
THE	BASICS	OF	NEURAL	NETS
Bryan	Pardo

Interactive	Audio	Lab
Northwestern	University



Deep	Nets	(AKA	Neural	Nets)

• Machine	learners	

• made	of	simple	functions	

• Organized	in	layers

• Very	popular	



Deep	Nets	(AKA	Neural	Nets)
• Machine	learners	made	of	many	simple	functions	connected	by	weight	parameters

• Can	model	functions	from	ℝ"	 to	ℝ" where	𝑑	is	very	large	(e.g.	10^5)

• Can	learn	arbitrary	Boolean	functions	and	very	complex	manifolds

• Often	require	lots	of	data	(e.g.	millions	of	examples)	

• Use	gradient	descent	and	are	thus	susceptible	to	being	stuck	in	local	minima

• Opaque	(internal	representations	are	difficult	to	interpret)



Why	I	care	about	deep	nets

They	are	key	technology	that	is	enables	state	of	the	art	performance	in….

Image	recognition	(e.g.	Facebook	and	Google	image	labeling)

Speech	recognition	(Cortana)

Machine	translation	(Google	Translate)

Playing	video	games	(Why	are	we	automating	this?)

Playing	board	games	(e.g.	AlphaGo)



Machine	Learning	in	one	slide

1. Pick	data	D,	model	M(𝐰)	and	objective	function	J(𝐃,𝐰)

2. Initialize	model	parameters	𝐰 somehow

3. Measure	model	performance	with	the	objective	function	J(𝐃,𝐰)

4. Modify	parameters	𝐰	somehow,	hoping	to	improve	J(𝐃,𝐰)

5. Repeat	3	and	4	until	you	stop	improving	or	run	out	of	time



The	Perceptron
Rosenblatt,	Frank.	"The	perceptron:	A	model	for	information	storage	and	
organization	in	the	brain." Psychological	review 65.6	(1958):	386.	



The	Perceptron

• Rosenblatt,	F.	(1958).	The	perceptron:	A	probabilistic	model	
for	information	storage	and	organization	in	the	
brain. Psychological	Review,	65(6),	386-408

• The	“first	wave” in	neural	networks

• A	linear	classifier



A	single	perceptron
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Weights	define	a	hyperplane	in	the	input	space
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Classifies	any	(linearly	separable)	data
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Different	logical	functions	are	possible
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And,	Or,	Not	are	easy	to	define
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Classifying	image	data	with	a	single	perceptron

• Each	image	is	an	m by	n array	of	pixel	values
• Each	image	is	a	point	in	an	𝑚𝑛 dimensional	space
• The	right	weights	make	a		𝑚𝑛 hyperplane	to	separate	the	images
• How	do	we	pick	those	weights?		



Classifying	song	spectrograms	

• Each	image	is	an	m by	n array	of	pixel	values
• Each	image	is	a	point	in	an	𝑚𝑛 dimensional	space
• The	right	weights	make	a		𝑚𝑛 hyperplane	to	separate	the	images
• How	do	we	pick	those	weights?

Y	=	0		(FLOP	SONG) Y	=	1		(HIT	SONG)

M
	=
	1
02
4

N		=	600



Pick	model	M

Right	now,	it	is	a	single	perceptron	unit	with	some	small	set	of	
weights	w
Later,	we	will	combine	units	(thousands	of	them)	and	have	
many	weights	(millions)	

Choosing	the	types	of	unit
and	how	they	are	connected
is	a	challenge.
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Machine	Learning	in	one	slide

1. Pick	data	D,	model	M(𝐰)	and	objective	function	J(𝐃,𝐰)

2. Initialize	model	parameters	𝐰 somehow

3. Measure	model	performance	with	the	objective	function	J(𝐃,𝐰)

4. Modify	parameters	𝐰	somehow,	hoping	to	improve	J(𝐃,𝐰)

5. Repeat	3	and	4	until	you	stop	improving	or	run	out	of	time



A	good	objective	(loss)	function,	𝐽 𝐃,𝐰

𝐽(𝐃,𝐰) ≥ 0

𝐽 𝐃,𝐰 decreases	as	performance	improves

𝐽(𝐃,𝐰) is	differentiable,	with	respect	to	w

The	gradient	of	𝐽	is	bounded… 	𝟎 < 𝛻	𝐽 ≪ ∞

Required

Required
for	gradient	
descent

Really	
helpful

Data weights



h x( ) =  1 if g x( ) > 0
−1 otherwise
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2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE	is	same	everywhere	in	the	blue
Gradient	0		in	the	blue	region!

