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Machine Learning

Probability and Bayesian Networks
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Axioms of Probability
• Let there be a space S 

composed of a countable 
number of events 

• The probability of each 
event is between 0 and 1

• The probability of the 
whole sample space is 1

• When two events are 
mutually exclusive, 
their probabilities are 
additive   
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Discrete Random Variable
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An Example: Your grade
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GPA value Letter 
grade

Probability

4 A 0.2
3 B 0.4
2 C 0.2
1 D 0.15
0 F 0.05

F D C B A0

0.1

0.2

0.3

0.4



Boolean Random Variable

• Boolean random variable: A random variable 
that has only two possible outcomes
e.g.

X = “Tomorrow’s high temperature > 60” has   
only two possible outcomes

As a notational convention, P(X) for a Boolean 
variable will mean P(X=“true”), since it is easy 
to infer the rest of the distribution.
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Vizualizing P(A) for a Boolean variable
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Vizualizing Stuff for two Booleans
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Independence

• variables A and B are said to be 
independent iff…
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Bayes Rule

• Definition of 
Conditional  
Probability 

• Corollary: 
The Chain Rule

• Bayes Rule 
(Thomas Bayes, 1763)
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Conditional Probability
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Can we do the following?
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Only if A and B are independent

The conditional probability 
of A  given B is represented 
by the following formula

NOT Independent
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The Joint Distribution

• Make a truth table 
listing all 
combinations of 
variable values

• Assign a probability to 
each row

• Make sure the 
probabilities sum to 1

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

• Find P(A)
• Sum the probabilities 

of all rows where A=1

P(A) = 0.05+ 0.2 + 
0.25+ 0.05

= 0.55

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

• Find P(A|B) A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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Using The Joint Distribution

• Are A and B 
Independent?

A B C Prob
0 0 0 0.1
0 0 1 0.2
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.2
1 1 0 0.25
1 1 1 0.05
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NO. They are NOT independent
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Why not use the Joint Distribution?

• Given m boolean variables, we need to 
estimate  2m values.

• 20 yes-no questions = a million values

• How do we get around this combinatorial 
explosion?  
– Assume independence of variables!!
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…back to Independence

• The probability I have an apple in my lunch bag 
is independent of the probability of a blizzard in 
Japan.

• This is DOMAIN Knowledge, typically supplied 
by the problem designer

• Independence implies…
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Let’s show that.
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Some Definitions
• Prior probability of h, P(h):

– The background knowledge we have about the chance that h is a 
correct hypothesis (before having observed the data).

• Prior probability of D, P(D):
– the probability that training data D will be observed given no 

knowledge about which hypothesis h holds.

• Conditional Probability of D, P(D|h):
– the probability of observing data D given that hypothesis h holds.

• Posterior probability of h, P(h|D):
– the probability that h is true, given the observed training data D. 
– the quantity that Machine Learning researchers are interested in.
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Discrete Random Variables

• What if we have three hypotheses?
• How do we predict the most likely value 

for a new example?

h1 : Looks
matter

Obama Elected PresidentWe want a prediction: yes or no?

h2 : Money
matters

h3 : Ideas
matter
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Maximum A Posteriori (MAP) 
• Goal: To find the most probable hypothesis h from a set 

of candidate hypotheses H given the observed data D.
• MAP Hypothesis, hMAP
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Maximum A Posteriori (MAP) 
• Find most probable hypothesis

• Use the predictions of that hypothesis

))()|((maxarg hPhDPh
Hh
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h1 : Looks
matter

h2 : Money
matters

h3 : Ideas
matter

…. do we really want to ignore the other hypotheses? 

Imagine 8 hypotheses. Seven of them say “yes” and 
have a probability of 0.1 each.  One says “no” and 
has a probability of 0.3.  Who do you believe?
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Maximum Likelihood (ML) 
• ML hypothesis is a special case of the MAP hypothesis 

where all hypotheses are, to begin with, equally likely 
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Bayes Optimal Classifier
• An advantage of Bayesian Decision Theory 

– it gives us a lower bound on the classification error that can be 
obtained for a given problem.

• Bayes Optimal Classification: The most probable classification 
of a new instance is obtained by combining the predictions of all 
hypotheses, weighted by their posterior probabilities:

…where V is the set of all the values a classification can take and v
is one possible such classification.
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Gibbs Classifier
• Bayes optimal classification can be too hard to compute
• Instead, randomly pick a single hypothesis (according to 

the probability distribution of the hypotheses) 
• use this hypothesis  to classify new cases
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Naïve Bayes Classifier
• Cases described by a conjunction of attribute values

– These attributes are our “independent” hypotheses
• The target function has a finite set of values, V

• Could be solved using the joint distribution table
• What if we have 50,000 attributes?  

– Attribute j is a Boolean signaling presence or absence of the jth 
word from the dictionary in my latest email.
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Naïve Bayes Classifier
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Naïve Bayes Continued
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independence step

Instead of one table of size 250000 we have 50,000 tables of size 2
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Bayesian Belief Networks
• Bayes Optimal Classifier

– Often too costly to apply (uses full joint probability)

• Naïve Bayes Classifier
– Assumes conditional independence to lower costs 
– This assumption often overly restrictive

• Bayesian belief networks
– provide an intermediate approach 
– allows conditional independence assumptions that 

apply to subsets of the variable.


