
Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Machine Learning

Support Vector Machines
(contains material adapted from talks by Constantin F. Aliferis & Ioannis

Tsamardinos, and Martin Law)

2

Support Vector Machines
• Are binary classifiers

• Are very popular because

– They are very effective classifiers in many domains
– They can train fairly quickly on large data sets
– They can be used without understanding their underlying

math
– …yet those who want to can geek out on the formulae.

Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into
two sets: maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it is
easier to classify with linear decision surfaces:
reformulate problem so that data is mapped
implicitly to this space

• Any hyperplane can be written as the set of points x
satisfying the equation below, where w and x are vectors
in Rd

• The vector w is a normal vector: it is perpendicular to
the hyperplane. The parameter b determines the offset
of the hyperplane from the origin along the normal
vector.

Defining a hyperplane

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

0=+× bxw

||||
|| origin dist to
w
b

=
Euclidean norm

A hyperplane in 2 dimensions

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

0=+× bxw !!

w!

b

Some definitions

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

}}1,1{,|),{(-ÎÂÎ= i
d

iii yxyxD

• Assume training data consisting of vectors
of d real values that belong to class 1 or
class -1

• Find a hyperplane to separate the data
into the two classes (assume this is
possible, for the moment).

Which hyperplane is best?

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Class -1

Class +1

• Define d+ as the distance from a
hyperplane to the closest positive
example.

• Define d- as the distance to the closest
negative example

• Define the “margin”, m as…

• Look for the largest margin!

The margin

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

-+ += ddm

An example

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

+d
-d

• There is some scale for w and for b where the
following equation holds.

• Those data points that lie within distance
1/||w|| of the hyperplane are called the
support vectors.

• The support vectors define two planes parallel to
the hyperplane separator

The margin

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

||||
1
w

dd == -+

Three hyperplanes to consider

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

w ⋅ x +b = −1

w ⋅ x +b =1

0=+× bxw !!

||||
2
w

Support vectors are
points on the margins
(The margins are the
two bounding hyperplanes
at distance 1/||w|| from the
decision line)

• We write the optimization problem as…

Optimization = maximize margin

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Dyxbxwy iiii Î"³+× },{,1)(such that

÷÷
ø

ö
çç
è

æ
||||
2maximize
w

remember yi is the class label, and yi ∈ {−1,1}

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Maximizing margins (not mathy)

• Given a guess of w and b we can…
– See if all data points are correctly classified
– Compute the width of the margin

• Now, we just search the space of w’s and b’s
to find the widest margin hyperplane that
correctly classifies the data.

• How?
Gradient descent? Simulated Annealing?
Matrix Inversion?

A little more mathy

• This is a quadratic function with linear constraints.
• Quadratic optimization problems have known algorithmic

solutions.
• Naively, this quadratic optimization can be solved in

O(n^3) time, where n = the number of data points.

Find w and b to maximize

w
2margin =

Dyxbxwy iiii Î"³+× },{,1)(such that

• Maximizing equivalent to minimizing

• For math convenience we ACTUALLY minimize

• Now, we associate a Lagrange multiplier
with each point in the data. This gives…

Still mathy-er

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

÷÷
ø

ö
çç
è

æ
||||
2
w

|||| w

2||||
2
1 w

åå
==

++×-º
||

1

||

1

2)(||||
2
1 D

i
iii

D

i
ip bwxywL aa

α i
xi

(psst: What’s a Lagrange Multiplier?)

• A way of optimizing a function subject to
one (or more) constraint(s) from another
function(s).

• You incorporate the original function and
the constraint equations into one new
equation and then solve.

• For more, check out the wikipedia.

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Why use Lagrangian Multipliers?

• We want to put a line between the sets that
maximize the margin between classes subject to
the constraint all points are correctly classified.

• So…
The margin maximization is a classic maximization
problem
Classifying each point correctly is a constraint

• This is exactly the setup needed for Lagrangians

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

• In practice, people don’t minimize this formula
from the previous slide.

• Instead they maximize its “dual,” which will also
give us what we need and is in a more
convenient format for later work.