Example	objective	J	:	sum	of	squared	errors	(SSE)



Cross	Entropy	Loss	Function	
Given:	“true”	distribution	𝑝 = {𝑝8,𝑝9, … 𝑝M}

estimated	distribution	𝑞 = {𝑞8,𝑞9, … 𝑞M}

Define	cross	entropy	between	2	distributions	as	

𝐻 𝑝, 𝑞 = −/𝑝1𝑙𝑜𝑔𝑞1

M

138
Over	a	set	of	data	points,	D
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Machine	Learning	in	one	slide

1. Pick	data	D,	model	M(𝐰)	and	objective	function	J(𝐃,𝐰)

2. Initialize	model	parameters	𝐰 somehow

3. Measure	model	performance	with	the	objective	function	J(𝐃,𝐰)

4. Modify	parameters	𝐰	somehow,	hoping	to	improve	J(𝐃,𝐰)

5. Repeat	3	and	4	until	you	stop	improving	or	run	out	of	time



Gradient	Descent	in	one	slide		

1. Measure	how	the	the	objective	function	changes	when		we	change	
the	current	parameters	𝒘 slightly	(measure	the	gradient	with	
respect	to	the	weights).

2. Pick	the	next	set	of	parameters	to	be	close	to	the	current	set,	but	in	
the	direction	that	most	changes	the	objection	function	for	the	
better	(follow	the	gradient)

3. Repeat



Gradient	Descent:	Promises	&	Caveats

• Much	faster	than	guessing	new	parameters	randomly
• Finds	the	global	optimum	only	if	the	objective	function	is	convex
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Stochastic,	Batch,	Mini-Batch	Descent

• In	batch	gradient	descent,	the	objective	function	𝐽	is	a	function	of	
both	the	parameters	and	ALL	training	samples,	summing	the	total	
error

• In	stochastic	gradient	descent,	𝐽	is	a	function	of	the	parameters	and	a	
different	single	random	training	sample	at	each	iteration

• In	mini-batch	gradient	descent,	random	subsets	of	the	data	(e.g.	100	
examples)	are	used	at	each	step	in	the	iteration.	This	is	a	common	
approach	today.



One	perceptron:	Only	linear	decisions

This	is	XOR.

It	can’t	learn	XOR.



Combining	perceptrons can	make	any	
Boolean	function
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…if	you	can	set	the	weights	&	connections	right



Problem	with	a	step	function:	Assignment	of	error

• Stymies	multi-layer	weight	learning

• Limits	us	to	a	single	layer	of	units

• Thus,	only	linear	functions	

• You	can	hand-wire	XOR	
perceptrons,	but	the	sytem can’t	
learn	XOR	with	perceptrons
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Linear	Units	&	Delta	Rule



Solution:	Remove	the	step	function

𝑓 𝐱 = ∑ 𝑤1𝑥12
134 =	𝐰d𝐱

𝐰d𝐱

𝑓 𝐱



Measuring	error	for	linear	units

•Output	Function	

•Objective	Function:

𝑓 𝐱 =	𝐰d𝐱

𝐽 𝐰 =
1
2 / (𝑦 − 𝐰d𝐱)𝟐	

�

g𝐱,hi∈j

Correct
output

Model
output

Dataset



Gradient	Decsent	Rule
• To	figure	out	how	to	change	each	weight	to	best	reduce	error	we	
take	the	derivative	with	respect	to	that	weight

• …and	then	do	some	math	to	get	this	update	rule

𝑤1 ← 𝑤1 + 𝜂 ∑ 𝑦 − 𝑤d𝑥�
gn,hi∈j 𝑥1
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𝜕
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�
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Better	&	worse	than	a	perceptron

• All	changes	in	input	result	in	changed	
output

• This	gives	us	a	gradient	everywhere

• We	can	learn	multiple	layers	of	
weights.

• Combining	linear	functions	only	gives	
you	linear	functions

• you	can’t	represent	XOR	
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Many	linear	units:	Only	linear	decisions

This	is	XOR.

