
Northwestern University, EECS 349, 2017

Machine Learning

Reinforcement Learning
(thanks in part to Bill Smart at Washington University in St. Louis)

Learning Types

• Supervised learning:
– (Input, output) pairs of the function to be learned can

be perceived or are given.

Back-propagation in Neural Nets

• Unsupervised Learning:
– No information about desired outcomes given

K-means clustering

• Reinforcement learning:
– Reward or punishment for actions

Q-Learning

Northwestern University, EECS 349, 2017

Reinforcement Learning

• Task
– Learn how to behave to achieve a goal
– Learn through experience from trial and error

• Examples
– Game playing: The agent knows when it wins, but

doesn’t know the appropriate action in each state
along the way

– Control: a traffic system can measure the delay of
cars, but not know how to decrease it.

Northwestern University, EECS 349, 2017

Basic RL Model

1. Observe state, st
2. Decide on an action, at
3. Perform action
4. Observe new state, st+1
5. Observe reward, rt+1
6. Learn from experience
7. Repeat

•Goal: Find a control policy that will maximize the
observed rewards over the lifetime of the agent

AS R

World

Northwestern University, EECS 349, 2017

An Example: Gridworld

• Canonical RL domain
States are grid cells
4 actions: N, S, E, W
Reward for entering top right cell
-0.01 for every other move

+1

Northwestern University, EECS 349, 2017

Mathematics of RL

• Before we talk about RL, we need to cover
some background material
– Simple decision theory
– Markov Decision Processes
– Value functions
– Dynamic programming

Northwestern University, EECS 349, 2017

Making Single Decisions

• Single decision to be made
– Multiple discrete actions
– Each action has an associated reward

• Goal is to maximize reward
– Just pick the action with the largest reward

• State 0 has a value of 2
– Reward from taking the best action

0

1

22

1

Northwestern University, EECS 349, 2017

Markov Decision Processes

• We can generalize the previous example to
multiple sequential decisions
– Each decision affects subsequent decisions

• This is formally modeled by a Markov Decision
Process (MDP)

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Northwestern University, EECS 349, 2017

Markov Decision Processes

• Formally, a MDP is
– A set of states, S = {s1, s2, ... , sn}
– A set of actions, A = {a1, a2, ... , am}
– A reward function, R: S´A´S→Â
– A transition function,

• Sometimes T: S´A→S

• We want to learn a policy, p: S →A
– Maximize sum of rewards we see over our

lifetime

()aai,s|jsPP tt1t
a
ij ==== +

Northwestern University, EECS 349, 2017

Policies
• A policy p(s) returns the action to take in state s.

• There are 3 policies for this MDP
Policy 1: 0 →1 →3 →5
Policy 2: 0 →1 →4 →5
Policy 3: 0 →2 →4 →5

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Northwestern University, EECS 349, 2017

Comparing Policies

• Which policy is best?
• Order them by how much reward they see

Policy 1: 0 →1 →3 →5 = 1 + 1 + 1 = 3
Policy 2: 0 →1 →4 →5 = 1 + 1 + 10 = 12
Policy 3: 0 →2 →4 →5 = 2 – 1000 + 10 = -988

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Northwestern University, EECS 349, 2017

Value Functions
• We can associate a value with each state

– For a fixed policy
– How good is it to run policy p from that state s
– This is the state value function, V

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A 10

1
B

1

V1(s0) = 3
V2(s0) = 12
V3(s0) = -988

V1(s1) = 2
V2(s1) = 11

V3(s2) = -990
V2(s4) = 10
V3(s4) = 10

V1(s3) = 1

A

A

How do you tell which
policy to follow from

each state?

Northwestern University, EECS 349, 2017

Q Functions

• Define value without specifying the policy
– Specify the value of taking action A from state S and

then performing optimally, thereafter

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A
10

1
B

1

Q(0, A) = 12
Q(0, B) = -988

Q(3, A) = 1

Q(4, A) = 10

Q(1, A) = 2
Q(1, B) = 11

Q(2, A) = -990

A

A

How do you tell which
action to take from

each state?

