
Machine Learning

Gaussian Mixture Models
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Discriminative vs Generative Models

• Discriminative: Just learn a decision 
boundary between your sets.

Support Vector Machines

• Generative: Learn enough about your sets 
to be able to make new examples that 
would be set members

Gaussian Mixture Models
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The Generative Model POV

• Assume the data was generated from a process 
we can model as a probability distribution

• Learn that probability distribution

• Once learned, use the probability distribution to
• “Make” new examples 
• Classify data we haven’t seen before.
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Non-parametric distribution not feasible

• Let’s probabilistically model ML student heights.

• Ruler has 200 marks (100 to 300 cm)

• How many probabilities to learn?

• How many students in the class?

• What if the ruler is continuous?
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Learning a Parametric Distribution
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p(x |Θ) ≡  prob. of x, given parameters Θ 
                 of a model, M

• Pick a parametric model (e.g. Gaussian)
• Learn just a few parameter values



Using Generative Models for Classification
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Gaussians whose means and 
variances were learned from data

New person. 
Which class does he belong to?

Answer: the class that calls him most probable.  

NBA players



Learning a Gaussian Distribution
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p(x |Θ) ≡  prob. of x, given parameters Θ 
                 of a model, M

 Θ ≡  {µ,σ}

M ≡ 1
2π( )1/2σ

e
−(x−µ )2

2σ 2

The parameters we must learn

The “normal”  Gaussian distribution, 
often denoted N, for “normal”



Goal: Find the best Gaussian

• Hypothesis space is Gaussian distributions.
• Find parameters      that maximize the 

prob. of observing data
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X ≡ {x1,...xn}

Θ* = p(X |Θ
argmaxΘ

)

where each Θ≡ {µ,σ}

Θ*



Some math
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Θ* = p(X |Θ
argmaxΘ

),where each Θ ≡ {µ,σ}

       p(X |Θ) = p(xi
i=1

n

∏ |Θ)  

       ...if can we assume all xi  are i.i.d.



Numbers getting smaller
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p(X |Θ) = p(xi
i=1

n

∏ |Θ)  

What happens as n grows? Problem?

We get underflow if n is, say, 500

p(X |Θ)∝ log(p(xi
i=1

n

∑ |Θ))  solves underflow.



Remember what we’re maximizing
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Θ*≡ p(X |Θ)
argmaxΘ

= log(p(xi
i=1

n

∑ |Θ) )
argmaxΘ

fitting the Gaussian into this...

log(p(x |Θ)) = log e
−(x−µ )2

2σ 2

2π( )1/2σ
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Some math gets you…
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log e
−(x−µ )2

2σ 2

2π( )1/2σ
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= log e

−(x−µ )2

2σ 2
⎛

⎝
⎜

⎞

⎠
⎟ − log( 2π( )1/2σ )

                     = −(x − µ)2

2σ 2 − logσ − log 2π( )1/2

Plug back into equation from slide 11



..which gives us
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Θ*≡ p(X |Θ)
argmaxΘ

= log(p(xi
i=1

n

∑ |Θ) )
argmaxΘ

= −(xi − µ)2

2σ 2 − logσ⎛
⎝⎜

⎞
⎠⎟i=1

n

∑  
argmaxΘ



Maximizing Log-likelihood
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• To find best parameters, take the partial 
derivative with respect to parameters       
and set to 0. 

• The result is a closed-form solution

Θ* = −(xi − µ)2

2σ 2 − logσ⎛
⎝⎜

⎞
⎠⎟i=1

n

∑  
argmaxΘ

{σ ,µ}

   µ = 1
n

xi
i=1

n

∑               σ 2 = 1
n

(xi
i=1

n

∑ − µ)2



What if…

• …the data distribution can’t be well 
represented by a single Gaussian?

• Can we model more complex distributions 
using multiple Gaussians?
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Gaussian Mixture Model (GMM)
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components

Model the distribution as a mix of Gaussians

P(x) = P(z j )P(x
j=1

K

∑ | z j )

z j  is a Boolean saying whether Gaussian j  "made" x 
x  is the observed value



What are we optimizing?
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P(x) = P(z j )P(x
j=1

K

∑ | z j )

Notating P(z j ) as weight wj  and using the Normal 

(a.k.a. Gaussian) distribution N(µ j ,σ j
2 ) gives us...

       = wjN(x | µ j ,σ j
2 )

j=1

K

∑
This gives 3 variables per Gaussian to optimize: 
wj ,µ j ,σ j

such that 1= wj
j=1

K

∑



Bad news: No closed form solution.
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Θ*≡ p(X |Θ)
argmaxΘ

= log(p(xi
i=1

n

∑ |Θ) )
argmaxΘ

= log wj p(xi | N(µ j ,σ j

2 ))
j=1

K

∑⎛
⎝⎜

⎞

⎠⎟i=1

n

∑
argmaxΘ



Expectation Maximization (EM)

• Solution: The EM algorithm 

• EM updates model parameters iteratively.

