
(with ideas and a few images from  Andrew Moore
Check out his site at http://www.autonlab.org/)

Machine Learning

Topic 3: Instance-based learning
(a.k.a. Nearest Neighbor learning)
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Classification vs. Regression

• Classification:
Learning a function to map from a n-tuple to a 

discrete value from a finite set

• Regression:
Learning a function to map from a n-tuple to a 

continuous value
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Nearest Neighbor Classifier

• Example of memory-based (a.k.a instance-
based, a.k.a case-based) learning

• The basic idea:
1. Get some example set of cases with known outputs 

e.g diagnoses of infectious diseases by experts
2. When you see a new case, assign its output to be 

the same as the most similar known case.
Your symptoms most resemble Mr X.
Mr X had the flu. 
Ergo you have the flu. 
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There is a set of possible examples

Each example is an k-tuple of attribute values

There is a target function that maps X onto some finite set Y

The DATA is a set of tuples <example, target function values>

Find a hypothesis h such that...

General Learning Task
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Eager vs. Lazy

Eager learning
• Learn model ahead of 

time from training data

• Explicitly learn h from 
training data

• E.g. decision tree, linear 
regression, svm, neural 
nets, etc.

Lazy learning
• Delay the learning 

process until a query
example must be labeled

• h is implicity learned from 
training data

• E.g. Nearest neighbor, 
kNN, locally weighted
regression, etc.
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Single Nearest Neighbor

Given some set of training data…

…and query point     , predict

1. Find the nearest member 
of the data set to the query

2. Assign the nearest neighbor’s 
output to the query
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A Univariate Example
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• Find closest point.

• Give query its value
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A Univariate Example
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• Find closest point.

• Give query its value
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A Two-dimensional Example

• Voronoi diagram
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What makes a memory based learner?

• A distance measure
Nearest neighbor:  typically Euclidean

• Number of neighbors to consider
Nearest neighbor: One

• A weighting function (optional)
Nearest neighbor: unused (equal weights)

• How to fit with the neighbors
Nearest neighbor: Same output as nearest 

neighbor
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K-nearest neighbor

• A distance measure
Euclidean

• Number of neighbors to consider
K

• A weighting function (optional)
Unused (i.e. equal weights)

• How to fit with the neighbors
regression: average output among K nearest 

neighbors.
classification: most popular output among K 

nearest neighbors
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Choosing K

• Too small of K fits the output to the noise in the 
dataset (overfit)

• Too large of K can make decision boundaries in 
classification indistinct (underfit)

• Choose K empirically using cross-validation
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Ex. of KNN for classification

http://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/
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Ex. Of kNN regression where K=9
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Reasonable job
Did smooth noise

Screws up on the ends OK, but problem on 
the ends again. 
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Kernel Regression

• A distance measure: Scaled Euclidean

• Number of neighbors to consider: All of them

• A weighting function:

• How to fit with the neighbors:
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weighted strongly, far points 
weakly.  The Kw parameter is 
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Kernel Regression
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Kernel Weight = 1/32
of X-axis width

Definitely better than 
KNN!  Catch: Had to play 
with kernel width to get 
This result

Nice and smooth, but
are the bumps
justified, or is this
overfitting?

Kernel Weight = 1/32
of X-axis width

Kernel Weight = 1/16
of X-axis width

A better fit than KNN?
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Weighting dimensions

• Suppose data points are two-dimensional
• Different dimensional weightings affect region shapes
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kNN and Kernel Regression

Pros
• Robust to noise
• Very effective when training data is sufficient
• Customized to each query
• Easily adapts when new training data is added
Cons
• How to weight different dimensions?
• Irrelevant dimensions
• Computationally expensive to label a new query
• High space requirements (must retain each training 

example)
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Locally Weighted (Linear) Regression

• Linear regression: global, linear

• kNN: local, constant
• LWR: local, linear
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Locally Weighted (Linear) Regression
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Locally Weighted Polynomial Regression
• Use a polynomial instead of a linear 

function to fit the data locally
– Quadratic, cubic, etc.
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Memory-based Learning

Pros
• Easily adapts to new training examples (no-retraining 

required)
• Can handle complex decision boundaries and functions 

by considering the query instance when deciding how to 
generalize

Cons
• Requires retaining all training examples in memory
• Slow to evaluate a new query
• Evaluation time grows with the dataset size
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Summary

• Memory-based learning are “lazy”
– Delay learning until receiving a query

• Local
– Training data that is localized around the 

query contribute more to the prediction value
• Non-parametric
• Robust to noise
• Curse of dimensionality

– Irrelevant dimensions
– How to scale dimensions
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Summary

• Nearest neighbor 
– Output the nearest neighbor’s label

• kNN
– Output the average of the k NN’s labels

• Kernel regression
– Output weighted average of all training data’s 

(or k NN’s) labels
• Locally weighted (linear) regression

– Fit a linear function locally
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