Machine Learning

Topic: Active Learning

Bryan Pardo, Machine Learning: EECS 349 Fall 2011

Concept Learning

- Much of learning involves acquiring general concepts from specific training examples
- *Concept*: subset of objects from some space
- Concept learning: Defining a function that specifies which elements are in the concept set.

Some terms

- X is the set of all possible instances
- *C* is the set of all possible concepts *c* where $c: X \to \{0, 1\}$
- *H* is the set of hypotheses considered by a learner, $H \subseteq C$
- *L* is the learner
- *D* is a probability distribution over *X*that generates observed instances

Concept Learning Task

GIVEN:

- Instances X
- Target function $c \rightarrow \{0,1\}$
- Hypothesis space H
- Training examples D = $\{\langle x_1, c(x_1) \rangle, \dots, \langle x_n, c(x_n) \rangle\}$

FIND:

• A hypothesis h in H such that h(x)=c(x) for all x in D.

Labeling examples

Too time consuming

• Example 1: Netflix Challenge

Concept: movies Bob would like

Instances: 10,000 movies on netflix

Labeling: Bob watches a movie and reports

Example 2: Labeling phonemes
 Concept: words labeled with phonetic alphabet
 Instances: 1000 hours of talk radio recordings
 Labeling: Hire linguist to annotate each syllable

The BIG IDEA

 If we just pick the RIGHT examples to label, we can learn the concept from only a few labeled examples (it's like 20 questions)

Active Learning Heuristic

- Start with a pool of unlabeled data
- Pick a few points at random and get their labels
- Repeat the following

 Fit a classifier to the labels seen so far
 Pick the BEST unlabeled point to get a label for
 (closest to the boundary?)
 (most uncertain?)
 (most likely to decrease overall uncertainty?)

Start: Unlabeled Data

Label a Random Subset

Fit a Classifier to Labeled Data

Pick the Best Next Point To Label

Fit a Classifier to Labeled Data

Pick the Best Next Point To Label

Bryan Pardo, EECS 395/495 Modern Methods in Machine Learning, Spring 2010

Fit a Classifier to Labeled Data

3 Approaches to Querying

Biased Sampling

- The labeled points may not be representative of the underlying distribution
- This can increase error in the limit (as number of labeled examples goes to infinity) (Schutze et al 03)

Two Rationales for Active Learning

Rationale 1: We can exploit cluster structure in data

Rationale 2: We can efficiently search through the hypothesis space

Exploiting structure in data

If the data looked like this...

...then we might just need 3 labeled points

Issues:

Structure may not be so clearly defined Structure exists at many levels of granularity Clusters may not be all one label

Efficient Hypothesis Search

If each query cuts the version space in 2, we may need only log(|H|) to get a perfect hypothesis.

Which example should we label?

 $x_5 = \langle \text{Sunny Warm Normal Strong Cool Change} + 6/0$ $x_6 = \langle \text{Rainy Cold Normal Light Warm Same} - 0/6$ $x_7 = \langle \text{Sunny Warm Normal Light Warm Same} ? 3/3$ $x_8 = \langle \text{Sunny Cold Normal Strong Warm Same} ? 2/4$

Questions

- Do there always exist queries that will cut off a good portion of the version space?
- If so, how can these queries be found?
- What happens in the nonseparable case?

- Uncertainty Sampling
 - A single model
 - Query the instances we are least certain how to label (e.g. closet to the decision boundary)

- Query by Committee (QBC)
 - Maintain a version space of hypotheses
 - Pick the instances generating the most disagreement among hypotheses

$x_5 = \langle Sun \rangle$	ny Warm Norma	al Strong Cool Change>	+ 6/0

- $x_6 = \langle Rainy \ Cold \ Normal Light Warm Same \rangle 0/6$
- $x_7 = \langle \text{Sunny Warm Normal Light Warm Same} \rangle$ $x_8 = \langle \text{Sunny Cold Normal Strong Warm Same} \rangle$? 3/3

- Expected Model Change
 - A single model
 - Pick the unlabeled instance that would cause the greatest change to the model, if we knew its label

- Expected Error Reduction
 - A single probabilistic model
 - Query the instances that would most reduce error.
 - most computationally expensive query framework
 - we have to estimate given all possible labelings for each new instance

Density Weighting Selections

Pick instances that are both "informative" and "representative"

"informative" = score highly on one of the query evaluation measures discussed earlier

"representative" = inhabit dense regions of the input space

Example Density Weighting PICK THIS ONE In densest region , but still pretty close **Closest** to boundary