• After each iteration, the likelihood the model 
would generate the observed data increases (or 
at least it doesn’t decrease).

• EM algorithm always converges to a local 
optimum.
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EM Algorithm Summary

Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 20

• Initialize the parameters

• E step: calculate the likelihood a model with 
these parameters generated the data

• M step: Update parameters to increase the 
likelihood from E step

• Repeat E & M steps until convergence to a local 
optimum.



EM for GMM - Initialization
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• Choose the number of Gaussian 
components K  
K should be much less than the number of data 
points to avoid overfitting.

• (Randomly) select parameters for each 
Gaussian j: wj,µ j,σ j

...such that 1= wj
j=1

K

∑



EM for GMM – Expectation step
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The responsibility γ j ,n  of Gaussian j  for 
observation xn  is defined as...

γ j ,n ≡ p(z j | xn ) =
p(xn | z j )p(z j )

p(xn )

     =
p(xn | z j )p(z j )

p(zk )p(xn | zk )
k=1

K

∑
=

wjN(xn | µ j ,σ j
2 )

wkN(xn | µk ,σ k
2 )

k=1

K

∑



EM for GMM – Expectation step
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Define the responsibility Γ j  of Gaussian j  for 
all the observed data as...

                          Γ j ≡ γ j ,n
n=1

N

∑
You can think of this as the proportion of 
the data explained by Gaussian j.



EM for GMM – Maximization step
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Update our parameters as follows...

new  wj =
Γ j

N
new  µ j =

γ j ,i xi
i=1

N

∑
Γ j

new σ j
2 =

γ j ,i (xi − µ j
i=1

N

∑ )2

Γ j



Why does this work?

• We need to prove that, as our model 
parameters are adjusted, likelihood of the 
data never goes down (monotonically non-
decreasing)

• This is the part where I point you to the 
textbook
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What happens if…

• If I initialize each Gaussian distribution to 
have a mean = to the location of a data 
point…

• …And I allow sigma to go to 0 for any 
Gaussian?

• What is one (probably bad) solution for 
the local optimization algorithm?

Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 26



What if…

• …our data isn’t just scalars, but each data 
point has multiple dimensions?

• Can we generalize to multiple dimensions?

• We need to define a covariance matrix.
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Covariance Matrix
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Given d-dimensional random variable vector 
!
X = X1,....,Xd[ ]  

the covariance matrix denoted Σ (confusing, eh?) is defined as...

Σ ≡

E (X1 −µ1)(X1 −µ1)[ ] E (X1 −µ1)(X2 −µ2 )[ ] ... E (X1 −µ1)(Xd −µd )[ ]
E (X2 −µ2 )(X1 −µ1)[ ] E (X2 −µ2 )(X2 −µ2 )[ ] ! E (X2 −µ2 )(Xd −µd )[ ]

! ! " !
E (Xd −µd )(X1 −µ1)[ ] E (Xd −µd )(X2 −µ2 )[ ] ! E (Xd −µd )(Xd −µd )[ ]

$

%

&
&
&
&
&

'

(

)
)
)
)
)

This is a generalization of one-dimensional variance for a scalar random variable X

                                          σ 2 = var(X) = E X −µ( )2$
%

'
(



Multivariate Gaussian Mixture

First dimension

Second dimension
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P(
!
X) = wj p(

!
X | N(

j=1

K

∑ !µ,Σ j ))

Given d  dimensions and K Gaussians, how many parameters?

The d  by d  covariance matrix 
Σ  describes the shape and 
orientation of an elipse.



Example: 
Initialization

(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #1
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #2
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #3
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #4

34



Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012

(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #5
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #6
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(Illustration	from	Andrew	
Moore's	tutorial	slides	on	
GMM)

After Iteration #20
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GMM Remarks
• GMM is powerful: any density function can be 

arbitrarily-well approximated by a GMM with 
enough components.

• If the number of components 𝐾	is too large, data 
will be overfitted.
– Likelihood increases with 𝐾.
– Extreme case: 𝑁 Gaussians for 𝑁 data points, with 

variances → 0, then likelihood → ∞.
• How to choose 𝐾?

– Use domain knowledge.
– Validate through visualization.
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GMM is a “soft” version of K-means
• Similarity
– 𝐾 needs to be specified.
– Converges to some local optima.
– Initialization matters final results.
– One would want to try different initializations.

• Differences
– GMM Assigns “soft” labels to instances.
– GMM Considers variances in addition to 

means.
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GMM for Classification
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(illustration from 
Leon Bottou’s slides 
on EM)

• Given training data with multiple classes…
1) Model the training data for each class with a GMM
2) Classify a new point by estimating the probability 

each class generated the point
3) Pick the class with the highest probability as the 

label.



GMM for Regression
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(illustration from 
Leon Bottou’s slides 
on EM)

Given dataset D={<x1, y1 >,..., <xn, yn >}, where yi ∈ℜ

and xi  is a vector of d  dimensions...
Learn a d +1 dimensional GMM.
Then, compute f (x) = E[y | x]


