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Machine Learning

Topic 7: Boosting
(based on Rob Schapire’s IJCAI’99 talk)
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Horse Race Prediction
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How to Make $$$ In Horse Races?

• Ask a professional.
• Suppose:

– Professional cannot give single highly 
accurate rule

– …but presented with a set of races, can 
always generate better-than-random rules

• Can you get rich?
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Idea

1) Ask expert  for rule-of-thumb
2) Assemble set of cases where rule-of-thumb 

fails (hard cases)
3) Ask expert for a rule-of-thumb to deal with 

the hard cases
4) Goto Step 2

• Combine all rules-of-thumb
• Expert could be “weak” learning algorithm
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Questions

• How to choose races on each round?
– concentrate on “hardest” races

(those most often misclassified by previous 
rules of thumb)

• How to combine rules of thumb into single 
prediction rule?
– take (weighted) majority vote of rules of 

thumb



Northwestern University Fall  2007 Machine Learning EECS 349, Bryan Pardo

Boosting

• boosting = general method of 
converting rough rules of thumb into 
highly accurate prediction rule

• more technically:
– given “weak” learning algorithm that can 

consistently find hypothesis (classifier) with 
error            (implicit here is that          )

– a boosting algorithm can provably
construct single hypothesis with error

≤ 12 −γ γ ≤ 12

≤ ε
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This Lecture

• Introduction to boosting (AdaBoost)
• Analysis of training error
• Analysis of generalization error based on 

theory of margins
• Extensions
• Experiments
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A Formal View of Boosting
• Given training set X={(x1,y1),…,(xm,ym)}
• is the correct label of
• for timesteps t = 1,…,T :

• construct a distribution Dt on {1,…,m}
• Find a weak hypothesis

with small error on Dt:

• Output a final hypothesis Hfinal that combines 
the weak hypotheses in a good way
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Weighting the Votes

• Hfinal is a weighted combination of  the 
choices from all our hypotheses. 

How seriously 
we take 
hypothesis t

What 
hypothesis t 
guessed
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The Hypothesis Weight

• at determines how “seriously” we take 
this particular classifier’s answer
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The Training Distribution

• Dt determines which elements in the training 
set we focus on. 
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The Hypothesis Weight
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AdaBoost [Freund&Schapire ’97]

• constructing Dt:
•

• given Dt and ht:

where: Zt = normalization constant

• final hypothesis:
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A Formal View of Boosting
• Given training set X={(x1,y1),…,(xm,ym)}
• is the correct label of
• for timesteps t = 1,…,T :

• construct a distribution Dt on {1,…,m}
• Find a weak hypothesis

with small error on Dt:

• Output a final hypothesis Hfinal that combines 
the weak hypotheses in a good way
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Toy Example
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Round 1
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Round 2
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Round 3



Northwestern University Fall  2007 Machine Learning EECS 349, Bryan Pardo

Final Hypothesis
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Analyzing the Training Error

• Theorem [Freund&Schapire ’97]:
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2 −γ t

  so if ∀t: γ t ≥ γ ≥ 0



Northwestern University Fall  2007 Machine Learning EECS 349, Bryan Pardo

Analyzing the Training Error

So what? This means  AdaBoost is 
adaptive:
does not need to know   or T a priori

•…as long as    ½ >   t 
  can exploit γ t >> γ

γ

γ
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Proof Intuition

• on round t:
increase weight of examples incorrectly classified by ht

• if xi incorrectly classified by Hfinal

then xi incorrectly classified by weighted majority of 
ht’s
then xi must have “large” weight under final dist. DT+1

• since total weight <= 1:
number of incorrectly classified examples “small”

γ
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Analyzing Generalization Error

we expect: 
§ training error to continue to drop (or reach zero)
§ test error to increase when Hfinal becomes “too complex”

(Occam’s razor) 
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A Typical Run

• Test error does not increase even after 1,000 rounds 
(~2,000,000 nodes)

• Test error continues to drop after training error is zero!
• Occam’s razor wrongly predicts “simpler” rule is better.

