
Machine Learning

Topic 4: Measuring Distance
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Why measure distance?

• Clustering requires distance measures.

• Local methods require a measure of 
“locality”

• Search engines require a measure of 
similarity

Bryan Pardo, Machine Learning: EECS 349 Fall 2013 2



What is a “metric”? 

• A function of two values  with 
these four qualities.
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What is a norm ||v|| ?

• Loosely, it is a function that applies a positive 
value to all vectors (except the 0 vector) in a 
vector space.

• 3 properties: 
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For all a ∈ F and u,v ∈ V, a function p :V→ F
p(av) =| a | p(v)           (positive scalability)
p(u) = 0  iff u is the zero vector  
p(u)+ p(v) ≥ p(u+ v)    (triangle inequality)



2 definitions (AKA why this is confusing)

• A vector norm
A function that assigns a strictly positive value to all 
vectors in a vector space….except the 0 vector, 
which has a 0 assigned to it. (see previous slide)

• A normal vector
A vector is called a normal to another object if they 
are perpendicular to each other. So, a normal 
vector is perpendicular to (the tangent plane of) a 
surface at some point P.
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Metric == Norm??

• Every norm determines a metric.
Given a  normed vector space, we can 
make a metric by saying

• Some metrics determine a norm.
If the metric is on a vector space, you can 
define a norm by saying…
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d(x, y) ≡ x − y

x ≡ d(x, 0)



Euclidean Distance
• What people intuitively think of as “distance”
• Is it a metric? 
• Is it a norm?
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Generalized Euclidean Distance
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n = the number of dimensions

8



Lp norms

{ }1,0 and 1  :Distance Hamming

2  :DistanceEuclidean   norm Lx

1 :DistanceManhattan   norm Lx
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• Lp norms are all special cases of this:
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p changes the norm
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Weighting Dimensions

• Put point in the cluster with the closest center of gravity
• Which cluster should the red point go in?
• How do I measure distance in a way that gives the “right”

answer for both situations?

Bryan Pardo, Machine Learning: EECS 349 Fall 2013 10



Weighted Norms

• You can compensate by weighting your 
dimensions….

This lets you turn your circle of equal-distance 
into an elipse with axes parallel to the 
dimensions of the vectors.
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Mahalanobis distance

The region of constant Mahalanobis distance 
around the mean of a distribution forms an 
ellipsoid.

The axes of this ellipsiod don’t have to be parallel 
to the dimensions describing the vector
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Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm



Calculating Mahalanobis 

• This matrix S-1 is called the 
“covariance” matrix and is calculated 
from the data distribution

• Let’s look at the demo here:
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm#Animation%20Mahalanobis
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Take-away on Mahalanobis
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• Is good for non-
spherically symmetric 
distributions. 

• Accounts for scaling of 
coordinate axes

• Can reduce to Euclidean



Metric, or not?

• Driving distance with 1-way streets

• Categorical Stuff : 
– Is distance (Jazz to Blues to Rock) no less 

than distance (Jazz to Rock)?
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Categorical Variables
• Consider feature vectors for genre & vocals:

– Genre: {Blues, Jazz, Rock, Zydeco}
– Vocals: {vocals,no vocals}

s1 = {rock, vocals}
s2 = {jazz, no vocals}
s3 = { rock, no vocals}

• Which two songs are more similar?
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One Solution:Hamming distance

s1 = {rock, vocals}
s2 = {jazz, no_vocals}
s3 = { rock, no_vocals}

0 0 1 0 1

0 1 0 0 0

0 0 1 0 0

Blues Jazz ZydecoRock Vocals

Hamming Distance = number of bits different 
between binary vectors
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Hamming Distance
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Defining your own distance
(an example)

Quote Frequency
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How often does artist x quote artist y? 

Let’s build a distance measure! 

Beethoven Beatles Kanye

Beethoven 7 0 0

Beatles 4 5 0

Kanye ? 1 2
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Defining your own distance
(an example)

Beethoven Beatles Kanye

Beethoven 7 0 0

Beatles 4 5 0

Kanye ? 1 2
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Missing data

• What if, for some category, on some 
examples, there is no value given?

