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Machine Learning

Topic: Linear Discriminants
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There is a set of possible examples

Each example is a vector of k real valued attributes

A target function maps X onto some categorical variable Y

The DATA is a set of tuples <example, response value>

Find a hypothesis h such that...

Discrimination Learning Task

X = {x1,...xn}

xi =< xi1,..., xik >

YXf ®:

∀x,h(x) ≈ f (x)
Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012

{< x1, y1 >,...< xn, yn >}



Reminder about notation

• x	is	a	vector	of	attributes	<𝑥2, 𝑥4,…𝑥6>

• w is	a	vector	of	weights	<𝑤2, 𝑤4,…𝑤6>

• Given	this…
𝑔 𝑥 = 𝑤@+𝑤2𝑥2 + 𝑤4𝑥4….+𝑤6𝑥6

• We	can	notate	it	with	linear	algebra	as
𝑔 𝑥 = 𝑤@+𝐰𝐓𝐱
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It is more convenient if…

• 𝑔 𝑥 = 𝑤@+𝐰𝐓𝐱 is	ALMOST	what	we	want,	but	
that	pesky	offset	𝑤@ is	not	in	the	linear	algebra	
part	yet.

• If	we	define	w to	include	𝑤@ and	x to	include	an	𝑥@
that	is	always	1,	now…

x	is	a	vector	of	attributes	<1,	𝑥2, 𝑥4,…𝑥6>
w	is	a	vector	of	weights	<𝑤@, 𝑤2, 𝑤4,…𝑤6>

• This	lets	us	notate	things	as…
𝑔 𝑥 = 𝐰𝐓𝐱
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Visually: Where to draw the line?
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Two-Class Classification

6

h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

defines a decision boundary that splits the space in twog(x) = 0

x1

If a line exists that does this 
without error, the classes 
are linearly separable
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g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0

x2

g(x) < 0



Example 2-D decision boundaries
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0 = 𝑔 𝑥 = 𝑤@+𝑤2𝑥2+𝑤4𝑥4 = 𝐰UX
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What’s the difference?
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0 = 𝑔 𝑥 = 𝑤@+𝑤2𝑥2+𝑤4𝑥4 = 𝐰UX
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What’s the difference between these two?



Loss/Objective function

• To train a model (e.g. learn the weights of a useful line) 
we define a measure of the ”goodness” of that model. 
(e.g. the number of misclassified points).

• We make that measure a function of the parameters of 
the model (and the data). 

• This is called a loss function, or an objective function.

• We want to minimize the loss (or maximize the 
objective) by picking good model parameters.
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Classification via regression

• Linear regression’s loss function is the the squared 
distance from a data point to the line, summed over all 
data points.

• The line that minimizes this function can be calculated 
by applying a simple formula.

• Can we find a decision boundary in one step, by just 
repurposing the math we used for finding a regression 
line?
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w = (XTX)−1XTy



Classification via regression

• Label each class by a number

• Call that number the response variable

• Analytically derive a regression line

• Round the regression output to the 
nearest label number
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An example
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What happens now?
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Classification via regression take-away

• Closed form solution: just hand me the data and 
I can apply that simple formula for getting the 
regression line.

• Very sensitive to outliers

• What’s the natural mapping from categories to 
the real numbers?

• Not used in practice (too finicky) 
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What can we do instead?

• Let’s define an objective (aka “loss”) function 
that directly measures the thing we want to get 
right

• Then let’s try and find the line that minimizes 
the loss.

• How about basing our loss function on the 
number of misclassifications?
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h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 16

sum of squared errors (SSE)

Bryan Pardo, Machine Learning: EECS 349 Fall 2017



h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 0

sum of squared errors (SSE)
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No closed form solution!

• For many objective functions, (e.g. the one on 
the previous slide)  we can’t do a proof to find a 
formula to to get the best model parameters, 
like we could with regression.

• This means we have to try various guesses for 
what the weights should be and try them out. 

• Let’s look at the perceptron approach.
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Let’s learn a decision boundary

• We’ll do 2-class classification
• We’ll learn a linear decision boundary

0 = 	𝑔 𝑥 = 𝐰𝐓𝐱
• Things on each side of 0 get their class labels 

according to the sign of what g(x) outputs.

• We will use the Perceptron algorithm. 
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h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪



Defining our goal

𝐷 is our data, consisting of training examples      
< 𝐱, 𝑦 >. Remember y is the true label (drawn 
from {1,-1} and x is the thing being labeled.

Our goal : make (𝐰𝑻𝐱)𝑦 > 0	for all < 𝐱, 𝑦 >∈ 𝐷

Think about why this is the goal.

20Bryan Pardo, Machine Learning: EECS 349



An example.
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𝐰 = [𝑤@	, 𝑤2, 𝑤4 ] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4 ] = [1,5,7] 
y = 1  

A training data point Our current weights

(𝐰𝑻𝐱)𝑦 = [−5,0,1]U 1,5,7 1 = 2

Therefore, the line doesn’t need to move to correctly
classify the blue circle point.  