Northwestern University, EECS 349, 2017

Value Functions

• This gives us two value functions:

Vp(s) = R(s, p(s), s’) + Vp(s’)

Q(s, a) = R(s, a, s’) + maxa’ Q(s’, a’)

s’ is the
next state

a’ is the
next action

Northwestern University, EECS 349, 2017

Value Functions

• These can be extend to probabilistic actions
(for when the results of an action are not certain, or

when a policy is probabilistic)

() () ()() ()()s'Vs' ,s s,R(s)s,|s'PsV
s'

pp +p=å p

() () ()()a' ,s'Q maxs' a, s,Ra)s,|P(s'as,Q a'
s'

+=å

Northwestern University, EECS 349, 2017

Getting the Policy

• If we have the value function, then finding
the optimal policy, p*(s), is easy…just find
the policy that maximized value

p*(s) = arg maxa (R(s, a, s’) + Vp(s’))

p*(s) = arg maxa Q(s, a)

Northwestern University, EECS 349, 2017

Problems with Our Functions

• Consider this MDP
– Number of steps is now unlimited because of loops
– Value of states 1 and 2 is infinite for some policies

Q(1, A) = 1 + Q(1, A)
Q(1, A) = 1 + 1 + Q(1, A)
Q(1, A) = 1 + 1 + 1 + Q(1, A)
Q(1, A) = ...

• This is bad
– All policies with a non-

zero reward cycle have
infinite value

0

1

2

A

B
1000

-1000

3

0

0

A

A

B

B

1

1

Northwestern University, EECS 349, 2017

Better Value Functions

• Introduce the discount factor g, to get around
the problem of infinite value

– Three interpretations
• Probability of living to see the next time step
• Measure of the uncertainty inherent in the world
• Makes the mathematics work out nicely

Assume 0 ≤ g ≤ 1

Vp(s) = R(s, p(s), s’) + gVp(s’)

Q(s, a) = R(s, a, s’) + gmaxa’ Q(s’, a’)

Northwestern University, EECS 349, 2017

Better Value Functions

• Optimal Policy:
p(0) = B
p(1) = A
p(2) = A

0

1

2

A

B
1000

-1000

3

0

0

A

A

B

B

1

1

Northwestern University, EECS 349, 2017

Dynamic Programming

• Given the complete MDP model, we can
compute the optimal value function directly

[Bertsekas, 87, 95a, 95b]

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A
10

1
B

1

V(5) = 0

A
0

A

A

V(3) = 1 + 0g

V(4) = 10 + 0g

V(1) = 1 + 10g + 0g2

V(2) = - 1000 +10g + 0g2

V(0) = 1 + g + 10g2 +0g3

Northwestern University, EECS 349, 2017

Reinforcement Learning

• What happens if we don’t have the whole MDP?
– We know the states and actions
– We don’t have the system model (transition function)

or reward function
• We’re only allowed to sample from the MDP

– Can observe experiences (s, a, r, s’)
– Need to perform actions to generate new experiences

• This is Reinforcement Learning (RL)
– Sometimes called Approximate Dynamic

Programming (ADP)

Northwestern University, EECS 349, 2017

Learning Value Functions

• We still want to learn a value function
– We’re forced to approximate it iteratively
– Based on direct experience of the world

• Four main algorithms
– Certainty equivalence
– TD l learning
– Q-learning
– SARSA

Northwestern University, EECS 349, 2017

Certainty Equivalence

• Collect experience by moving through the world
– s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4, a4, r5, s5, ...

• Use these to estimate the underlying MDP
– Transition function, T: S´A → S
– Reward function, R: S´A´S → Â

• Compute the optimal value function for this MDP

• And then compute the optimal policy from it

Northwestern University, EECS 349, 2017

How are we going to do this?

• Reward whole
policies?
– That could be a pain

• What about
incremental rewards?
– Everything has a

reward of 0 except for
the goal

• Now what???

