
Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Machine Learning

Support Vector Machines
(contains material adapted from talks by Constantin F. Aliferis & Ioannis 

Tsamardinos, and Martin Law)
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Support Vector Machines
• Are binary classifiers 

• Are very popular because

– They are very effective classifiers in many domains
– They can train fairly quickly on large data sets
– They can be used without understanding their underlying 

math
– …yet those who want to can geek out on the formulae.



Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into 
two sets: maximize margin

2. Extend the above definition for non-linearly 
separable problems: have a penalty term for 
misclassifications

3. Map data to high dimensional space where it is 
easier to classify with linear decision surfaces: 
reformulate problem so that data is mapped 
implicitly to this space



• Any hyperplane can be written as the set of points x
satisfying the equation below, where w and x are vectors 
in Rd

• The vector w is a normal vector: it is perpendicular to 
the hyperplane. The parameter b determines the offset 
of the hyperplane from the origin along the normal 
vector.

Defining a hyperplane
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A hyperplane in 2 dimensions
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Some definitions
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• Assume training data consisting of vectors 
of d real values that belong to class 1 or 
class -1

• Find a hyperplane to separate the data 
into the two classes (assume this is 
possible, for the moment).



Which hyperplane is best?
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Class -1

Class +1



• Define d+ as the distance from a 
hyperplane to the closest positive 
example. 

• Define d- as the distance to the closest 
negative example

• Define the “margin”, m as…

• Look for the largest margin!

The margin
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An example
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• There is some scale for w and for b where the 
following equation holds.

• Those data points that lie within distance 
1/||w|| of the hyperplane are called the 
support vectors.  

• The support vectors define two planes parallel to 
the hyperplane separator 

The margin
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Three hyperplanes to consider
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w ⋅ x +b =1
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Support vectors are 
points on the margins 
(The margins are the 
two bounding hyperplanes
at distance 1/||w|| from the 
decision line) 



• We write the optimization problem as…

Optimization = maximize margin
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remember  yi  is the class label, and yi ∈ {−1,1}
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Maximizing margins (not mathy)

• Given a guess of w and b we can…
– See if all data points are correctly classified
– Compute the width of the margin

• Now, we just search the space of w’s and b’s 
to find the widest margin hyperplane that 
correctly classifies the data. 

• How?
Gradient descent? Simulated Annealing? 
Matrix Inversion?



A little more mathy

• This is a quadratic function with linear constraints. 
• Quadratic optimization problems have known algorithmic 

solutions.
• Naively, this quadratic optimization can be solved in 

O(n^3) time, where n = the number of data points.

Find w and b to maximize

w
2margin =

Dyxbxwy iiii Î"³+× },{,1)(such that 



• Maximizing   equivalent to minimizing

• For math convenience we ACTUALLY minimize

• Now, we associate a Lagrange multiplier           
with each point     in the data. This gives…

Still mathy-er 
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(psst: What’s a Lagrange Multiplier?)

• A way of optimizing a function subject to 
one (or more) constraint(s) from another 
function(s).

• You incorporate the original function and 
the constraint equations into one new 
equation and then solve.

• For more, check out the wikipedia. 
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Why use Lagrangian Multipliers?

• We want to put a line between the sets that 
maximize the margin between classes subject to 
the constraint all points are correctly classified.

• So…
The margin maximization is a classic maximization 
problem 
Classifying each point correctly is a constraint

• This is exactly the setup needed for Lagrangians
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• In practice, people don’t minimize this formula 
from the previous slide.

• Instead they maximize its “dual,” which will also 
give us what we need and is in a more 
convenient format for later work.

The Lagrangian “dual”
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• When we maximize this, a cool thing happens. 
Only those points defining the margin have non-
zero values for

• Note also this formulation relates two examples 
to each other via a dot product.

• This will become meaningful later…

The Lagrangian “dual”
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Classification with SVM
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• For testing, the new data z is classified as class 1 if    
and as class -1 if 

• SO…our weights are determined by this (where S is the 
number of support vectors…aka important points from 
our training data)

• And our decision function is a normal linear discriminant.

  f ≥ 0
  f < 0



Classification with SVM: PART 2
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While our decision function is a normal linear 
discriminant….

…people usually calculate the class using the support 
vectors (those data points with non-0 alpha values that lie 
on the +1 and -1 margins). 

The new element z is compared to all the support vectors 
and its value is determined by where it lies in comparison 
to them.
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What if we have noisy training data?
• Can we combine minimizing misclassifications 

(with some forgiveness) with maximizing the 
margin?

Var1

Var2

0=+× bxw !!



Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into 
two sets: maximize margin

2. Extend the above definition for non-linearly 
separable problems: have a penalty term for 
misclassifications

3. Map data to high dimensional space where it is 
easier to classify with linear decision surfaces: 
reformulate problem so that data is mapped 
implicitly to this space



Non-Linearly Separable Data
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Introduce slack 
variables     (one 
per data point)

ix

Allow some 
instances to fall 
within the 
margin, but 
penalize them
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Formulating the Problem
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• We are now minimizing this formula

• Subject to the constraints

• Where C  determines the weight to 
give misclassification error. 
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Linear, Soft-Margin SVMs

• Algorithm tries to minimize    while maximizing margin

• Notice: algorithm does not minimize the number of 
misclassifications, but the sum of distances from the 
margin hyperplanes

• As             , we get closer to the hard-margin solution
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The Lagrange Dual

• The dual of the “soft” problem is

• w is also recovered as
• The only difference with the linearly separable 

case is that there is an upper bound C on 
• Once again, a QP solver can be used to find

 α i

 α i



Robustness of Soft vs Hard Margin

Var1

Var2

Var1

Var2

Soft Margin SVM Hard Margin SVM

 ξi



Soft vs Hard Margin SVM

• Soft-Margin always have a solution

• Soft-Margin is more robust to outliers
– Smoother surfaces (in the non-linear case)

• Hard-Margin requires no parameters at all



)(
2
1 ||

1

||

1

||

1
jijij

D

i

D

j
i

D

i
iD xxyyL ×-º ååå

= ==

aaa

Linear SVMs:  Overview
• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define 
the hyperplane.

