Machine Learning

Topic: Linear Discriminants

Bryan Pardo, EECS 349 Machine Learning, 2015

Thanks to Mark Cartwright for his contributions to these slides
Thanks to Alpaydin, Bishop, and Duda/Hart/Stork for images and ideas



Discrimination Learning Task

There is a set of possible examples X = {Xl ’ ...Xn}
Each example is a vector of k real valued attributes

A target function maps X onto some categorical variable Y
. X->Y

The DATA is a set of tuples <example, response value>

<X,y >,...<X_,y >}
Find a hypothesis h such that...

VX, h(x) = f(X)
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Reminder about notation

e Xis avector of attributes <xq, X,...X >

e wis avector of weights <w;, w,,..w;; >

e (Given this...
g(x) = wotwix; + Woko....+W X

e We can notate it with linear algebra as

g(x) = wy+w'x
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It is more convenient if...

e g(x) = wy+w!x is ALMOST what we want, but
that pesky offset wy is not in the linear algebra
part yet.

e [fwe define w to include wy and x to include an x,
that is always 1, now...

X is a vector of attributes <1, x4, x5,...x; >
w is a vector of weights <w,, wy, wy,..w; >

e This lets us notate things as...
gx) = wlx
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Visually: Where to draw the line?

a, 4 ' ' X
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Two-Class Classification

2(X) =0 defines a decision boundary that splits the space in two

A If a line exists that does this
x; | 2(X)= Wyt WX, Tt W, X, = O  without error, the classes
are linearly separable

1 ifg(x)>0

\ —1 otherwise

X1
X
1
Bryan Pardo, Machine Learning: EECS 349 6



Example 2-D decision boundaries

0= g(X) — WO+W1X1+W2.X2 = WTX

Wgo = -5 Wo = —5
_ = 0.5
o "= 0
Wy = 1 Wy =
X9 X2
X1 10 X1 10
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What’s the difference?

0 = g(X) — WO+W1X1+W2x2 — WTX

What’s the difference between these two?

W0:0 W0:0
10, w1 = -1 100, w1 =1
W2=1 W2='1

X1 10 10
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Loss/Objective function

To train a model (e.g. learn the weights of a useful line)
we define a measure of the “goodness” of that model.
(e.g. the number of misclassified points).

We make that measure a function of the parameters of
the model (and the data).

This is called a loss function, or an objective function.

We want to minimize the loss (or maximize the
objective) by picking good model parameters.
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Classification via regression

e Linear regression’s loss function is the the squared
distance from a data point to the line, summed over all
data points.

e The line that minimizes this function can be calculated
by applying a simple formula.

T 1w T
w=X"X)"X"y
e (Can we find a decision boundary in one step, by just

repurposing the math we used for finding a regression
line?
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Classification via regression

e | abel each class by a number
o Call that number the response variable
e Analytically derive a regression line

e Round the regression output to the
nearest label number
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An example

Decision boundary
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What happens now?

Decision boundary
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Classification via regression take-away

e Closed form solution: just hand me the data and
I can apply that simple formula for getting the
regression line,

e Very sensitive to outliers

e What's the natural mapping from categories to
the real numbers?

e Not used in practice (too finicky)
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What can we do instead?

o Let's define an objective (aka “loss”) function
that directly measures the thing we want to get
right

e Then let’s try and find the line that minimizes
the loss.

e How about basing our loss function on the
number of misclassifications?
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sum of squared errors (SSE)

A gx)=w,+wx, +w,x, =0

1 ifg(x)>0
h(x)=
§(x)>0 ( ) { —1 otherwise

® | SSE=) (y,—h(x,))
SSE = 16 |
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sum of squared errors (SSE)

A e gx)=w,+wx, +w,x, =0
A .

A (x)<0 ® ® _ 1 ifg(X)>O
AgXA §(x)>0 A(x) {—1 otherwise

A ®
A ® N\ )

SSE=Y (y,—h(x,))
SSE = 0 |
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No closed form solution!

e For many objective functions, (e.g. the one on
the previous slide) we can't do a proof to find a
formula to to get the best model parameters,
like we could with regression.

e This means we have to try various guesses for
what the weights should be and try them out.

e Let's look at the perceptron approach.
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Let’s learn a decision boundary

We'll do 2-class classification
We'll learn a linear decision boundary
0= g(x) =w'x
Things on each side of 0 get their class labels
according to the sign of what g(x) outputs.

-

1 ifg(x)>0

—1 otherwise

.

We will use the Perceptron algorithm.

h(x)= <
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Defining our goal

D is our data, consisting of training examples
< x,y >. Remember vy is the true label (drawn
from {1,-1} and x is the thing being labeled.

Our goal : make (w'x)y > 0forall <x,y >e D

Think about why this is the goal.
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An example.

