
Bryan Pardo, EECS 349 Machine Learning, 2015

Thanks to Mark Cartwright for his contributions to these slides
Thanks to Alpaydin, Bishop, and Duda/Hart/Stork for images and ideas

Machine Learning

Topic: Linear Discriminants

1

There is a set of possible examples

Each example is a vector of k real valued attributes

A target function maps X onto some categorical variable Y

The DATA is a set of tuples <example, response value>

Find a hypothesis h such that...

Discrimination Learning Task

X = {x1,...xn}

xi =< xi1,..., xik >

YXf ®:

∀x,h(x) ≈ f (x)
Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012

{< x1, y1 >,...< xn, yn >}

Reminder about notation

• x	is	a	vector	of	attributes	<𝑥2, 𝑥4,…𝑥6>

• w is	a	vector	of	weights	<𝑤2, 𝑤4,…𝑤6>

• Given	this…
𝑔 𝑥 = 𝑤@+𝑤2𝑥2 + 𝑤4𝑥4….+𝑤6𝑥6

• We	can	notate	it	with	linear	algebra	as
𝑔 𝑥 = 𝑤@+𝐰𝐓𝐱

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 3

It is more convenient if…

• 𝑔 𝑥 = 𝑤@+𝐰𝐓𝐱 is	ALMOST	what	we	want,	but	
that	pesky	offset	𝑤@ is	not	in	the	linear	algebra	
part	yet.

• If	we	define	w to	include	𝑤@ and	x to	include	an	𝑥@
that	is	always	1,	now…

x	is	a	vector	of	attributes	<1,	𝑥2, 𝑥4,…𝑥6>
w	is	a	vector	of	weights	<𝑤@, 𝑤2, 𝑤4,…𝑤6>

• This	lets	us	notate	things	as…
𝑔 𝑥 = 𝐰𝐓𝐱

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 4

Visually: Where to draw the line?

5

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4a2

a1

Bryan Pardo, Machine Learning: EECS 349

Two-Class Classification

6

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

defines a decision boundary that splits the space in twog(x) = 0

x1

If a line exists that does this
without error, the classes
are linearly separable

Bryan Pardo, Machine Learning: EECS 349

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0

x2

g(x) < 0

Example 2-D decision boundaries

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 7

0 = 𝑔 𝑥 = 𝑤@+𝑤2𝑥2+𝑤4𝑥4 = 𝐰UX

10

10

𝑥2

𝑥4
10

10

𝑥2

𝑥4

10

10

𝑥2

𝑥4

𝑤@ = −5
𝑤2 =	 0
𝑤4 = 1

𝑤@ = −5
𝑤2 =	 0.5
𝑤4 = 0

𝑤@ = 0
𝑤2 =	 1
𝑤4 = -1

What’s the difference?

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 8

0 = 𝑔 𝑥 = 𝑤@+𝑤2𝑥2+𝑤4𝑥4 = 𝐰UX

10

10

𝑥2

𝑥4

𝑤@ = 0
𝑤2 =	 1
𝑤4 = -1

10

10

𝑥2

𝑥4

𝑤@ = 0
𝑤2 =	 -1
𝑤4 = 1

What’s the difference between these two?

Loss/Objective function

• To train a model (e.g. learn the weights of a useful line)
we define a measure of the ”goodness” of that model.
(e.g. the number of misclassified points).

• We make that measure a function of the parameters of
the model (and the data).

• This is called a loss function, or an objective function.

• We want to minimize the loss (or maximize the
objective) by picking good model parameters.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 9

Classification via regression

• Linear regression’s loss function is the the squared
distance from a data point to the line, summed over all
data points.

• The line that minimizes this function can be calculated
by applying a simple formula.

• Can we find a decision boundary in one step, by just
repurposing the math we used for finding a regression
line?

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 10

w = (XTX)−1XTy

Classification via regression

• Label each class by a number

• Call that number the response variable

• Analytically derive a regression line

• Round the regression output to the
nearest label number

Bryan Pardo, Machine Learning: EECS 349 Fall 2014 11

An example

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 12

0

1 11 1

0O 00

1

.5
D

ec
is

io
n

bo
un

da
ry

x

r

What happens now?