S

G

100
points

Northwestern University, EECS 349, 2017

Exploration vs. Exploitation

• We want to pick good actions most of the time,
but also do some exploration

• Exploring means we can learn better policies

• But, we want to balance known good actions
with exploratory ones

• This is the exploration/exploitation problem

Northwestern University, EECS 349, 2017

On-Policy vs. Off Policy

• On-policy algorithms
– Final policy is influenced by the exploration policy
– Generally, the exploration policy needs to be “close”

to the final policy
– Can get stuck in local maxima

• Off-policy algorithms
– Final policy is independent of exploration policy
– Can use arbitrary exploration policies
– Will not get stuck in local maxima

Northwestern University, EECS 349, 2017

Picking Actions

e-greedy
– Pick best (greedy) action with probability e
– Otherwise, pick a random action

• Boltzmann (Soft-Max)
– Pick an action based on its Q-value

…where t is the “temperature”
å

÷
ø
ö

ç
è
æ

÷
ø
ö

ç
è
æ

=

a'

)a' Q(s,

a) Q(s,

e

e s) | P(a
t

t

Northwestern University, EECS 349, 2017

TD(l)

• TD-learning estimates the value function directly
– Don’t try to learn the underlying MDP

• Keep an estimate of Vp(s) in a table
– Update these estimates as we gather more

experience
– Estimates depend on exploration policy, p
– TD is an on-policy method

[Sutton, 88]

Northwestern University, EECS 349, 2017

TD(0)-Learning Algorithm
• Initialize Vp(s) to 0
• Make a (possibly randomly created) policy p
• For each ‘episode’ (episode = series of actions)

1. Observe state s
2. Perform action according to the policy p(s)
3. V(s) ← (1-a)V(s) +a[r + gV(s’)]
4. s ← s’
5. Repeat until out of actions

• Update policy given newly learned values
• Start a new episode

r = reward
a= learning rate
g= discount factorNote: this formulation is from Sutton &

Barto’s “Reinforcement Learning”

Northwestern University, EECS 349, 2017

(Tabular) TD-Learning Algorithm

1. Initialize Vp(s) to 0, and e(s) = 0"s
2. Observe state, s
3. Perform action according to the policy p(s)
4. Observe new state, s’, and reward, r
5. d ← r + gVp(s’) - Vp(s)
6. e(s) ← e(s)+1
7. For all states j

Vp(s) ← Vp(s) + a de(j)
e(j) ←gle(s)

8. Go to 2
g = future returns
discount factor
l = eligibility discount
a = learning rate

Northwestern University, EECS 349, 2017

TD-Learning

• Vp(s) is guaranteed to converge to V*(s)
– After an infinite number of experiences
– If we decay the learning rate

will work

• In practice, we often don’t need value
convergence
– Policy convergence generally happens sooner

¥=aå
¥

=0t
t

¥<aå
¥

=0t

2
t

tc
c

t +
=a

Northwestern University, EECS 349, 2017

SARSA

• SARSA iteratively approximates the state-action
value function, Q
– Like Q-learning, SARSA learns the policy and the

value function simultaneously

• Keep an estimate of Q(s, a) in a table
– Update these estimates based on experiences
– Estimates depend on the exploration policy
– SARSA is an on-policy method
– Policy is derived from current value estimates

Northwestern University, EECS 349, 2017

SARSA Algorithm

1. Initialize Q(s, a) to small random values, "s, a
2. Observe state, s
3. a ← p(s) (pick action according to policy)
4. Observe next state, s’, and reward, r
5. Q(s, a) ← (1-a)Q(s, a) + a(r + gQ(s’, p(s’)))
6. Go to 2

• 0 ≤ a ≤ 1 is the learning rate
– We should decay this, just like TD

Northwestern University, EECS 349, 2017

Q-Learning
• Q-learning iteratively approximates the state-

action value function, Q
– We won’t estimate the MDP directly
– Learns the value function and policy simultaneously

• Keep an estimate of Q(s, a) in a table
– Update these estimates as we gather more

experience
– Estimates do not depend on exploration policy
– Q-learning is an off-policy method

[Watkins & Dayan, 92]

Northwestern University, EECS 349, 2017

Q-Learning Algorithm
1. Initialize Q(s, a) to small random values, "s, a

(what if you make them 0? What if they are big?)
2. Observe state, s
3. Randomly (or e greedy) pick action, a
4. Observe next state, s’, and reward, r
5. Q(s, a) ← (1 - a)Q(s, a) + a(r + gmaxa’Q(s’, a’))
6. s ←s’
7. Go to 2

0 ≤ a ≤ 1 is the learning rate & we should decay a, just like in TD
Note: this formulation is from Sutton & Barto’s “Reinforcement Learning”

