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Dealing with time
• With a ”standard” feed-forward architecture, you process data from 

within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes 

and connections
• This doesn’t scale well
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Let’s look at that net.
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• An entire new set of 
weights for EACH time step.
• Audio is sampled at 44,100 

times per second
• The number of past time 

steps you could consider is 
limited by the architecture.
• The number of weights to 

learn quickly gets out of 
control.



Take an idea from CNNs and HMMs
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• Markov property: The state 
of the world can be 
captured by knowing 
current state + immediately 
previous state
• Markov models use 

recurrent connections
• CNNs use the same set of 

shared weights on different 
parts of the input

Shared 
weights

Distinct 
inputs

𝐖 𝐖



Take an idea from CNNs and HMMs

• If all the windows share the 
same input weights (like in a 
feature map), then we only 
have the same number of 
weights as if we had a single 
window.
• This is a recurrent net.
• How do you train this? 
• Are there any obvious 

limitations?
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Backprop through time: “Unrolling”
• Pick a number of steps over which you’re going to “unroll” the net.
• Treat it like you’re training a convolutional neural net
• Pick the number of steps based on your frenemy: Exponential decay



Getting influence from the past: Skip connections 
(used in Highway networks)
• Widely used
• Limited by the length of the skip



Exponentially decaying influence

• If your network needs to connect information from a distant 
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay. 



Exploding and vanishing gradients

• What if the weight ono the 
recurrent connection is 
greater than 1? 

• What if the weight on the 
recurrent link is less than 1?

• What if it is exactly 1?
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An RNN example: Language modeling

• In language modeling, the game is to be able to predict the next 
word, given the previous N words.

• Examples
“Two plus two equals…”
“A stitch in time saves….” 
“I never did…” 



Our text encoding
• 1000 most common English words. + start + stop + other

• Encoding: 1003 element one-hot vector for each word in a sentence
• Word index determined by popularity
• Start = 1001
• Stop = 1002
• Other (any word not in the top 1000) = 1003

• Examples:  

An apple is good for you. -> [1001, 48, 927, 121, 7, 26, 1002]

Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1002] 

https://1000mostcommonwords.com/1000-most-common-english-words/


The goal: predict the next token

• Each sentence is its own label.

• Given “An apple is…”, predict “good” as the next word.

• Our model output will be a probability distribution over the 1003 
element vector (top 1000 words + start + start + other).

• We can use cross-entropy loss, comparing the one-hot vector to the 
probability vector output by the model.



Our network

An                  apple                   is           good              for            you

good

INPUT:

Argmax output fruit is
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4-node RNN
Hidden layer

Probability 
distribution 
over words



A RNN with 4 hidden nodes : how many weights?

INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state  s(t-1): a vector of the output 
from each hidden unit from time t-1

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT  LAYER

OUTPUT  a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT  LAYER

Hidden layer

Output layer 

Input + 
prev state



What if we use a more realistically sized net?

• Dictionary size = 50,000
• Hidden states = 100

• 50,000*100*2 = 10,000,000

• It’s just that easy to have 10 million weights.

• Adding a couple of extra hidden layers (even fully connected ones) 
doesn’t cost you much,  compared to the dictionary size.



RNN: the math

INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state  s(t-1): a vector of the output 
from each hidden unit from time t-1

Hidden layer

Output layer 

Input + 
prev state

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT  LAYER

OUTPUT  a 1003 element probability distribution over the set of words.

Softmax activation0.01, .0000098,… , . 0023,… , . 001,0, . 000053

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT  LAYER

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

Concatenation

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
prev state

OUTPUT  a 1003 element probability distribution over the set of words.

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

RNN: the math



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
prev state

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 + 1) = argmax
*

[𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡 ]

RNN: making a prediction

Recurrent neural network-based language model (Interspeech 2010)



Perplexity

• A measure of how hard it is to guess the next word.
• The exponentiation of the cross-entropy

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2!(#) = 2%∑! #(')(()*"(+ ' )

• A commonly used measure of how well a language model is doing
• Measures how confused the model is (how many choices it has 

reduced the next word to)



A language model is a generative model

• If you have something that predicts the next word, you have 
something that can “generate” the next word.

• Sentence completion is possible

• Sentence generation is possible



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
prev state

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = G𝑤 𝑡 + 1 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚: [𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡 ]

Language model as a generative model:

Recurrent neural network-based language model (Interspeech 2010)



Generating a new sentence with the model

STARTPick an initialization token

She

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization 

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She
from model output at 
previous time step

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She likes

cheeseShe likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional 
distribution output by the model



Generating a new sentence with the model

START                   She likes            cheese

cheese
Sample from the conditional 
distribution output by the model

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

STOP

Continue till you 
generate a stop 
token



Getting more context

• We predict/generate a new token, based on a prior sequence.