The Lagrangian “dual”

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

åå
==

++×-º
||

1

||

1

2)(||||
2
1 D

i
iii

D

i
ip bwxywL aa

)(
2
1 ||

1

||

1

||

1
jijij

D

i

D

j
i

D

i
iD xxyyL ×-º ååå

= ==

aaa

• When we maximize this, a cool thing happens.
Only those points defining the margin have non-
zero values for

• Note also this formulation relates two examples
to each other via a dot product.

• This will become meaningful later…

The Lagrangian “dual”

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

)(
2
1 ||

1

||

1

||

1
jijij

D

i

D

j
i

D

i
iD xxyyL ×-º ååå

= ==

aaa

α

Classification with SVM

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

• For testing, the new data z is classified as class 1 if
and as class -1 if

• SO…our weights are determined by this (where S is the
number of support vectors…aka important points from
our training data)

• And our decision function is a normal linear discriminant.

 f ≥ 0
 f < 0

Classification with SVM: PART 2

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

While our decision function is a normal linear
discriminant….

…people usually calculate the class using the support
vectors (those data points with non-0 alpha values that lie
on the +1 and -1 margins).

The new element z is compared to all the support vectors
and its value is determined by where it lies in comparison
to them.

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

What if we have noisy training data?
• Can we combine minimizing misclassifications

(with some forgiveness) with maximizing the
margin?

Var1

Var2

0=+× bxw !!

Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into
two sets: maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it is
easier to classify with linear decision surfaces:
reformulate problem so that data is mapped
implicitly to this space

Non-Linearly Separable Data

ix

Var1

Var21w x b× + = -
r r

1w x b× + =
r r

0=+× bxw !!

11

w!

ix

Introduce slack
variables (one
per data point)

ix

Allow some
instances to fall
within the
margin, but
penalize them

0,),(1)(³Î"-³+× iiiii Dyxbxwy xx
The constraints then become…

Formulating the Problem

å+×
i

iCww x
2
1

• We are now minimizing this formula

• Subject to the constraints

• Where C determines the weight to
give misclassification error.

0,),(1)(³Î"-³+× iiiii Dyxbxwy xx

Linear, Soft-Margin SVMs

• Algorithm tries to minimize while maximizing margin

• Notice: algorithm does not minimize the number of
misclassifications, but the sum of distances from the
margin hyperplanes

• As , we get closer to the hard-margin solution

() 1 ,
0

i i i i

i

y w x b xx
x

× + ³ - "

³

21min
2 i

i
w C x+ å

 ξi

 C →∞

The Lagrange Dual

• The dual of the “soft” problem is

• w is also recovered as
• The only difference with the linearly separable

case is that there is an upper bound C on
• Once again, a QP solver can be used to find

 α i

 α i

Robustness of Soft vs Hard Margin

Var1

Var2

Var1

Var2

Soft Margin SVM Hard Margin SVM

 ξi

Soft vs Hard Margin SVM

• Soft-Margin always have a solution

• Soft-Margin is more robust to outliers
– Smoother surfaces (in the non-linear case)

• Hard-Margin requires no parameters at all

)(
2
1 ||

1

||

1

||

1
jijij

D

i

D

j
i

D

i
iD xxyyL ×-º ååå

= ==

aaa

Linear SVMs: Overview
• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define
the hyperplane.

• Quadratic optimization algorithms can identify which training points
xi are support vectors with non-zero Lagrangian multipliers.

• Both in the dual formulation of the problem and in the solution,
training points appear only inside inner products:

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Extension to Non-linear Decision Boundary

• So far, we have only considered large-margin
classifier with a linear decision boundary

• What if the decision boundary is non-linear?

A one-dimensional decision problem

x

Support Vector Machines

Main ideas:

1. Find an “optimal” hyperplane to split the data into
two sets: maximize margin

2. Extend the above definition for non-linearly
separable problems: have a penalty term for
misclassifications

3. Map data to high dimensional space where it is
easier to classify with linear decision surfaces:
reformulate problem so that data is mapped
implicitly to this space

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Higher dimensional mapping

• The idea is to map the vectors to a higher
dimensional space to gain linear
separation.

Mapping x onto
{x2,x} gives linear
separation.

x

x2x

Non-linear SVMs: Feature spaces

• General idea: the original feature space can be mapped
to some higher-dimensional feature space where the
training set is separable:

Φ: x → φ(x)

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

What this does to the math
• Recall the SVM optimization problem with its inner

product between data points

• If we transform the data into a new vector space, this
changes the math ever so slightly to be…

What are Kernel Functions?