Northwestern University, EECS 349, 2017

r(state, action)
immediate reward values

Q(state, action) valuesV*(state) values

100

0

0

100

G

0

0

0

0

0

0

0

0

0

90

81

100
G

0

81

72

90

81
81

72

90

81

100

G
90 100 0

81 90 100

Q-learning
• Q-learning, learns the expected utility of

taking a particular action a in state s

Northwestern University, EECS 349, 2017

Convergence Guarantees

• The convergence guarantees for RL are “in the
limit”
– The word “infinite” crops up several times

• Don’t let this put you off
– Value convergence is different than policy

convergence
– We’re more interested in policy convergence
– If one action is significantly better than the others,

policy convergence will happen relatively quickly

Northwestern University, EECS 349, 2017

Rewards

• Rewards measure how well the policy is doing
– Often correspond to events in the world

• Current load on a machine
• Reaching the coffee machine
• Program crashing

– Everything else gets a 0 reward

• Things work better if the rewards are
incremental
– For example, distance to goal at each step
– These reward functions are often hard to design

Northwestern University, EECS 349, 2017

The Markov Property

• RL needs a set of states that are Markov
– Everything you need to know to make a decision is

included in the state
– Not allowed to consult the past

• Rule-of-thumb
– If you can calculate the reward

function from the state without
any additional information,
you’re OK

S G

K

Not holding key

Holding key

Northwestern University, EECS 349, 2017

But, What’s the Catch?

• RL will solve all of your problems, but
– We need lots of experience to train from
– Taking random actions can be dangerous
– It can take a long time to learn
– Not all problems fit into the MDP framework

Northwestern University, EECS 349, 2017

Learning Policies Directly

• An alternative approach to RL is to reward whole
policies, rather than individual actions
– Run whole policy, then receive a single reward
– Reward measures success of the whole policy

• If there are a small number of policies, we can
exhaustively try them all
– However, this is not possible in most interesting

problems

Northwestern University, EECS 349, 2017

Policy Gradient Methods

• Assume that our policy, p, has a set of n real-
valued parameters, q = {q1, q2, q3, ... , qn }
– Running the policy with a particular q results in a

reward, rq

– Estimate the reward gradient, , for each qi
iθ
R
¶
¶

i
ii θ

Rθθ
¶
¶

+¬ a

This is another
learning rate

Northwestern University, EECS 349, 2017

Policy Gradient Methods

• This results in hill-climbing in policy space
– So, it’s subject to all the problems of hill-climbing
– But, we can also use tricks from search, like random

restarts and momentum terms

• This is a good approach if you have a
parameterized policy
– Typically faster than value-based methods
– “Safe” exploration, if you have a good policy
– Learns locally-best parameters for that policy

Northwestern University, EECS 349, 2017

An Example: Learning to Walk

• RoboCup legged league
– Walking quickly is a big advantage

• Robots have a parameterized gait controller
– 11 parameters
– Controls step length, height, etc.

• Robots walk across soccer pitch and are timed
– Reward is a function of the time taken

[Kohl & Stone, 04]

Northwestern University, EECS 349, 2017

An Example: Learning to Walk

• Basic idea
1. Pick an initial q = {q1, q2, ... , q11}
2. Generate N testing parameter settings by perturbing q

qj = {q1 + d1, q2 + d2, ... , q11 + d11}, di Î {-e, 0, e}
3. Test each setting, and observe rewards

qj → rj

4. For each qi Î q
Calculate q1

+, q1
0, q1

- and set
5. Set q ← q’, and go to 2

Average reward
when qn

i = qi - di

ï
þ

ï
ý

ü

ï
î

ï
í

ì

-
+¬

-

+

largest θ if
 largest θ if

largest θ if
θθ'

i

i

i

ii

d

d
00

Northwestern University, EECS 349, 2017

An Example: Learning to Walk

Video: Nate Kohl & Peter Stone, UT Austin

Initial Final

http://utopia.utexas.edu/media/features/av.qtl

Northwestern University, EECS 349, 2017

Value Function or Policy Gradient?

• When should I use policy gradient?
– When there’s a parameterized policy
– When there’s a high-dimensional state space
– When we expect the gradient to be smooth

• When should I use a value-based
method?
– When there is no parameterized policy
– When we have no idea how to solve the

problem
Northwestern University, EECS 349, 2017