• Our generated output is contextually informed by the past

• But wait….if our training data is whole sentences, can’t we do the 
same thing from the ”future” (i.e. the next word or rest of sentence)?

• Sure we can. Just feed in the sequence backwards.



INPUT word  w(t): a 1003 element 
one-hot vector encoding word t.

Hidden layer

Output layer 

Input + 
next state

𝑤(𝑡) 𝑠(𝑡 + 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 + 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 + 1),… , 𝑠'(𝑡 + 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 − 1) = max
*
[𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡 ]

RNN: predicting the “past” based on the “future”



Bidirectional RNN

• Inform output layer’s 
probability distribution 
using a forward layer 
and a backwards layer

• The generated token(s) 
are influenced by both 
previous and 
subsequent context

An         apple              is           - for            you

good

INPUT:

OUTPUT:



Multi-layer RNN

• You can have multiple 
hidden layers, where 
layer n feeds into layer 
n+1

Image from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).



Long-Short Term Memories
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural 
computation 9.8 (1997): 1735-1780.



Here’s a problem. What can learn to do it?

• X is a finite-length sequence composed of tokens, where each token 
𝑥' ∈ ℝ ∪ 𝑎, 𝑏 .

• The length of X is unknown.

• Before beginning, the total = 0.

• Iterate through X and do the following
• If 𝑥- = 𝑎, add 𝑥-./to the total.
• If 𝑥- = 𝑏, return the total and reset the total to 0.



Let’s play

1,  3, -5, a, 5, -1, 8 , 2, 0, a, 9, b

a, -1, a, 100, b 

1,  3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, b

= 99

= 14

= 9



Feed-forward: Fixed-length time window

• If your network needs to connect information from outside the 
window, you lose.

1,  3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, ba, -1, a, 100, b 



RNN: exponentially decaying influence

• If your network needs to connect information from a distant 
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay. 

-5       a 5 -1      8     a       9     b



Long Short Term Memory Units (LSTMs)
• Added a way of storing data over many time steps without decay
• Let networks to handle problems with long term dependencies

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



LSTM training
• Error is propagated indefinitely through its memory cell, the constant error 

carousel (CEC)
• Error flow back through the unit is truncated at the incoming weights. 

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



An easy-to-follow-visual of a modern LSTM

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell state from 
prev. time step

Hidden state input 
from other LSTM cells

Network 
input

Output

Cell state at 
this timestep

Forget gates introduced in: Gers, F.A. 
et al (1999). "Learning to forget: 
Continual prediction with LSTM". 9th 
International Conference on Artificial 
Neural Networks: 1999



Forget Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Hidden state 
passed in from 
other cells

New input vector



Input Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Cell State

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Output Gate

Amazing gifs from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



The math of the modern LSTM

Image adapted from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).
Forget gates introduced in: Gers, F.A. et al (1999). "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks: 1999



How many weights for a single LSTM unit?

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 4 𝑥 + 4 ℎ + 3 + 4

Input gate

forget gate

memory

output gate

final output



How many weights for this network?
• Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

• Compare that to a vanilla RNN with the same number of layers and 
vocabulary size…. 

• Can we shrink closer to a vanilla RNN but keep advantages of an 
LSTM?



GRU: A simplified LSTM 

Images from Michael Phi’s  https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



GRU: The Math

Math based on: Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint 
arXiv:1412.3555 (2014)

Final output

A linear interpolation between previous output and candidate output

ℎ" = 1 − 𝑧" ℎ"#$ + 𝑧" .ℎ"

Update gate 𝑧" = 𝜎 𝑊%𝐱" +𝑈%𝐡"#$

Determines how much to make the output be influenced by 
the previous hidden state vs the current input.

.ℎ" = 𝑡𝑎𝑛ℎ 𝑊&'𝐱" +𝑈&' (𝐫"⨀𝐡"#$ )Candidate output

Vector of all reset gates in 
the hidden layer

Vector of all outputs in the 
hidden layer𝑟"= 𝜎 𝑊(𝑥" +𝑈(ℎ"#$Reset gate

Determines how hard to reset this unit’s output



LSTM/GRU Plusses and Minuses

• Lets networks handle problems 
with long term dependencies
• This lets LSTMs (or GRU) solve 

problems simple recurrent 
architectures cannot

• Still has trouble with XOR (time-
delayed XOR where you XOR two 
inputs that are an unknown 
number of time steps apart)
• Lots of extra weights compared to 

regular cells
• Long and slow to train
• Not easy to inspect networks to 

understand them