0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0



An example.
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𝐰 = [𝑤@	, 𝑤2, 𝑤4 ] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4 ] = [1,2,6] 
y = -1  

Another training data point Our current weights

(𝐰𝑻𝐱)𝑦 = −5,0,1 U 1,2,6 −1 = −5 + 6 −1 = −1

Therefore, the line DOES need to move to correctly
classify the red triangle point.  

0 = 𝑔 𝑥 = 𝐰Ux
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The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0



Moving the line
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0 = 𝑔 𝑥 = 𝐰Ux

10

10

𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

𝐰 = [𝑤@	, 𝑤2, 𝑤4 ] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4 ] = [1,2,6] 
y = -1  

Our misclassified point Our current weights

Let’s update the line by doing
𝐰 = 𝐰+ 𝐱(𝑦).



Moving the line
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0 = 𝑔 𝑥 = 𝐰Ux

10
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𝑥2

𝑥4

The decision boundary

𝑔 𝑥 > 0

𝑔 𝑥 < 0

𝐰 = [𝑤@	, 𝑤2, 𝑤4 ] = [−5, 0, 1]𝐱 = [𝑥@	, 𝑥2, 𝑥4 ] = [1,2,6] 
y = -1  

Our misclassified point Our current weights

Let’s update the line by doing
𝐰 = 𝐰+ 𝐱(𝑦).

𝐰 = 𝐰+ 𝐱 𝑦 = −5,0,1 + 1,2,6 −1
= [−6, −2, −5]



Now what ?

• What does the decision boundary look like 
when w= [−6,−2,−5] ? Does it 
misclassify the blue dot now?

• What if we update it the same way, each 
time we find a misclassified point? 

• Could this approach be used to find a 
good separation line for a lot of data?

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 25



Perceptron Algorithm
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𝐰 = 		𝑠𝑜𝑚𝑒	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡𝑡𝑖𝑛𝑔
Do 
				𝑘 = 𝑘 + 1 mod 𝑚
				if	ℎ 𝐱6 ! = 𝑦6
								𝐰 = 𝐰 + 𝐱𝑦
Until ∀𝑘, g 𝐱6 = 𝑦6

h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

0 = 	𝑔 𝑥 = 𝐰𝐓𝐱
The decision boundary

The weight update algorithm

The classification function

Warning: Only 
gauranteed to  
terminate if classes 
are linearly 
separable!

𝑚 = 𝐷 = 𝑠𝑖𝑧𝑒	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑠𝑒𝑡



Perceptron Algorithm

• Example:

27
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Perceptron Algorithm

• Example (cont’d):
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Perceptron Algorithm

• Example (cont’d):
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Perceptron Algorithm

• Example (cont’d):
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Multi-class Classification

31

When there are N classes you 
can classify using N 
discriminant functions.

Choose the class c from the set 
of all classes C whose function 
𝑔t(𝐱) has the maximum output

Geometrically divides feature 
space into N convex decision 
regions

a2

Bryan Pardo, Machine Learning: EECS 349

a1

ℎ 𝐱 = argmax
t∈u

𝑔t(𝐱)



Pairwise Multi-class Classification

32

If they are not linearly separable (singly connected convex 
regions), may still be pair-wise separable, using N(N-1)/2 linear 
discriminants.

gij
x | wij,wij0( ) = wij0 + wijl

l=1

K

∑ xl

choose  Ci  if 
∀j ≠ i,gij x( ) > 0

a1

a2
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A more general idea

• The approach of the perceptron update 
rule is an example of a more general 
concept called Gradient Descent.

• In some sense, a lot of methods (neural 
nets, Hidden Markov Models, Gaussian 
Mixture Models) use some variant of 
Gradient Descent.
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Gradient Descent 

• Simple 1st order numerical optimization method

• Idea: follow the gradient of the objective function to a 
minimum

• Finds a global minimum when objective function is 
convex, otherwise it finds a local minimum

• Objective function (the function you are minimizing) 
must be differentiable

• Used when there is no analytical solution to finding 
minimum
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What is the Gradient?

• The gradient is a fancy word for derivative, or the rate of 
change of a function with a scalar output and many 
inputs. 

• You might also call it the slope (e.g. slope of a hill).

• It’s a vector (a direction to move) that points in the 
direction of greatest increase (or, equivalently, decrease)  
of a function 

• The gradient is zero at local maxima (top of a hill) or 
local minima (bottom of a valley).
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Hill-climbing (aka Gradient Descent)
O
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e 

fu
nc

tio
n 

J(
w

)

w: the value of some parameter

Start somewhere and head up (or down) hill.
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Easy to get stuck in local maxima (minima)
O

bj
ec

tiv
e 

fu
nc

tio
n 

J(
w

)

w: the value of some parameter
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Gradient Descent

Bryan Pardo, EECS 349 Fall 2017 38

• 𝐰 are the model parameters 
• 𝐷 is the set of training data 

examples
• 𝜃	is the convergence threshold
• 𝛻𝐽(𝐰, D) is the gradient of the 

objective function, with 
respect to the weights. 

