Machine Learning

Probability and Bayesian Networks
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Axioms of Probability

Let there be a space S .
composed of a countable O = {81, 62,63,....€n}
number of events

The probability of each
evenlg is betwteyen oand1 0P (31) <1

The probability of the
whole sample space is 1 P(S) =1

When two events are

tuall lusive, =
mutually exclusive, — P(e, ve,) = P(e)+ P(e,)

additive
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Discrete Random Variable

* Discrete random variable X represents some experiment.

* P(X)1is the probability distributions over {x,,...,x },

theset of possible outcomes for X.

* These outcomes are mutually exclusive.
* Their probabilities sum to one:: Z P(x)=1
i=l1
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An Example: Your grade

F D C B A

GPA value | Letter Probability
grade

4 A 0.2
3 B 0.4
2 C 0.2
1 D 0.15
0 F 0.05
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Boolean Random Variable

e Boolean random variable: A random variable
that has only two possible outcomes

e.g.

X = “Tomorrow’s high temperature > 60" has
only two possible outcomes

As a notational convention, P(X) for a Boolean

variable will mean P(X="true"”), since it is easy
to infer the rest of the distribution.
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Vizualizing P(A) for a Boolean variable

All Possible Worlds

Worlds where A is True

arca of yellow oval

0<P(A)<L1
If a valueis overl
or under 0, 1t 1sn't

a probability

P(A) =

area of blue rectangl

C
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Vizualizing Stuff for two Booleans

P(Av B) = P(A)+ P(B)— P(AA B)
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Independence

e variables A and B are said to be
independent iff...

P(A)P(B) = P(A A B)
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Bayes Rule

o Definition of
Conditional P(A|B) = P4 B)
Probability P(B)

P(A| B)P(B) = P(A A B)

e Corollary:
The Chain Rule
P(B| A) - P(AAB)
e Bayes Rule P(4)
(Thomas Bayes, 1763) P(A|B)P(B)
- P(4)
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Conditional Probability

V!

—

Can we do the following?

P(A|B) =

The conditional probability
of A given B is represented
by the following formula

P(A N B)
P(B)

NOT Independent

P(A|B) =

P(AAB) _ P(A)P(B)

P(B)

P(B)

Only if Aand B are independent
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The Joint Distribution

e Make a truth table

Prob

listing all

0.1

combinations of

0.2

variable values

0.1

e Assign a probability to
each row

0.05

e Make sure the

0.05

probabilities sum to 1

0.2

0.25

= _ R, OO0 IO0O|X>
= R OO R, RO O

= O = Ol Ol OO0

0.05
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Using The Joint Distribution

e Find P(A) A B C Prob
e Sum the probabilities |0 0 0 0.1
of all rows where A=1 | 0 1 0.2
0 1 0 0.1
P(A) = 0.05+ 0.2 + 0 1 1 0.05
0.25+ 0.05 1 0 0 0.05
= 0.5 1 0 |1 |02
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

e Find P(A|B) A B C Prob
0 0 0 0.1
p4|B)= LA~ B) 0 [0 |1 |02
P(B) 0 1 0 0.1
B 0.25+0.05 0 1 1 0.05
0.1+0.05+0.25+0.05 |4 0 0 0.05
_ 0.3 1 0 1 0.2
0.45 1 1 0 0.25
— .666667 1 1 1 0.05
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Using The Joint Distribution

e Are Aand B A B C Prob

Independent? 0 0 0 0.1

0 0 1 0.2

P(AAB)=0.3 0 ; ) 01
P(A)=0.55 0 ) 1 0,05
P(B)=0.45 1 [0 o [0.05

P(A)P(B)=0.55%045 (1 |0 |1 |02
1 1 0 0.25

P(AAB)# P(A)P(B

( )= P(ADPB) 117 Tz

NO. They are NOT independent
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Why not use the Joint Distribution?

e Given m boolean variables, we need to
estimate 2™ values.

e 20 yes-no questions = a million values

e How do we get around this combinatorial
explosion?
— Assume independence of variables!!
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...back to Independence

e The probability I have an apple in my lunch bag
is independent of the probability of a blizzard in
Japan.

e This is DOMAIN Knowledge, typically supplied
by the problem designer

e Independence implies...