• Approaches:
– Discard all examples missing the category
– Fill in the blanks with the mean value
– Only use a category in the distance measure if 

both examples give a value
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(one way of) handling missing attributes
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A scaling factor that 
adds weight to the 
distance, as there are 
fewer attributes used

A distance measure 
that works on 
individual attributes 



Edit Distance 
• Query  = string from finite alphabet
• Target = string from finite alphabet
• Cost of Edits = Distance

C A G E D

C E A E D

- -

Target:

Query:
Bryan Pardo, Machine Learning: EECS 349 Fall 2013 23



Levenshtein edit distance

Mi-1,j-1 Mi-1,j

Mi,j-1 Mi,j

µ(si,qj ) =
0  if si = qj  

1  otherwise

!
"
#

$#

24

Insertion

Deletion

Substitution

Mi, j = min

Mi−1, j +1             

Mi, j−1 +1             

Mi−1, j−1 + µ(si ,qj )

⎧

⎨
⎪⎪

⎩
⎪
⎪

M 0,0 = 0 3 possible operations



Pseudocode of Levenshtein (after Wagner and Fischer) 

Bryan Pardo, Machine Learning: EECS 349 Fall 2016
25

return int LevenshteinDistance(char s[1..m], char t[1..n], deletionCost,  insertionCost, 
substitutionCost)

// A standard approach is to set deletionCost = insertionCost = substitutionCost = 1

declare int M[0..m, 0..n]    // M has (m+1) by (n+1) values
for i from 0 to m

M[i, 0] := i*deletionCost // distance of any 1st string to an empty 2nd string
for j from 0 to n

M[0, j] := j*insertionCost // distance of any 2nd string to an empty 1st string 

for j from 1 to n 
for i from 1 to m

if s[i] = t[j] then
M[i, j] := M[i-1, j-1]   // no operation cost, because they match

else
M[i, j] := minimum(M[i-1, j] + deletionCost, 

M[i, j-1] + insertionCost, 
M[i-1, j-1] + substitutionCost)

return M[m,n]



Working through an example

F R O G

0 1,-,- 2,-,- 3,-,- 4,-,-

D -,-,1 2,1,2 2,2,3 3,3,4 4,4,5

O -,-,2 3,2,2 3,2,3 3,2,4 3,4,5

G -,-,3 4,3,3 4,3,3 4,3,3 4,2,4
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Mi, j = min

Mi−1, j +1             

Mi, j−1 +1             

Mi−1, j−1 + µ(si ,qj )

⎧

⎨
⎪⎪

⎩
⎪
⎪

µ(si,qj ) =
0  if si = qj  

1  otherwise

!
"
#

$#

M 0,0 = 0

Mi-1,j-1 Mi-1,j

Mi,j-1 Mi,j
Edit distance 
is 2 edits



Working through an example

Bryan Pardo, Machine Learning: EECS 349 Fall 2016 27

• The final edit cost is the lowest value calculated for the lower 
right-hand corner of the matrix. 

• Tracing a path from the lower right to the beginning shows 2 
minimal-cost alignments, each with 1 substitution and one 
deletion:

FROG  FROG
D-OG  -DOG

F R O G

0 1,-,- 2,-,- 3,-,- 4,-,-

D -,-,1 2,1,2 2,2,3 3,3,4 4,4,5

O -,-,2 3,2,2 3,2,3 3,2,4 3,4,5

G -,-,3 4,3,3 4,3,3 4,3,3 4,2,4

del F

del R

Edit distance 
is 2 edits



(Somewhat more) General Edit Distance

Mi, j =min

Mi−1, j +µ(−,qj )

Mi, j−1 +µ(si,−)

   Mi−1, j−1 +µ(si,qj )

"

#
$$

%
$
$

Insert

Delete

Match
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µ(si ,qj ) =  whatever you want.
The distance between si  and qj  on a keyboard?
The probability of substituting si  for qj?



Final notes on edit distance

• Used in many applications
– Gene sequence matching (google: BLAST)
– Spell checking
– Music melody matching 

• There are many variants of the algorithms
• The parameter weights strongly affect 

performance
• You need to pick the algorithm and 

parameters that make sense for your 
problem.
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One more distance measure
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• Kullback–Leibler (KL) divergence
– a non-symmetric measure of the difference 

between two probability distributions
– not a metric, since it is not symmetric
– Here’s the definition of KL divergence for 

discrete probability distributions P and Q

DKL (P ||Q) = ln P(i)
Q(i)
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KL Divergence as Cross Entropy 
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DKL (P ||Q) = ln P(i)
Q(i)
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Some take-away thoughts

• Many machine learning methods are 
helped by having a distance measure

• Some methods require metrics
• Not all measures are metrics
• Some common distance measures:

“P-norms”: Euclidean, Manhattan
“Edit distance”: Levenshtein
KL Divergence
Mahalanobis
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