A training data point Our current weights
X = [x0,x1,%2] = [1,5,7] w = [wo,wy,w, | = [-5,0,1]
y=1
10 gx) >0
® The decision boundary

0=g(x)=wlx

X5 gx) <0

X1 10
(WTX)y = [—5,0,1]T[1,5,7]1 =2

Therefore, the line doesn’t need to move to correctly
classify the blue circle point.
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An example.

Another training data point Our current We|ghts
X = [x0,%1,%2] = [1,2,6] w = [wo,wy,w, | = [-5,0,1]
y=-1
10 g(x) >0
A The decision boundary

0=g(x)=wlx

X5 gx) <0
X1 10

(wI'x)y = [-5,0,1]7[1,2,6](=1) = (=5 + 6)(—1) = —1

Therefore, the line DOES need to move to correctly
classify the red triangle point.
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Moving the line

Our misclassified point Our current weights
X = [x0,%1,%2] = [1,2,6] w = [wo,wy,w, | = [-5,0,1]
= -1
10 gx) >0
A The decision boundary

0=g(x)=wlx

X5 gx) <0

Let’s update the line by doing

*1 0 w=w+x(y).
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Moving the line

Our misclassified point Our current weights
X = [x0,%1,%2] = [1,2,6] w = [wo,wy,w, | = [-5,0,1]
= -1
10 gx) >0
A The decision boundary

0=g(x)=wlx

2 g <0 Let’s update the line by doing
*1 0 w=w+x(y).
w=w+x(y) =[-5,0,1] + [1,2,6](—1)
= [—6,-2, —5]
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Now what ?

e What does the decision boundary look like
when w= [-6,—2,—5] ? Does it
misclassify the blue dot now?

e What if we update it the same way, each
time we find a misclassified point?

e Could this approach be used to find a
good separation line for a lot of data?
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Perceptron Algorithm

The decision boundary The classification function
0= g(x)=w'x T
if o(x)>0
h(X) = < g( )
—1 otherwise

m = |D| = size of data set

The weight update algorithm
W = Some random Setting

Do
ke = (k T 1)m0d(m) Warning: Only
if h(Xk)! = Vi gauranteed to
terminate if classes
wW=w-+ Xy are linearly
Untll Vk, g(xk) = Vi separable!
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Perceptron Algorithm

e Example:

1

Red is the positive
class

0.5 Blue is the negative
class

-1 -0.5 0 0.5 1
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Perceptron Algorithm

e Example (cont'd):

1

®|  Redis the positive
O O class
P L
057 : :
Blue is the negative
® class
O R
[
-05¢ ®
o
-1 - . ,
-1 -0.5 0 0.5 1
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Perceptron Algorithm

e Example (cont'd):

1

®!  Redis the positive
O O class
P L
057 : :
Blue is the negative
class
O R
[
-05¢ ®
o
-1 - . ,
-1 -0.5 0 0.5 1
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Perceptron Algorithm

e Example (cont'd):

1

®|  Redis the positive
® class
P [
057 : :
Blue is the negative
® class
O R
-0.5
o
-1 - . ,
-1 -0.5 0 0.5 1

Bryan Pardo, Machine Learning: EECS 349 30



Multi-class Classification

When there are N classes you
can classify using N
discriminant functions.

Choose the class c from the set
of all classes C whose function
gd.(x) has the maximum output

Geometrically divides feature
space into N convex decision

a, Fegions

h(x) = argmax g.(X)

ceC

Bryan Pardo, Machine Learning: EECS 349 31



Pairwise Multi-class Classification

If they are not linearly separable (singly connected convex
regions), may still be pair-wise separable, using N(N-1)/2 linear
discriminants.

2 b
Hpy o gl.j(?clﬁl], uo Wi Ewl]lx,
¢ =\ 0 ¢
ﬁo O H, choose C. if
0 Vj=ig,(x)>0
e c
|

a,
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A more general idea

e The approach of the perceptron update
rule is an example of a more general
concept called Gradient Descent.

e In some sense, a lot of methods (neural
nets, Hidden Markov Models, Gaussian
Mixture Models) use some variant of
Gradient Descent.
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Gradient Descent

Simple 15t order numerical optimization method

Idea: follow the gradient of the objective function to a
minimum

Finds a global minimum when objective function is
convex, otherwise it finds a local minimum

Objective function (the function you are minimizing)
must be differentiable

Used when there is no analytical solution to finding
minimum
Bryan Pardo, Machine Learning: EECS 349
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What is the Gradient?

The gradient is a fancy word for derivative, or the rate of
change of a function with a scalar output and many
inputs.

You might also call it the slope (e.g. slope of a hill).

It's a vector (a direction to move) that points in the
direction of greatest increase (or, equivalently, decrease)
of a function

The gradient is zero at local maxima (top of a hill) or
local minima (bottom of a valley).
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Hill-climbing (aka Gradient Descent)

Start somewhere and head up (or down) hill.