P(A| B) = P(A)
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Let’s show that.

assuming independence...
P(AAB)= P(A)P(B)
plus the chain rule...
P(AAB)=P(A|B)P(B)
imply...
P(A)P(B)=P(A|B)P(B)
which means...
P(A|B)=P(A)
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Some Definitions
Prior probability of h, P(h):

— The background knowledge we have about the chance that his a
correct hypothesis (before having observed the data).

Prior probability of D, P(D):
— the probability that training data D will be observed given no
knowledge about which hypothesis A holds.

Conditional Probability of D, P(D[h):
— the probability of observing data D given that hypothesis A holds.

Posterior probability of h, P(h|D):
— the probability that A is true, given the observed training data D.
— the quantity that Machine Learning researchers are interested in.
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Discrete Random Variables

e What if we have three hypotheses?

e How do we predict the most likely value
for a new example?

h; : Looks h, : Money h; : Ideas
matter matters matter
We want a prediction: yes or no? — ( Obama Elected President
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Maximum A Posteriori (MAP)

e Goal: To find the most probable hypothesis A from a set
of candidate hypotheses H given the observed data D.

e MAP Hypothesis, hy,p

Ry, = argmax(P(h | D))

P(D | h)P(h)
P(D)

=argmax(P(D | h)P(h))

heH

= arg max
heH
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Maximum A Posteriori (MAP)

e Find most probable hypothesis
Py, = argmax(P(D | h)P(h))

heH
e Use the predictions of that hypothesis

h; : Looks h; : Ideas
matter matter

.... do we really want to ignore the other hypotheses?

Imagine 8 hypotheses. Seven of them say “yes” and
have a probability of 0.1 each. One says “no” and
has a probability of 0.3. Who do you believe?
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Maximum Likelihood (ML)

e ML hypothesis is a special case of the MAP hypothesis
where all hypotheses are, to begin with, equally likely

Py = argh :EaX(P(D | h)P(h))

Assume...

P(h) = 1 Vhe H
| H |
Then...
h , =argmax(P(D|h))

heH
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Bayes Optimal Classifier

e An advantage of Bayesian Decision Theory

— it gives us a lower bound on the classification error that can be
obtained for a given problem.

Bayes Optimal Classification: The most probable classification
of a new instance is obtained by combining the predictions of all
hypotheses, weighted by their posterior probabilities:

argmax » P(v|h)P(h|D)

vel
heH

...where Vs the set of all the values a classification can take and v
is one possible such classification.
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Gibbs Classifier

e Bayes optimal classification can be too hard to compute

e Instead, randomly pick a single hypothesis (according to
the probability distribution of the hypotheses)

o use this hypothesis to classify new cases

argmax P(v|h)P(h| D)
vel
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Naive Bayes Classifier

Cases described by a conjunction of attribute values
— These attributes are our “independent” hypotheses

The target function has a finite set of values, V

Vip =argmaxP(v; |a, Aa,...Aa,)

vjeV

Could be solved using the joint distribution table

What if we have 50,000 attributes?

— Attribute j is a Boolean signaling presence or absence of the jth
word from the dictionary in my latest email.
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Naive Bayes Classifier

Vyup =argmax P(v. |a, Ana,...na,)

v;ely
P(a, nay...na, |v,)P(v;)
= arg max
VeV P(a, na,...na))

=argmax P(a, Ana,..Ana, |v;)P(v;)

vjeV
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Naive Bayes Continued

Viup = argmax P(a, Aa,...na, |v,)P(v;)
v, eV

independence step

vy =argmax P(a, |v;)P(a,|v;).....P(a,|v;)P(v;)

vjeV

=argmax P(v, )HP(a V)

veV

Instead of one table of size 250000 we have 50,000 tables of size 2
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Bayesian Belief Networks

o Bayes Optimal Classifier
— Often too costly to apply (uses full joint probability)

e Naive Bayes Classifier
— Assumes conditional independence to lower costs
— This assumption often overly restrictive

o Bayesian belief networks
— provide an intermediate approach

— allows conditional independence assumptions that
apply to subsets of the variable.
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