Collaborative Filtering

EECS 349 Machine Learning Bongjun Kim

(updated 2017)

What is Collaborative Filtering?

• Task: How do I predict what you'll like?

- Two approaches
 - User-based: You will like *item A* because <u>users</u>
 who are similar to you like *item A*.
 - Item-based: You will like *item A* because you like
 <u>items</u> that are similar to *item A*.

User-Based Collaborative Filtering

• Find users that is similar to you and you might like the item the user likes

- X-men

B is a user who has similar preference to **A**. So **A** would like "X-men" too !!

Item-Based Collaborative Filtering

 You might like items that are similar to items you already like

"Star Trek" is a movie similar to Star Wars because it has "star" in the name. Then, **A** would like "Star Trek" too!

Do you think **A** would also like "Dancing with the Star"?

Feature Selection

• Measuring similarity (of users or items) requires measuring their features.

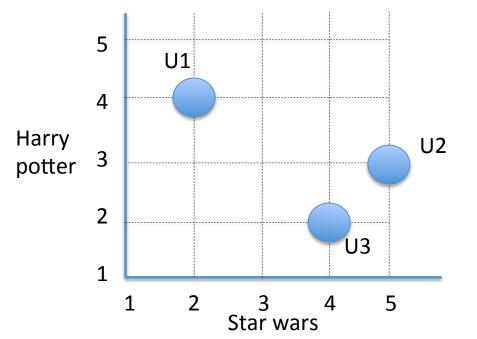
• Which features should I measure?

 Are there features that are (relatively) insensitive to the particulars of the recommendation tasks?

Feature Selection

- Implicit features
 - The number of clicks
 - Demographic information
 - The number of followers

- Explicit features
 User Ratings
 Review
 - Purchase history


USER-BASED COLLABORATIVE FILTERING

How do we find a user who is similar?

- Distance (or similarity) measure
 - N-dimensional space
- Example: movie ratings of 3 users

- Ratings from 1 (dislike) to 5 (like)

	U1	U2	U3
Harry Potter	4	3	2
Star Wars	2	5	4

Which similarity measure to use?

- p-norm
 - Manhattan
 - Euclidian
- Pearson Correlation
- Cosine Similarity
- Etc..

Who is the most similar to John?

Example #1

	Inception	Begin again	Once
Brian	5	2	2
Bob	1	4	4
Cathy	2	3	3
John	5	1	2

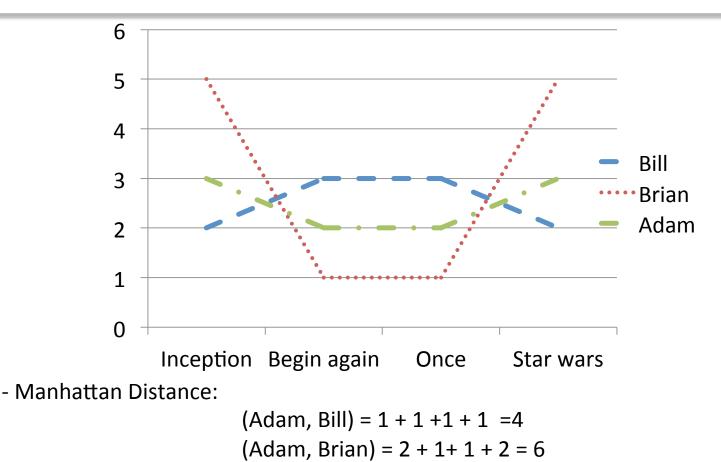
- Manhattan Distance:

(John, Brian) = 0 + 1 + 0 =1 (John, Bob) = 4 + 3+ 2 =9 (John, Cathy) = 3 + 2 + 1 = 6

Q: Does Manhattan Distance measure similarities properly in this data set?

Who is the most similar to Adam?

Example #2


	Inception	Begin again	Once	Star wars
Bill	2	3	3	2
Brian	5	1	1	5
Adam	3	2	2	3

- Manhattan Distance:

(Adam, Bill) = 1 + 1 + 1 + 1 = 4 (Adam, Brian) = 2 + 1 + 1 + 2 = 6

Q: Does Manhattan Distance measure similarities properly in this data set? Different users may use different rating scales

Who is the most similar to Adam?

Q: Does Manhattan Distance measure similarities properly in this data set? Different users may use different rating scales

Pearson Correlation

- Measure of correlation between two variables
- Pearson correlation coefficient
 - Range (-1, 1)
 - A perfect positive correlation: 1
 - A perfect negative correlation: -1

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \bar{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \bar{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \bar{r}_{\mathbf{v}})^2}},$$

In Python,

>> import scipy.stats

>> scipy.stats.pearsonr(array1, array2)

Cosine Similarity

Measure of similarity between two vectors
 – Range from -1 (opposite) to 1 (same)

• Cosine similarity between vector *a* and *b*:

$$sim(a,b) = \frac{a \cdot b}{|a| \cdot |b|}$$

Who is the most similar to Adam?