• 𝜂 is the step size. It is often a 
function of what step we’re on, 
or of the gradient, or on the 
size of the error  

𝐰 = 		𝑠𝑜𝑚𝑒	𝑟𝑎𝑛𝑑𝑜𝑚	𝑠𝑒𝑡𝑡𝑖𝑛𝑔
𝜃 = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔	𝑠𝑚𝑎𝑙𝑙	
𝜂 𝑘 = 𝑎	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑠𝑡𝑒𝑝	𝑠𝑖𝑧𝑒	
𝑘 = 0

Do 
				𝑘 = 𝑘 + 1
				𝐷6 =	 a	random	subset	of	D
				𝐰 = 𝐰 − 𝜂 𝑘 𝛻𝐽(𝐰, 𝐷6)
Until |𝜂 𝑘 𝛻𝐽 𝐰,𝐷6 | < θ



Gradient Descent

• In batch gradient descent, the objective function J is 
a function of both the parameters and ALL training 
samples, summing the total error, e.g. 𝐷6 ≡ 𝐷

• In stochastic gradient descent, J is a function of the 
parameters and a different single random training 
sample at each iteration. This is a common choice in 
when there is a lot of training data, and computing the 
sum over all samples is expensive.
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h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE = 2

Here, our objective function is the sum of squared 
classification errors.

What if 𝛁𝑱 is 0?

The gradient of J is 0  in the blue region!
This is a problem because the system can’t tell from the gradient
which way the line should move.

𝐽 𝐰, 𝐷 = 𝑆𝑆𝐸



Perceptron Alg = Gradient descent?

• Gradient descent • Perceptron Algorithm

Bryan Pardo, EECS 349 Fall 2017 41

Do 
				𝑘 = 𝑘 + 1
				𝐷6 =	 a	random	subset	of	D
				𝐰 = 𝐰 − 𝜂 𝑘 𝛻𝐽(𝐰, 𝐷6)
Until |𝜂 𝑘 𝛻𝐽 𝐰,𝐷6 | < θ

Do 
				𝑘 = 𝑘 + 1 mod 𝑚
				if	ℎ 𝐱6 ! = 𝑦6
								𝐰 = 𝐰 + 𝐱𝑦
Until ∀𝑘, g 𝐱6 = 𝑦6

If we assume a random initial ordering of the data D, then those 1st

couple lines of the perceptron algorithm just cycle through a random 
permutation of the data, 1 point at a time (stochastic gradient 
descent). 

So how does the perceptron rule for updating w relate to gradient 
descent? How 



Appendix

(stuff I didn’t have time to discuss in 
class…and for which I haven’t updated the 

notation. )
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Linear Discriminants

• A linear combination of the attributes.

• Easily interpretable

• Are optimal when classes are Gaussian and 
share a covariance matrix

43

g x | w,w0( ) = w0 +
wT x = w0 + wi

i=1

k

∑ ai

Bryan Pardo, Machine Learning: EECS 349



Fisher Linear Discriminant Criteria

• Can think of         as dimensionality reduction from 
K-dimensions to 1

• Objective: 
– Maximize the difference between class means
– Minimize the variance within the classes
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wT x

−2 2 6

−2

0

2

4 J( w) = (m2 −m1)2

s1
2 + s2

2

where si  and mi  are the
sample variance and mean
for class i in the projected
dimension. We want to 
maximize J.



Fisher Linear Discriminant Criteria

• Solution:

where

• However, while this finds finds the direction (  ) of 
decision boundary. Must still solve for      to find the 
threshold.

• Can be expanded to multiple classes
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Logistic Regression (Discrimination)

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 46

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

a1

a2



Logistic Regression (Discrimination)

• Discriminant model but well-grounded in 
probability

• Flexible assumptions (exponential family class-
conditional densities)

• Differentiable error function (“cross entropy”)

• Works very well when classes are linearly 
separable

Mark Cartwright and Bryan Pardo, Machine Learning: EECS 349 Fall 2012 47



Logistic Regression (Discrimination)

• Probabilistic discriminative model
• Models posterior probability            
• To see this, let’s start with the 2-class formulation:
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p(C1|x) =

p(

�!
x |C1)p(C1)

p(

�!
x |C1)p(C1) + p(

�!
x |C2)p(C2)

=

1

1 + exp

✓
� log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

◆

=

1

1 + exp (�↵)

= �(↵)

where

↵ = log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

1

logistic sigmoid function



“Squashing function” that maps 

Logistic Regression (Discrimination)
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Logistic Regression (Discrimination)
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For exponential family of densities,

is a linear function of x. 

Therefore we can model the posterior probability as a logistic 
sigmoid acting on a linear function of the attribute vector, and 
simply solve for the weight vector w (e.g. treat it as a 
discriminant model):

To classify: 

p(C1|x) =

p(

�!
x |C1)p(C1)

p(

�!
x |C1)p(C1) + p(

�!
x |C2)p(C2)

=

1

1 + exp

✓
� log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

◆

=

1

1 + exp (�↵)

= �(↵)

where

↵ = log

p(

�!
x |C1)p(C1)

p(

�!
x |C2)p(C2)

1