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 13

0

1 11 1

0O 00

1

.5
D

ec
is

io
n

bo
un

da
ry

x

r

Classification via regression take-away

• Closed form solution: just hand me the data and
I can apply that simple formula for getting the
regression line.

• Very sensitive to outliers

• What’s the natural mapping from categories to
the real numbers?

• Not used in practice (too finicky)

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 14

What can we do instead?

• Let’s define an objective (aka “loss”) function
that directly measures the thing we want to get
right

• Then let’s try and find the line that minimizes
the loss.

• How about basing our loss function on the
number of misclassifications?

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 15

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 16

sum of squared errors (SSE)

Bryan Pardo, Machine Learning: EECS 349 Fall 2017

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 0

sum of squared errors (SSE)

Bryan Pardo, Machine Learning: EECS 349 Fall 2017

No closed form solution!

• For many objective functions, (e.g. the one on
the previous slide) we can’t do a proof to find a
formula to to get the best model parameters,
like we could with regression.

• This means we have to try various guesses for
what the weights should be and try them out.

• Let’s look at the perceptron approach.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 18

Let’s learn a decision boundary

• We’ll do 2-class classification
• We’ll learn a linear decision boundary

0 = 	𝑔 𝑥 = 𝐰𝐓𝐱
• Things on each side of 0 get their class labels

according to the sign of what g(x) outputs.

• We will use the Perceptron algorithm.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 19

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

Defining our goal

𝐷 is our data, consisting of training examples
< 𝐱, 𝑦 >. Remember y is the true label (drawn
from {1,-1} and x is the thing being labeled.

Our goal : make (𝐰𝑻𝐱)𝑦 > 0	for all < 𝐱, 𝑦 >∈ 𝐷

Think about why this is the goal.

20Bryan Pardo, Machine Learning: EECS 349

An example.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 21

𝐰 = [𝑤@	, 𝑤2, 𝑤4] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4] = [1,5,7]
y = 1

A training data point Our current weights

(𝐰𝑻𝐱)𝑦 = [−5,0,1]U 1,5,7 1 = 2

Therefore, the line doesn’t need to move to correctly
classify the blue circle point.

0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

An example.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 22

𝐰 = [𝑤@	, 𝑤2, 𝑤4] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4] = [1,2,6]
y = -1

Another training data point Our current weights

(𝐰𝑻𝐱)𝑦 = −5,0,1 U 1,2,6 −1 = −5 + 6 −1 = −1

Therefore, the line DOES need to move to correctly
classify the red triangle point.

0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

Moving the line

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 23

0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

𝐰 = [𝑤@	, 𝑤2, 𝑤4] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4] = [1,2,6]
y = -1

Our misclassified point Our current weights

Let’s update the line by doing
𝐰 = 𝐰+ 𝐱(𝑦).

Moving the line

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 24

0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

𝐰 = [𝑤@	, 𝑤2, 𝑤4] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4] = [1,2,6]
y = -1

Our misclassified point Our current weights

Let’s update the line by doing
𝐰 = 𝐰+ 𝐱(𝑦).

𝐰 = 𝐰+ 𝐱 𝑦 = −5,0,1 + 1,2,6 −1
= [−6, −2, −5]

Now what ?

• What does the decision boundary look like
when w= [−6,−2,−5] ? Does it
misclassify the blue dot now?

• What if we update it the same way, each
time we find a misclassified point?

• Could this approach be used to find a
good separation line for a lot of data?

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 25

Perceptron Algorithm

Bryan Pardo, EECS 349 Fall 2017 26

𝐰 = 		𝑠𝑜𝑚𝑒	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡𝑡𝑖𝑛𝑔
Do
				𝑘 = 𝑘 + 1 mod 𝑚
				if	ℎ 𝐱6 ! = 𝑦6
								𝐰 = 𝐰 + 𝐱𝑦
Until ∀𝑘, g 𝐱6 = 𝑦6

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

0 = 	𝑔 𝑥 = 𝐰𝐓𝐱
The decision boundary

The weight update algorithm

The classification function

Warning: Only
gauranteed to
terminate if classes
are linearly
separable!