• Quadratic optimization algorithms can identify which training points 
xi are support vectors with non-zero Lagrangian multipliers.

• Both in the dual formulation of the problem and in the solution, 
training points appear only inside inner products: 
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Extension to Non-linear Decision Boundary

• So far, we have only considered large-margin 
classifier with a linear decision boundary

• What if the decision boundary is non-linear?

A one-dimensional  decision problem

x



Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into 
two sets: maximize margin

2. Extend the above definition for non-linearly 
separable problems: have a penalty term for 
misclassifications

3. Map data to high dimensional space where it is 
easier to classify with linear decision surfaces: 
reformulate problem so that data is mapped 
implicitly to this space
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Higher dimensional mapping

• The idea is to map the vectors to a higher 
dimensional space to gain linear 
separation.

Mapping x onto 
{x2,x} gives linear 
separation.

x

x2x



Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can be mapped 
to some higher-dimensional feature space where the 
training set is separable:

Φ:  x → φ(x)



Bryan Pardo, Machine Learning: EECS 349 Fall 2014

What this does to the math
• Recall the SVM optimization problem with its inner 

product between data points

• If we transform the data into a new vector space, this 
changes the math ever so slightly to be…



What are Kernel Functions?

• Kernels (in this context) are functions that return inner 
products between the images of data points 

• Since they are inner products, they can be thought of as 
similarity functions
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K(x1, x2 ) = Φ(x1),Φ(x2 )



Why Use Kernel Functions

• You can define kernels for many things that aren’t 
vectors of real values in Euclidean space (e.g. text 
documents)

• As long as we can calculate the inner product in the 
original feature space, we do not need to explicitly 
calculate the mapping Φ

• It can often be more efficient to compute K directly, 
without going through the step of computing Φ
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K(x1, x2 ) = Φ(x1),Φ(x2 )
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That math again…
This original formula…

…becomes this, when we apply a data transformation…

…and if we can define a kernel…

…it becomes this…
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An Example Kernel
• Suppose is given as follows

• An inner product in the feature space is

** NOTE: On this slide y is not the label, it is a feature vector, just like x **

• So, if we define the kernel function as follows, there is 
no need to carry out f(.) explicitly

• This use of kernel function to avoid calculating      
explicitly is known as the kernel trick
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Examples of Kernel Functions
** NOTE: On this slide y is not the label, it is a feature vector, just like x **

• Polynomial kernel with degree d

• Radial basis function kernel with width s

– Closely related to radial basis function neural networks
– The feature space is infinite-dimensional

• Sigmoid with parameter k and q

– It does not satisfy the Mercer condition on all k and q



Building Kernels from Other Kernels

• Kernels can be composed from other kernels
• The following 2 slides give some basic rules for 

building complex kernels from simple kernels
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Definitions for the following slide
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k1(x, x ') and k 2 (x, x ') are valid kernels on {x,x'}∈S
S  is some set (of anything: emails, images, integers)
c > 0 is a constant
f (⋅) is any function
q(⋅) is a polynomial with non-negative coefficients
φ(x) is a function from the ->!m

k3(⋅,⋅)is a valid kernel in !m

A is a symmetric positive semidefinite matrix
x = (xa , xb ) ....essentially, x can be decomposed into subparts
                   ...like scalars in a vector
ka (⋅,⋅),kb (⋅,⋅) are valid kernels over their respective spaces



Techniques for Kernel Construction
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Given valid kernels k1(x, x ') and k 2 (x, x '), 
the following are also valid kernels
k(x, x ') = ck1(x, x ')
k(x, x ') = f (x)k1(x, x ') f (x ')
k(x, x ') = q(k1(x, x '))
k(x, x ') = exp(k1(x, x '))
k(x, x ') = k1(x, x ')+ k2 (x, x ')
k(x, x ') = k3(φ(x),φ(x '))
k(x, x ') = xT Ax '     This one assumes x,x' are vectors
k(x, x ') = ka (xa , x 'a )+ kb (xb , x 'b )
k(x, x ') = ka (xa , x 'a )kb (xb , x 'b )
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Classifying with a Kernel 

• For testing, the new data z is classified as class 1 if    
and as class -1 if 

Original

With kernel 
function

  f ≥ 0
  f < 0

NOTE: y is once again a label from the set {-1, 1} **



Strengths and Weaknesses of SVM

• Strengths
– Training is relatively easy 
– It scales relatively well to high dimensional data
– Tradeoff between classifier complexity and error can 

be controlled explicitly 
– Non-traditional data like strings and trees can be 

used as input to SVM, instead of feature vectors 
• Weaknesses

– Tuning SVMs remains a black art:  selecting a 
specific kernel and parameters is usually done in a 
try-and-see manner.



You as the SVM user

• You have two main choices to make:
1) What kernel will you use?

Polynomial?
Radial Basis Function?
Something else?

2) How much “slack” will you allow?
Depends on how much you trust data collection and 
labeling.
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SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of 
classification tasks ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g. 
graphs, sequences, relational data) by designing kernel functions for 
such data.

• SVM techniques have been extended to a number of tasks such as 
regression [Vapnik et al. ’97], principal component analysis [Schölkopf 
et al. ’99], etc. 

• Most popular optimization algorithms for SVMs use decomposition to 
hill-climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and 
[Joachims ’99]