Example #2

	Inception	Begin again	Once	Star wars
Bill	2	3	3	2
Brian	5	1	1	5
Adam	3	2	2	3

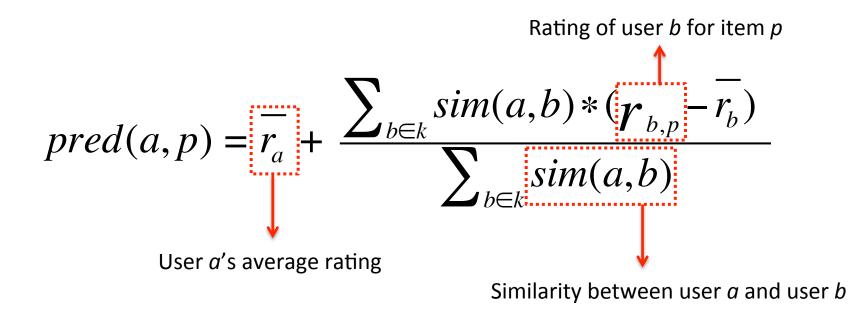
- Pearson Correlation:

(Adam, Bill) = -1 (Adam, Brian) = 1

Q: Does Pearson Correlation measure similarities properly in this data set?

Recommendation and Prediction

- Recommendation
 - Recommends items you might like
 - Presents top k items
 - "I think you would like X-men and Star wars"
- Prediction
 - Predicts how much you will like items
 - Using some rating scale
 - "I think you would give 4 stars for X-men and 3.5 stars for Star wars"


How to predict ratings to unrated items

- User-based K- Nearest Neighbor Collaborative Filtering
 - 1) Define a similarity measure
 - 2) Pick k users that had similar preferences to those of current user
 - 3) Compute a prediction from a weighted average of k nearest neighbors' ratings (see the next slide)

You need to do experiments to find optimal k value.

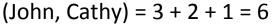
How to predict ratings to unrated items

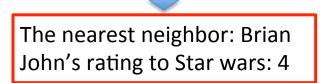
• Prediction for the rating of user a for item p.

Let's practice user-based k-NN CF

- In this practice and our homework, we will use much simpler way to compute a prediction of rating
 - 1) Define a similarity measure
 - Pick k users that had similar preferences to those of current user
 - 3) Pick the mode of the top k nearest neighbors as the predicted rating

- ex) If you pick 3 neighbors and their ratings to the target item are (2, 2, 3), then the prediction will be 2.


Practice: User-based k-NN CF (k=1)


Example #1: How would John rate Star wars?

	Inception	Begin again	Once	Star wars
Brian	5	2	2	4
Bob	1	4	4	2
Cathy	2	3	3	1
John	5	1	2	? 🎸

Manhattan Distance:

(John, Brian) = 0 + 1 + 0 = 1(John, Bob) = 4 + 3 + 2 = 9

Practice: User-based k-NN CF (k=1)

Example #2: How would John rate Avatar?

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	3	3	1	4
Bob	5	1	1	5	2
Cathy	5	1	2	4	1
John	3	2	2	3	?

Manhattan Distance: (John, Brian) = 1 + 1 + 1 + 2 = 5(John, Bob) = 2 + 1 + 1 + 2 = 6(John, Cathy) = 1 + 1 + 1 + 1 = 4

The nearest neighbor: Cathy John's rating to Avatar: 1

Pearson Correlation Coefficient (John, Brian) = -0.90 (John, Bob) = 1.0 (John, Cathy) = 0.95

The nearest neighbor: Bob John's rating to Avatar: 2

ITEM-BASED COLLABORATIVE FILTERING

How to predict ratings to unrated items

- Item-based K- Nearest Neighbor Collaborative Filtering
 - 1) Define a similarity measure between **items**
 - 2) Pick k items rated by the current user similar to the target item
 - 3) Compute a prediction from a weighted average of the k similar items' ratings

Let's practice item-based k-NN CF

- In this practice and our homework, we will use much simpler way to compute a prediction of rating
 - 1) Define a similarity measure between **items**
 - Pick k items rated by the current user similar to the target item
 - 3) Pick the mode of the top k nearest neighbors as the predicted rating

- ex) If you picked 3 items and current user's ratings to the 3 items are (2, 2, 3), then the prediction will be 2.

Practice: Item-based k-NN CF (k=1)

Example #1

	Inception	Begin again	Once	Star wars
Brian	5	2	2	4
Bob	1	4	4	2
Cathy	2	3	3	1
John	5	1	2	?

Manhattan Distance:

(Star wars, Inception) = 1 + 1 + 1 = 3 (Star wars, Begin again) = 1 + 2 + 2 = 5 (Star wars, Once) = 2 + 2 + 2 = 6

The most similar item to Star wars: Inception John's rating to Star wars: 5

The Cold Start Problem

What if this user has never rated anything before?

• What if nobody has rated this item before?

- Additional information. For example,
 - Ask users to rate some initial items
 - Demographic information for users
 - Content analysis or metadata for items

Missing values

- Missing values in user-rating matrix
 - What if two users have rated different sets of things? How do we compare them?
 - What if two items have been rated by disjoint sets of users? How do we compare them?

Dealing with missing values

Example

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	?	3	?	4
Bob	5	1	1	5	2
Cathy	5	?	2	2	1
John	5	?	2	3	?

Dealing with missing values

Example

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	0	3	0	4
Bob	5	1	1	5	2
Cathy	5	0	2	2	1
John	5	0	2	3	?

Dealing with missing values

- Discarding the person/item from comparison?
 It does not solve cold start problem
 - What if the data set is so sparse?
- Putting in a crazy number (-1000) for missing values?
- Putting in a random number?
- Putting in a mean (median) value?
 Mean value of what set?
- Other advanced imputation technique?

Make a decision

• Which similarity (or distance) measure to use?

• How many neighbors to pick?

• How to weight neighbors chosen?

• User-based or item-based?

• How to deal with missing values?