A	multilayer	
perceptron	with	
linear	units	
CANNOT	learn	XOR



The	Sigmoid	Unit
Rumelhart,	David	E.,	James	L.	McClelland,	and	PDP	Research	
Group. Parallel	distributed	processing.	Vol.	1.	Cambridge,	MA,	USA::	
MIT	press,	1987.



Sigmoid	(aka	Logistic)	function:	best	of	both

• Perceptron

• Linear

• Sigmoid	
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A	network	of	sigmoid	units

• Small	changes	in	input	result	in	
output

• This	gives	us	a	gradient	everywhere

• We	can	learn	multiple	layers	of	
weights.

• Combining	layers	gives	non-linear	
functions	
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Sigmoid	changes	(almost)	everything
Easy	to	differentiate

𝜎u 𝐰𝑻𝐱 = 𝜎 𝐰𝑻𝐱 (1- 𝜎(𝐰𝑻𝐱))

Gradient	everywhere

This	allows	backpropagation	of	the	gradient	through	
multiple	layers

Nonlinearity	allows	arbitrary	nonlinear	functions	to	be	built	
by	using	multiple	layers.



Example	objective	J	:	sum	of	squared	errors

SSE = (yi
i

n
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2

g(x) > 0g(x) < 0

Gradient	non-zero	everywhere!

ℎ 𝑥 = 𝑓 𝑥 =
1

1 + 𝑒r(𝐰s𝐱)



Multilayer	Perceptron	with	sigmoid	units

This	is	XOR.

A	multilayer	
perceptron	with	
sigmoid	units	CAN	
learn	XOR…or	any	
other	arbitrary	
Boolean	function.



The	promise	of	many	layers

• Each	layer	learns	an	abstraction	of	its	input	representation	(we	hope)
•
• As	we	go	up	the	layers,	representations	become	increasingly	abstract

• The	hope	is	that	the	intermediate	abstractions	facilitate	learning	
functions	that	require	non-local	connections	in	the	input	space	
(recognizing	rotated	&	translated	digits	in	images,	for	example)

• Modern	neural	networks	are	up	to	100	layers	deep



TanH:	A	shifted	sigmoid

• Sigmoid

• TanH

𝑓 𝑥 =
1

1 + 𝑒r(𝐰s𝐱)

𝑓 𝑥 =
2

1 + 𝑒r9(𝐰s𝐱)
− 1



Rectified	Linear	Unit	(ReLU)	&	Soft	Plus	:

•ReLU

• Soft	Plus

•Both	can	be	combined	in	layers	
to	make	non-linear	functions

𝑓 𝑥 = max	(0,𝐰d𝐱)

𝑓 𝑥 = ln	(1 + 𝑒𝐰s𝐱)



Design	choices

• Define	the	function	you	want	to	learn
• Determine	an	encoding	for	the	data	
• Pick	a	network	architecture

• Number	of	layers		(between	3	and	100)
• Activation	functions	function	(tanh,ReLU,	linear)
• Select	how	units	connect	within	and	between	layers

• Pick	a	gradient	descent	algorithm
• Pick	regularization	approach	(e.g.	dropout)	



Classifying	images	of	digits



One	possibility
INPUT LAYER HIDDEN LAYER OUTPUT LAYER

]

One input
per pixel

One hidden node per
potential shifted image
(ReLU)

One output node 
per category 
(Sigmoid)

1
2
3
4

6
5

Each node is connected to EVERY node in the prior layer
(it is just too many lines to draw)



Another	possibility
INPUT LAYER HIDDEN LAYER OUTPUT LAYER

One input
per pixel

small number of nodes:
1 per important feature
(TanH)

A single linear node with
(scaled) output

Each node is connected to EVERY node in the prior layer
(it is just too many lines to draw)



Another	possibility
INPUT LAYER HIDDEN 1

One input
per pixel

HIDDEN 2 HIDDEN 3

ReLU Max Pool Linear Sigmoid

HUGE DESIGN SPACE!

]

1
2
3
4

6
5

OUTPUT



Convolutional	networks

LeCun,	Yann,	and	Yoshua Bengio.	"Convolutional	networks	for	images,	speech,	and	
time	series." The	handbook	of	brain	theory	and	neural	networks3361.10	(1995):	
1995.