Objective function J(w)

w: the value of some parameter

Bryan Pardo, Machine Learning: EECS 349



Hill-climbing (aka Gradient Descent)

Easy to get stuck in local maxima (minima)

Objective function J(w)

w: the value of some parameter
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Gradient Descent

w are the model parameters w = some random setting
D is the set of training data 8 = something small
examples n(k) = a starting step size

0 is the convergence threshold k=0

V]/(w,D) is the gradient of the
objective function, with
respect to the weights. Do

n is the step size. It is often a k=k+1
function of what step we're on,

or of the gradient, or on the
size of the error w=w —n(k) V](w,Dy)

Until |n(k) VJ(w,Dy)| <6

D, = arandom subset of D

Bryan Pardo, EECS 349 Fall 2017 38



Gradient Descent

e In batch gradient descent, the objective function Jis
a function of both the parameters and ALL training
samples, summing the total error, e.qg. D, = D

e In stochastic gradient descent, ] is a function of the
parameters and a different single random training
sample at each iteration. This is a common choice in
when there is a lot of training data, and computing the
sum over all samples is expensive.
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What if V] is 0?

Here, our objective function is the sum of squared
classification errors.

gx)=w,+wx, +w,x, =0

o 1 ifg(x)>0

h(x)=
§(x)>0 ( ) { —1 otherwise

SSE= (3, —h(x,))’

 J(w,D) = SSE

The gradient of Jis 0 in the blue region!
This is a problem because the system can't tell from the gradient
which way the line should move.



Perceptron Alg = Gradient descent?

e Gradient descent e Perceptron Algorithm
Do Do

k=k+1 k = (k + 1)mod(m)

D, = arandom subset of D if h(Xg)! = yg

w=w —n(k) VJ(w,Dy) W=wHxy

Until |n(k) V](w,Dy)| < 6 Until vk, g(xi) = i

If we assume a random initial ordering of the data D, then those 1st
couple lines of the perceptron algorithm just cycle through a random
permutation of the data, 1 point at a time (stochastic gradient

descent).

So how does the perceptron rule for updating w relate to gradient
descent? How

Bryan Pardo, EECS 349 Fall 2017
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Appendix

(stuff I didn’t have time to discuss in
class...and for which I haven’t updated the
notation. )
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Linear Discriminants

e A linear combination of the attributes.
k
g(X 1w, wy)=w, +W X =w, + Ewl.ai
i=1
o Easily interpretable

e Are optimal when classes are Gaussian and
share a covariance matrix

Bryan Pardo, Machine Learning: EECS 349
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Fisher Linear Discriminant Criteria

e Can think of w’Xx as dimensionality reduction from
K-dimensions to 1

e Objective:
— Maximize the difference between class means
— Minimize the variance within the classes

o %
° o °

L)
o 0 o0 °
L]

° o8 o o \*
Co e % N

\
‘s

2

6

2
m, —m,)

2 2
S +3,

J@i) ="

% where s, and m; are the
v sample variance and mean
P . .
é for class 1 1n the projected
\ dimension. We want to

maximize J.
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Fisher Linear Discriminant Criteria

e Solution:

= Sy, (i — i)
where

Sw =Y (Tn—m)(Tn—m0)T+ D (T0— 1) (T — Ma)”

neCh neCsy

e However, while this finds finds the direction () of
decision boundary. Must still solve for wo to find the

threshold.

e Can be expanded to multiple classes
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Logistic Regression (Discrimination)

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 46



Logistic Regression (Discrimination)

e Discriminant model but well-grounded in
probability

e Flexible assumptions (exponential family class-
conditional densities)

o Differentiable error function (“cross entropy”)

e Works very well when classes are linearly
separable
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Logistic Regression (Discrimination)

e Probabilistic discriminative model
e Models posterior probability p(C1| )
e To see this, let's start with the 2-class formulation:
2|C1)p(Ch)
o _ p(2'|Ch
p(Chlz) p(Z|C)p(Ch) + p(2'|C2)p(Co)
1
o[ p(ﬁlcl)p(01)>
R W TeA e
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Logistic Regression (Discrimination)

logistic sigmoid function :

-5 0 5

“Squashing function” that maps (—oo, +00) — (0, 1)
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Logistic Regression (Discrimination)

For exponential family of densities,
p(?lcl)p(cl)

p(7!02)p(02)

a = log

is a linear function of Xx.

Therefore we can model the posterior probability as a logistic
sigmoid acting on a linear function of the attribute vector, and
simply solve for the weight vector w (e.g. treat it as a
discriminant model): k

y = p(C1|7) = o(wo + sz‘az‘) p(Co| @) =1 = p(Ch|T)

1=1
Cv y; > 0.5

02 o.w.
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