𝑚 = 𝐷 = 𝑠𝑖𝑧𝑒	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑠𝑒𝑡

Perceptron Algorithm

• Example:

27

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Red is the positive
class

Blue is the negative
class

Bryan Pardo, Machine Learning: EECS 349

Perceptron Algorithm

• Example (cont’d):

28

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Red is the positive
class

Blue is the negative
class

Bryan Pardo, Machine Learning: EECS 349

Perceptron Algorithm

• Example (cont’d):

29

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Red is the positive
class

Blue is the negative
class

Bryan Pardo, Machine Learning: EECS 349

Perceptron Algorithm

• Example (cont’d):

30

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Red is the positive
class

Blue is the negative
class

Bryan Pardo, Machine Learning: EECS 349

Multi-class Classification

31

When there are N classes you
can classify using N
discriminant functions.

Choose the class c from the set
of all classes C whose function
𝑔t(𝐱) has the maximum output

Geometrically divides feature
space into N convex decision
regions

a2

Bryan Pardo, Machine Learning: EECS 349

a1

ℎ 𝐱 = argmax
t∈u

𝑔t(𝐱)

Pairwise Multi-class Classification

32

If they are not linearly separable (singly connected convex
regions), may still be pair-wise separable, using N(N-1)/2 linear
discriminants.

gij
x | wij,wij0() = wij0 + wijl

l=1

K

∑ xl

choose Ci if
∀j ≠ i,gij x() > 0

a1

a2

Bryan Pardo, Machine Learning: EECS 349

A more general idea

• The approach of the perceptron update
rule is an example of a more general
concept called Gradient Descent.

• In some sense, a lot of methods (neural
nets, Hidden Markov Models, Gaussian
Mixture Models) use some variant of
Gradient Descent.

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 33

Gradient Descent

• Simple 1st order numerical optimization method

• Idea: follow the gradient of the objective function to a
minimum

• Finds a global minimum when objective function is
convex, otherwise it finds a local minimum

• Objective function (the function you are minimizing)
must be differentiable

• Used when there is no analytical solution to finding
minimum

34Bryan Pardo, Machine Learning: EECS 349

What is the Gradient?

• The gradient is a fancy word for derivative, or the rate of
change of a function with a scalar output and many
inputs.

• You might also call it the slope (e.g. slope of a hill).

• It’s a vector (a direction to move) that points in the
direction of greatest increase (or, equivalently, decrease)
of a function

• The gradient is zero at local maxima (top of a hill) or
local minima (bottom of a valley).

Bryan Pardo, Machine Learning: EECS 349 Fall 2017 35

Hill-climbing (aka Gradient Descent)
O

bj
ec

tiv
e

fu
nc

tio
n

J(
w

)

w: the value of some parameter

Start somewhere and head up (or down) hill.

Bryan Pardo, Machine Learning: EECS 349

Easy to get stuck in local maxima (minima)
O

bj
ec

tiv
e

fu
nc

tio
n

J(
w

)

w: the value of some parameter

Bryan Pardo, Machine Learning: EECS 349

Hill-climbing (aka Gradient Descent)

Gradient Descent

Bryan Pardo, EECS 349 Fall 2017 38

• 𝐰 are the model parameters
• 𝐷 is the set of training data

examples
• 𝜃	is the convergence threshold
• 𝛻𝐽(𝐰, D) is the gradient of the

objective function, with
respect to the weights.

• 𝜂 is the step size. It is often a
function of what step we’re on,
or of the gradient, or on the
size of the error

𝐰 = 		𝑠𝑜𝑚𝑒	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡𝑡𝑖𝑛𝑔
𝜃 = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔	𝑠𝑚𝑎𝑙𝑙	
𝜂 𝑘 = 𝑎	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑠𝑡𝑒𝑝	𝑠𝑖𝑧𝑒	
𝑘 = 0

Do
				𝑘 = 𝑘 + 1
				𝐷6 =	 a	random	subset	of	D
				𝐰 = 𝐰 − 𝜂 𝑘 𝛻𝐽(𝐰, 𝐷6)
Until |𝜂 𝑘 𝛻𝐽 𝐰,𝐷6 | < θ

Gradient Descent

• In batch gradient descent, the objective function J is
a function of both the parameters and ALL training
samples, summing the total error, e.g. 𝐷6 ≡ 𝐷

• In stochastic gradient descent, J is a function of the
parameters and a different single random training
sample at each iteration. This is a common choice in
when there is a lot of training data, and computing the
sum over all samples is expensive.