How	big	is	that	image?

500

1000



How	many	weights	in	a	fully	connected	net?

M
	=
	5
00

N		=	1000

50
Nodes

100
Nodes

2
Nodes

500000 } 100
Unique	weights

100 } 50
Unique
weights

50 } 2
Unique
Weights

50,000,000 + 5,000 + 100 = 50,005,100	weights

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer



Fitting	&	Hypothesis	space

If	a	model’s	hypothesis	space	is	too	big,	it	can	learn	a	crazy,	
overly	specific	function	(overfitting)

Y

X

𝑦 =/𝑤1𝑥1
84

134



• If	important	features	fall	within	a	bounded	size	region, we	can	
bound	the	receptive	field	of	each	unit	to	that	size.

• This	greatly	reduces	the	number	of	weights.

Small	Fixed	Windows	(filter	size/receptive	field)



• If	a	feature	is	good	to	find	in	one	region,	it	may	be	good	to	find	in	other	
regions.

• Units	look	for	the	same	feature	if	they	share	weights.	
• A	set	of	units	that	share	weights	is	a	feature	map.

Shared	weights	



Input	X

Building	that	feature	map

Filtered	values

Feature	map

A	shared	activation	function
𝑓 𝑥 = 𝑤d𝑥

=

The	shared	weights	W
(AKA	a	filter,	AKA	a	feature)



Input	X

Building	that	feature	map

A	shared	activation	function
𝑓 𝑥 = 𝑤d𝑥

=

The	shared	weights	W
(AKA	a	filter,	AKA	a	feature) Filtered	values

Feature	map



Input	X

Building	that	feature	map

A	shared	activation	function
𝑓 𝑥 = 𝑤d𝑥

=

The	shared	weights	W
(AKA	a	filter,	AKA	a	feature) Filtered	values

Feature	map



Input	X

Building	that	feature	map

A	shared	activation	function
𝑓 𝑥 = 𝑤d𝑥

=

The	shared	weights	W
(AKA	a	filter,	AKA	a	feature) Filtered	values

Feature	map



• To	look	for	multiple	features,	use	multiple	feature	maps.
• Each	map	will	specialize	on	one	thing.
• Even	with	many	feature	maps,	you	still	have	far	fewer	weights

Multiple	Feature	Maps



How	many	weights	in	a	convolutional	net?

M
	=
	5
00

N		=	1000

3 } 50 } 100
unique	
weights

600 } 25
unique
weight

25 } 2
unique
weights

Compare	that	to	the	50,005,100	weights	in	the	other	network

Input
Layer

3	feature	maps
of	200	nodes.

Receptive	fields:	50	by	100
Fully	connected
layer	of	25	nodes

2	fully
connected	nodes

15,000 + 15,000 + 50 = 30,050	unique	weights



Is	that	enough	reduction?

• That	picture	of	the	adorable	Capybara	was	500,000	pixels.	
• The	2017	iPhone	X	takes	12	megapixel	images.	That’s	24	times	as	big.
• Making	the	network	on	the	previous	slide	24	times	bigger	would	have	
us	at	over	600,000	weights.

• Can	we	do	some	kind	of	down	sampling	on	our	data?



Max	Pool	Layer:	A	kind	of	downsampling

•Max	Pool 𝑓 𝑥 = max	(𝑥8, 𝑥9, … 𝑥2)

LAYER	N LAYER	N+1	



Max	Pool	Layer:	A	kind	of	downsampling

•Max	Pool 𝑓 𝑥 = max	(𝑥8, 𝑥9, … 𝑥2)

LAYER	N LAYER	N+1	



Max	Pool	Layer:	A	kind	of	downsampling

•Max	Pool 𝑓 𝑥 = max	(𝑥8, 𝑥9, … 𝑥2)

LAYER	N LAYER	N+1	



Max	Pool	Layer:	A	kind	of	downsampling

•Max	Pool 𝑓 𝑥 = max	(𝑥8, 𝑥9, … 𝑥2)

LAYER	N LAYER	N+1	



Max	Pool	Layer:	A	kind	of	downsampling

•Max	Pool 𝑓 𝑥 = max	(𝑥8, 𝑥9, … 𝑥2)

LAYER	N LAYER	N+1	



So…what	is	a	convolutional	net?