• Kernels (in this context) are functions that return inner
products between the images of data points

• Since they are inner products, they can be thought of as
similarity functions

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

K(x1, x2) = Φ(x1),Φ(x2)

Why Use Kernel Functions

• You can define kernels for many things that aren’t
vectors of real values in Euclidean space (e.g. text
documents)

• As long as we can calculate the inner product in the
original feature space, we do not need to explicitly
calculate the mapping Φ

• It can often be more efficient to compute K directly,
without going through the step of computing Φ

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

K(x1, x2) = Φ(x1),Φ(x2)

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

That math again…
This original formula…

…becomes this, when we apply a data transformation…

…and if we can define a kernel…

…it becomes this…

Bryan Pardo, Machine Learning: EECS 349 Fall 2011

An Example Kernel
• Suppose is given as follows

• An inner product in the feature space is

** NOTE: On this slide y is not the label, it is a feature vector, just like x **

• So, if we define the kernel function as follows, there is
no need to carry out f(.) explicitly

• This use of kernel function to avoid calculating
explicitly is known as the kernel trick

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Examples of Kernel Functions
** NOTE: On this slide y is not the label, it is a feature vector, just like x **

• Polynomial kernel with degree d

• Radial basis function kernel with width s

– Closely related to radial basis function neural networks
– The feature space is infinite-dimensional

• Sigmoid with parameter k and q

– It does not satisfy the Mercer condition on all k and q

Building Kernels from Other Kernels

• Kernels can be composed from other kernels
• The following 2 slides give some basic rules for

building complex kernels from simple kernels

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Definitions for the following slide

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

k1(x, x ') and k 2 (x, x ') are valid kernels on {x,x'}∈S
S is some set (of anything: emails, images, integers)
c > 0 is a constant
f (⋅) is any function
q(⋅) is a polynomial with non-negative coefficients
φ(x) is a function from the ->!m

k3(⋅,⋅)is a valid kernel in !m

A is a symmetric positive semidefinite matrix
x = (xa , xb)essentially, x can be decomposed into subparts
 ...like scalars in a vector
ka (⋅,⋅),kb (⋅,⋅) are valid kernels over their respective spaces

Techniques for Kernel Construction

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Given valid kernels k1(x, x ') and k 2 (x, x '),
the following are also valid kernels
k(x, x ') = ck1(x, x ')
k(x, x ') = f (x)k1(x, x ') f (x ')
k(x, x ') = q(k1(x, x '))
k(x, x ') = exp(k1(x, x '))
k(x, x ') = k1(x, x ')+ k2 (x, x ')
k(x, x ') = k3(φ(x),φ(x '))
k(x, x ') = xT Ax ' This one assumes x,x' are vectors
k(x, x ') = ka (xa , x 'a)+ kb (xb , x 'b)
k(x, x ') = ka (xa , x 'a)kb (xb , x 'b)

Bryan Pardo, Machine Learning: EECS 349 Fall 2014

Classifying with a Kernel

• For testing, the new data z is classified as class 1 if
and as class -1 if

Original

With kernel
function

 f ≥ 0
 f < 0

NOTE: y is once again a label from the set {-1, 1} **

Strengths and Weaknesses of SVM

• Strengths
– Training is relatively easy
– It scales relatively well to high dimensional data
– Tradeoff between classifier complexity and error can

be controlled explicitly
– Non-traditional data like strings and trees can be

used as input to SVM, instead of feature vectors
• Weaknesses

– Tuning SVMs remains a black art: selecting a
specific kernel and parameters is usually done in a
try-and-see manner.

You as the SVM user

• You have two main choices to make:
1) What kernel will you use?

Polynomial?
Radial Basis Function?
Something else?

2) How much “slack” will you allow?
Depends on how much you trust data collection and
labeling.

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and
gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g.
graphs, sequences, relational data) by designing kernel functions for
such data.

• SVM techniques have been extended to a number of tasks such as
regression [Vapnik et al. ’97], principal component analysis [Schölkopf
et al. ’99], etc.

• Most popular optimization algorithms for SVMs use decomposition to
hill-climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and
[Joachims ’99]

