provides more reliable performance

Text2FX-cos
 produces more
 polarizing
 transformations

Text2FX-dir may generalize better

- prompt type

- longer FX chain

	Text2FX-cos -	0.20	-0.17	-0.11	0.28
EQ- onlv	Text2FX-dir -	0.11	0.11	0.11	0.03
0	Text2FX-best ·				
	Text2FX-cos -	0.54	-0.01	-0.07	0.07
Reverb-	Text2FX-dir -	0.48	-0.11	0.43	0.33
omy	Text2FX-best ·	1.13		0.82	0.77
	Text2FX-cos -	-0.24	-0.07	-0.13	0.43
EQ → Reverb	Text2FX-dir -	0.23	-0.04	0.19	0.20
	Text2FX-best -				0.86
		Single-Concrete	Single-Abstract Pror	Multi-Combo npt	Multi-Imagery

Back to Embeddings

Something else we might wanna do is <u>visualize</u> the embedding space itself

We can't visualize 512 dimension vectors, but reduce to 3D through some techniques ("the curse of dimensionality")

*for any embeddings, not just cross-modal

Dimensionality reduction

Goal: Map high dimensional data onto lower-dimensional data in a manner that preserves *distances/similarities*

Original Data (4 dims)

Projection with PCA (2 dims)

Objective: projection should "preserve" relative distances

slide from Bryon Wallace Northeastern

PCA: Principal Component Analysis

TLDR; Linear technique that works to maximize global variance

PCA finds **new axes (called principal components)** along which the **data varies the most**. These axes are linear combinations of the original features.

What it does: Finds the directions with the most variation in data.

How? It uses eigenvectors and eigenvalues of the covariance matrix to find those directions

source: ibm

t-Distributed Stochastic Neighbor Embedding (t-SNE)

TLDR; Non-linear technique that preserves local structure by modeling pairwise similarities.

t-SNE arranges data in a way that keeps similar items close together in the lowdimensional space, making clusters easy to see.

Computes **pairwise similarities using Gaussian distributions** in high dimensions and **Student t-distributions** in low dimensions, then minimizes distance between distributions via KL divergence

MNIST - PCA

MNIST - TSNE

Uniform Manifold Approximation and Projection (UMAP)

TLDR; Non-linear technique that preserves both local + some global structure, scalable for large datasets.

UMAP constructs a **weighted graph** of the data's local structure and then optimizes a low-dimensional layout that preserves those relationships and the overall shape

Build a nearest-neighbor graph of the high-D data model local relationships, then learning a low-D embedding by minimizing a CE loss to aligns the graph structure with a similar graph in the lower-D space

Step 1: Compute a graphical representation of the dataset

Step 2 (non-parametric): Learn an embedding that preserves the structure of the graph

Figure 6: A comparison between UMAP and t-SNE projections of a 3D woolly mammoth skeleton (50,000 points) into 2 dimensions, with various settings for parameters. Notice how much more global structure is preserved with UMAP, particularly with larger values of n_neighbors.

Summary of PCA vs t-SNE vs UMAP

Feature	PCA	t-SNE	UMAP
Туре	Linear	Non-linear	Non-linear
Goal	Maximize global variance	Preserve local structure	Preserve local and global structure
Preserves	Global variance patterns	Local clusters and pairwise similarity	Local neighborhoods and global layout
Interpretability	High	Low	Medium
Speed	Fast	Slow	Fast
Deterministic	Yes	No	Mostly (some stochastic elements)
Best For	Feature compression, initial dimensionality reduction	Visualizing cluster structure in compact space for small-medium datasets	Exploring both local clusters and broader relationships
Limitations	Cannot capture non-linear patterns	Distorts global structure, sensitive to parameters, slow for large datasets	Requires tuning, and still involves some randomness
Example use case	Reduce dimensionality of audio- text embedding space for downstream model input (feature engineering)	Visualize clusters of similar sound- text pairs (e.g., emotion categories, spoken keywords)	Understand large-scale relationships in joint audio-visual- text embeddings

When each might be good to use

Goal	Best Technique
Quick overview, compression, noise filtering	PCA
Visualizing clusters (e.g. categories)	t-SNE
Maintaining shape + cluster structure	UMAP
Handling very large or complex datasets	UMAP
Feature engineering for ML models	PCA (or UMAP but requires more digging)

Key Parameters

Key Parameter	PCA	t-SNE	UMAP
n_components (dimensional ity)	Number of dimensions to retain aka what data to keep (important)	Output dimensionality mainly for visualization (doesn't impact the relationship structure in original space)	Output dimensionality mainly for visualization (doesn't impact the relationship structure in original space)
Neighborhood Size	Not applicable	perplexity – how many neighbors each point considers	n_neighbors – balances local vs. global structure
Cluster Spread	Not applicable	Not directly tunable	min_dist – controls spacing between points in embedding
random_state	Optional, for reproducibility	Affects layout stability	Controls reproducibility