• A	network	with	one	or	more	layers	that	are	feature	maps

• A	layer	with	feature	maps	is	called	a	“convolutional	layer”

• Often,	convolutional	layers	are	alternated	with	pooling	layers.

• Since	these	nets	have	many	fewer	connections
• They	train	faster
• They	need	fewer	training	examples



RECURRENT	NETS
Werbos,	Paul	J.	"Backpropagation	through	time:	what	it	does	and	how	to	do	
it." Proceedings	of	the	IEEE 78.10	(1990):	1550-1560.



6
7

Music	+	dishes	+	people	talking

A	complex	auditory	scene



Dealing	with	time
• With	a	”standard”	feed-forward	architecture,	you	process	data	from	
within	a	window,	ignoring	everything	outside	the	window.

• To	get	influence	from	the	processing	of	earlier	time	steps,	add	nodes	
and	connections

• This	doesn’t	scale	well
t-1 t t+1



Weight	sharing
• If	all	the	windows	share	the	same	input	weights	(like	in	a	feature	
map),	then	we	only	have	the	same	number	of	weights	as	if	we	had	a	
single	window.

• This	is	a	recurrent	net.

t-1 t t+1



Exponentially	decaying	influence

• If	your	network	needs	to	connect	information	from	a	distant	
timestep,	the	influence	of	the	earlier	one	tends	to	get	lost

• This	problem	was	solved	by	the	LSTM

t-1 t t+1



Exponentially	decaying	influence

• If	your	network	needs	to	connect	information	from	a	distant	
timestep,	the	influence	of	the	earlier	one	tends	to	get	lost

• This	problem	was	solved	by	the	LSTM

t-1 t t+1



Long-Short	Term	Memories
Hochreiter,	Sepp,	and	Jürgen	Schmidhuber.	"Long	short-term	memory." Neural	
computation 9.8	(1997):	1735-1780.



Long	Short	Term	Memory	Units	(LSTMs)

• Added	a	way	of	storing	data	over	
many	time	steps	without	decay

• Let	networks	to	handle	problems	
with	long	term	dependencies

• Are	too	complicated	to	explain	
right	now.	

A	single	LSTM	memory	unit



Data	collection	&	
augmentation



Pick	data	D

The	data	defines	a	function	to	learn:	𝑓 𝑥 = 𝑦
Typically,	this	is	from	ℝ" to	ℝ".
This	is	called	regression.

Y

X



Pick	data	D

The	data	defines	a	function	to	learn:	𝑓 𝑥 = 𝑦
This	can	also	be	from	ℝ" to	a	finite	set	of	labels,	e.g.	{0,1}.
This	is	classification.

Y

X

0

1



Pick	data	D:	Is	there	enough?	

• Good	coverage	of	the	range	of	possible	values?
• Just	because	you	got	lots	of	data,	doesn’t	mean	it	covers	the	space.

Y

X



Pick	data	D:	Is	there	enough?	
• Enough	density	in	the	space?
• Just	because	you	cover	the	range,	doesn’t	mean	you	captured	the	
function.

Y

X



Fitting	&	Hypothesis	space.

If	a	model’s	hypothesis	space	is	too	small,	the	true	function	is	
probably	not	in	its	vocabulary	(underfitting)

Y

X

Learnable	weights



Fitting	&	Hypothesis	space

If	a	model’s	hypothesis	space	is	too	big,	it	can	learn	a	crazy,	
overly	specific	function	(overfitting)

Y

X

𝑦 =/𝑤1𝑥1
84

134



Dimensions	and	data

• The	more	dimensions	your	data	has,	the	more	data	you	need	to	cover	
the	space

• The	more	dimensions,	the	more	parameters	your	model	needs	(at	
least	1	per	dimension)	

• The	more	parameters,	the	more	data	you	need	to	prevent	overfitting	

• Conclusion:	You	probably	don’t	have	enough	data.	You	probably	
overfit somehow.		



Data	Augmentation
• Make	perturbed	copies	of	your	data	that	vary	in	ways	that	should	not	
change	the	value	nature	of	the	output	function.

• This	can	help	prevent	spurious	correlations	between	data	and	output.