39Bryan Pardo, Machine Learning: EECS 349

h x() = 1 if g x() > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 2

Here, our objective function is the sum of squared
classification errors.

What if 𝛁𝑱 is 0?

The gradient of J is 0 in the blue region!
This is a problem because the system can’t tell from the gradient
which way the line should move.

𝐽 𝐰, 𝐷 = 𝑆𝑆𝐸

Perceptron Alg = Gradient descent?

• Gradient descent • Perceptron Algorithm

Bryan Pardo, EECS 349 Fall 2017 41

Do
				𝑘 = 𝑘 + 1
				𝐷6 =	 a	random	subset	of	D
				𝐰 = 𝐰 − 𝜂 𝑘 𝛻𝐽(𝐰, 𝐷6)
Until |𝜂 𝑘 𝛻𝐽 𝐰,𝐷6 | < θ

Do
				𝑘 = 𝑘 + 1 mod 𝑚
				if	ℎ 𝐱6 ! = 𝑦6
								𝐰 = 𝐰 + 𝐱𝑦
Until ∀𝑘, g 𝐱6 = 𝑦6

If we assume a random initial ordering of the data D, then those 1st

couple lines of the perceptron algorithm just cycle through a random
permutation of the data, 1 point at a time (stochastic gradient
descent).

So how does the perceptron rule for updating w relate to gradient
descent? How

Appendix

(stuff I didn’t have time to discuss in
class…and for which I haven’t updated the

notation.)

42

Linear Discriminants

• A linear combination of the attributes.

• Easily interpretable

• Are optimal when classes are Gaussian and
share a covariance matrix

43

g x | w,w0() = w0 +
wT x = w0 + wi

i=1

k

∑ ai

Bryan Pardo, Machine Learning: EECS 349

Fisher Linear Discriminant Criteria

• Can think of as dimensionality reduction from
K-dimensions to 1

• Objective:
– Maximize the difference between class means
– Minimize the variance within the classes

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 44

wT x

−2 2 6

−2

0

2

4 J(w) = (m2 −m1)2

s1
2 + s2

2

where si and mi are the
sample variance and mean
for class i in the projected
dimension. We want to
maximize J.

Fisher Linear Discriminant Criteria

• Solution:

where

• However, while this finds finds the direction () of
decision boundary. Must still solve for to find the
threshold.

• Can be expanded to multiple classes

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 45

Logistic Regression (Discrimination)

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 46

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

a1

a2

Logistic Regression (Discrimination)

• Discriminant model but well-grounded in
probability

• Flexible assumptions (exponential family class-
conditional densities)

• Differentiable error function (“cross entropy”)

• Works very well when classes are linearly
separable

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 47

Logistic Regression (Discrimination)

• Probabilistic discriminative model
• Models posterior probability
• To see this, let’s start with the 2-class formulation:

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 48

p(C1|x) =

p(

�!
x |C1)p(C1)

p(

�!
x |C1)p(C1) + p(

�!
x |C2)p(C2)

=

1

1 + exp

✓
� log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

◆

=

1

1 + exp (�↵)

= �(↵)

where

↵ = log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

1

logistic sigmoid function

“Squashing function” that maps

Logistic Regression (Discrimination)

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 49

−5 0 5
0

0.5

1logistic sigmoid function

Logistic Regression (Discrimination)

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 50

For exponential family of densities,

is a linear function of x.

Therefore we can model the posterior probability as a logistic
sigmoid acting on a linear function of the attribute vector, and
simply solve for the weight vector w (e.g. treat it as a
discriminant model):

To classify:

p(C1|x) =

p(

�!
x |C1)p(C1)

p(

�!
x |C1)p(C1) + p(

�!
x |C2)p(C2)

=

1

1 + exp

✓
� log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

◆

=

1

1 + exp (�↵)

= �(↵)

where

↵ = log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

1