(boosting on C4.5 on 
“letter” dataset)
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A Better Story: Margins

Key idea: Consider confidence (margin):
• with

• define: margin of (x,y) = 
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Margins for Toy Example
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The Margin Distribution

epoch 5 100 1000
training error 0.0 0.0 0.0
test error 8.4 3.3 3.1
%margins£0.5 7.7 0.0 0.0
Minimum margin 0.14 0.52 0.55
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Boosting Maximizes Margins

• Can be shown to minimize

å å
å

=
-

-

i i

xhy
xfy t

itti
ii ee

)(
)(

a

µ to margin of (xi,yi)



Northwestern University Fall  2007 Machine Learning EECS 349, Bryan Pardo

Analyzing Boosting Using Margins

generalization error bounded by function of 
training sample margins:

§ larger margin Þ better bound
§ bound independent on # of epochs
§ boosting tends to increase margins of training 

examples by concentrating on those with smallest 
margin
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Relation to SVMs

SVM: map x into high-dim space, 
separate data linearly
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Relation to SVMs (cont.)
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Relation to SVMs

• Both maximize margins:

• SVM: Euclidean norm (L2)
• AdaBoost: Manhattan norm (L1)

• Has implications for optimization, PAC 
bounds 
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See [Freund et al ‘98] for details
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Extensions: Multiclass Problems

• Reduce to binary problem by creating several 
binary questions for each example:

• “does or does not example x belong to class 1?”
• “does or does not example x belong to class 2?”
• “does or does not example x belong to class 3?”

. .
 . 
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Extensions: Confidences and Probabilities

• Prediction of hypothesis  ht:

• Confidence of hypothesis  ht:

• Probability of Hfinal:
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[Schapire&Singer ‘98], [Friedman, Hastie & Tibshirani ‘98]
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Practical Advantages of AdaBoost

• (quite) fast
• simple + easy to program
• only a single parameter to tune (T)
• no prior knowledge
• flexible: can be combined with any classifier 

(neural net, C4.5, …)
• provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find 
hypotheses that are better than random guessing

• finds outliers
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Caveats

• performance depends on data & weak learner
• AdaBoost can fail if

– weak hypothesis too complex (overfitting)
– weak hypothesis too weak (gt®0 too quickly),

• underfitting
• Low margins ® overfitting

• empirically, AdaBoost seems especially 
susceptible to noise
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UCI Benchmarks

Comparison with
• C4.5 (Quinlan’s Decision Tree 

Algorithm)
• Decision Stumps (only single attribute)



Northwestern University Fall  2007 Machine Learning EECS 349, Bryan Pardo

Text Categorization

database: Reuters
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Conclusion

• boosting useful tool for classification problems
• grounded in rich theory
• performs well experimentally
• often (but not always) resistant to overfitting
• many applications

• but
• slower classifiers
• result less comprehensible
• sometime susceptible to noise
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Background

• [Valiant’84]
introduced theoretical PAC model for studying 
machine learning

• [Kearns&Valiant’88]
open problem of finding a boosting algorithm

• [Schapire’89], [Freund’90]
first polynomial-time boosting algorithms

• [Drucker, Schapire&Simard ’92]
first experiments using boosting
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Backgroung (cont.)

• [Freund&Schapire ’95]
– introduced AdaBoost algorithm
– strong practical advantages over previous boosting algorithms

• experiments using AdaBoost:
[Drucker&Cortes ’95] [Schapire&Singer ’98]
[Jackson&Cravon ’96] [Maclin&Opitz ’97]
[Freund&Schapire ’96] [Bauer&Kohavi ’97]
[Quinlan ’96] [Schwenk&Bengio ’98]
[Breiman ’96] [ Dietterich’98]

• continuing development of theory & algorithms:
[Schapire,Freund,Bartlett&Lee ’97] [Schapire&Singer ’98]
[Breiman ’97] [Mason, Bartlett&Baxter ’98]
[Grive and Schuurmans’98] [Friedman, Hastie&Tibshirani ’98]