• Example:	Distinguishing	clarinet	sounds	from	flute	sounds
• Vary	the	pitch	of	each	note	by	+	or	– 1%,	2%,	3%,	4%....
• Add	background	noise	of	different	kinds	and	at	different	dB
• Time-stretch	each	note	a	bit
• Delay	or	advance	the	onset	of	the	note

• This	can	turn	1000	data	points	into	100,000.	



Reduce	your	patch	size,	if	you	can

• Use	a	small	patch	of	the	spectrogram	as	input	(e.g.	100	by	100	patch	
of	the	spectrogram)

• Reduces	the	number	of	model	parameters	needed
• Increases	the	number	of	training	examples	

1000	Spectrograms	*	600	patches*	100augmentations	=		60	million



Conclusions

•Deep	nets	are	powerful,	but	not	all-powerful

• The	design	space	is	very	large

• Success	requires	
• Lots	of	patience
• Much	architecture	hacking
• Lots	of	data	curation



To	get	started
Read	Deep	Learning	by	Goodfellow,	Bengio and	Courville

www.deeplearningbook.org

Get	the	Tensorfow open	source	library	for	ML	

www.tensorflow.org

Make	it	easier	with	TFLearn,	a	wrapper	for	Tensorflow

tflearn.org



Stuff	we	won’t	have	time	for	
starts	HERE

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014



Hebbian Learning

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014
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Donald	Hebb

• A	cognitive	psychologist	active	mid	20th century

• Influential	book:	The	Organization	of	Behavior	(1949)

• Hebb’s	postulate
"Let	us	assume	that	the	persistence	or	repetition	of	a	reverberatory	activity	(or	
"trace")	tends	to	induce	lasting	cellular	changes	that	add	to	its	stability.…	When	
an	axon	of	cell	A is	near	enough	to	excite	a	cell	B and	repeatedly	or	persistently	
takes	part	in	firing	it,	some	growth	process	or	metabolic	change	takes	place	in	
one	or	both	cells	such	that	A's	efficiency,	as	one	of	the	cells	firing	B,	is	increased.



Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014

Pithy	version	of	Hebb’s	postulate

Cells	that	fire	together,	wire	together.



Hopfield	networks

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014
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Hopfield	nets	are	

• “Hebbian” in	their	learning	approach
• Old	technology.	Nobody	uses	this.	These	are	proof	of	concept	things	from	
the	80s	and	earlier.	

• Fast	to	train,	slower	to	use
• Weights	are	symmetric	
• All	nodes	are	input	&	output	nodes
• Use	binary	(1,	-1)	inputs	and	output
• Used	as	

Associative	memory	(image	cleanup)
Classifier



Using	a	Hopfield	Net
10	by	10	Training	patterns

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014

Query pattern
(to clean or classify) Output pattern

Fully connected 
100 node network

(too complex to draw)
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Training	a	Hopfield	Net
• Assign	connection	weights	as	follows

wij =
xc, i xc, j            if  i ≠ j

c=1

C

∑
0                       if  i = j

⎧

⎨
⎪

⎩
⎪

c     index number for C  many class exemplars
i, j    index numbers for nodes
wi, j   connection weight from node i to node j
xc, i ∈{+1,−1}   element i of the exemplar for class c  



Bryan	Pardo,	Northwestern	University,	Machine	Learning	EECS	349	Fall	2014	(rev	3)

Using	a	Hopfield	Net
Force	output	to	match	an	unknown	input	pattern

Iterate	the	following	function	until	convergence

Note:	this	means	you	have	to	pick	an	order	for	updating	nodes.	
People	often	update	all	the	nodes	in	random	order

si (0) = xi       ∀i 

si (t +1) =
1        if  0 ≤  wijsj (t)

j=1

N

∑

−1       else                      

$

%
&

'
&

Here,  si (t) is the state of node i at time t
and xi  is the value of the input pattern at node i
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Using	a	Hopfield	Net

Once	it	has	converged…
FOR	INPUT	CLEANUP:	You’re	done.	Look	at	the	final	state	of	
the	network.
FOR	CLASSIFICATION:	Compare	the	final	state	of	the	network	
to	each	of	your	input	examples.	Classify	it	as	the	one	it	
matches	best.



Input	Training	Examples

Image	from:R.	Lippman,	An	Introduction	to	Computing	with	Neural	Nets,	IEEE	ASSP	Magazine,	April	1987

Why isn’t 5 in the set of examples? 



Output	of	network	over	8	iterations

Image	from:R.	Lippman,	An	Introduction	to	Computing	with	Neural	Nets,	IEEE	ASSP	Magazine,	April	1987

Input pattern After 3 iterations

After 7 iterations

First iteration



Characterizing	“Energy”

Image	from:	http://en.wikipedia.org/wiki/Hopfield_network#mediaviewer/File:Energy_landscape.png

• As								is	updated,	the	state	of	the	system	converges	on	an	
“attractor”,	where

• Convergence	is		measured	with	this	“Energy”	function:
si (t +1) = si (t)

si (t)

E(t) = − 1
2

wij
i, j
∑ si (t)s j (t)

Note: people often add a
“bias” term to this function.
I’m assuming we’ve added 
an extra “always on” 
node to make our “bias” 



Limits	of	Hopfield	Networks

• Input	patterns	become	confused	if	they	overlap

• The	number	of	patterns	it	can	store	is	about	0.15	times	the	number	
of	nodes	

• Retrieval	can	be	slow,	if	there	are	a	lot	of	nodes	(it	can	take	thousands	
of	updates	to	converge)

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014



Restricted	boltzman
machine	(RBM)

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014



About	RBNs

•Related	to	Hopfield	nets

•Used	extensively	in	Deep	Belief	Networks

•You	can’t	understand	DBNs	without	understanding	these
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Standard	RBM	Architecture

2	layers	(hidden	&	input)	of	Boolean	nodes	
Nodes	only	connected	to	the	other	layer

xixi xi xi xi

Hidden
Units

Input
Units

Weight 
Matrix



Standard	RBM	Architecture

xixi xi xi xi

Hidden
Units

Input
Units

Weight 
Matrix

•Setting	the	hidden	nodes	to	a	vector	of	values	updates	
the	visible	nodes…and	vice	versa



Contrastive	Divergence	Training
1. Pick	a	training	example.
2. Set	the	input	nodes	to	the	values	given	by	the	example.	
3. See	what	activations	this	gives	the	hidden	nodes.
4. Set	the	hidden	nodes	at	the	values	from	step	3.
5. Set	the	input	node	values,	given	the	hidden	nodes	
6. Compare	the	input	node	values	from	step	5	to	the	the	input	node	values	

from	step	2	
7. Update	the	connection	weights	to	decrease	the	difference	found	in	step	6.
8. If	that	difference	falls	below	some	epsilon,	quit.	Else,	go	to	step	1.



Deep	BELIEF	Network	
(DBN)



What	is	a	Deep	Belief	Network?
• A	stack	of	RBNS

• Trained	bottom	to	top	with	
Contrastive	Divergence

• Trained	AGAIN	with	supervised	
training	(similar	to	backprop in	
MLPs)

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014
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What	is	a	Deep	Belief	Network?

• A	stack	of	RBNS
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Why	are	DBNs	important?

• They	are	state-of-the-art	systems	for	doing	certain	recognition	tasks
• Handwritten	digits
• Phonemes

• They	are	very	“hot”	right	now

• They	have	a	good	marketing	campaign	“Deep	learning”	vs	“shallow	
learning”

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014



How	does	“deep”	help?

• It	may	be	possible	to	much	more	naturally	encode	problems	like	the	
parity	problem	with	deep	representations	than	with	shallow	ones

Bryan	Pardo,	Northwestern	University,	
Machine	Learning	EECS	349	Fall	2014



Why	not	use	standard	MLP	training?

• Fading	signal	from	backprop

• The	more	complex	the	network,	the	more	likely	there	are	local	
minima

• Memorization	issues

• Training	set	size	and	time	to	learn

Bryan	Pardo,	Northwestern	University,	
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Benefits

• Allows	relatively	deep	networks	(e.g.	10	layers),	compared	to	regular	
perceptrons

• In	the	mid	2000’s	this	approach	made	networks	better	than	anything	
else	out	there	for	some	problems	(e.g.	digit	recognition,	phoneme	
recognition)

• Today,	they’ve	been	superseded	by	other	approaches

Bryan	Pardo,	Northwestern	University,	
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