
Recurrent nets
Bryan Pardo

Deep Learning
Northwestern University

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020

Dealing with time
• With a ”standard” feed-forward architecture, you process data from

within a window, ignoring everything outside the window.
• To get influence from the processing of earlier time steps, add nodes

and connections
• This doesn’t scale well

t-2 t-1 t output

Let’s look at that net.

t-2 t-1 t

𝐖!"#

𝐗!"#

𝐖!"$

𝐗!"$

𝐖!

𝐗!

• An entire new set of
weights for EACH time step.
• Audio is sampled at 44,100

times per second
• The number of past time

steps you could consider is
limited by the architecture.
• The number of weights to

learn quickly gets out of
control.

Take an idea from CNNs and HMMs

𝐖

𝐗!"# 𝐗!"$ 𝐗!

• Markov property: The state
of the world can be
captured by knowing
current state + immediately
previous state
• Markov models use

recurrent connections
• CNNs use the same set of

shared weights on different
parts of the input

Shared
weights

Distinct
inputs

𝐖 𝐖

Take an idea from CNNs and HMMs

• If all the windows share the
same input weights (like in a
feature map), then we only
have the same number of
weights as if we had a single
window.
• This is a recurrent net.
• How do you train this?
• Are there any obvious

limitations?

𝐖

𝐗𝒕

Out from t-1 In to t+1

Current output

Backprop through time: “Unrolling”
• Pick a number of steps over which you’re going to “unroll” the net.
• Treat it like you’re training a convolutional neural net
• Pick the number of steps based on your frenemy: Exponential decay

Getting influence from the past: Skip connections
(used in Highway networks)
• Widely used
• Limited by the length of the skip

Exponentially decaying influence

• If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.

Exploding and vanishing gradients

• What if the weight ono the
recurrent connection is
greater than 1?

• What if the weight on the
recurrent link is less than 1?

• What if it is exactly 1?

𝐖

𝐗𝒕

Recurrent
connection

An RNN example: Language modeling

• In language modeling, the game is to be able to predict the next
word, given the previous N words.

• Examples
“Two plus two equals…”
“A stitch in time saves….”
“I never did…”

Our text encoding
• 1000 most common English words. + start + stop + other

• Encoding: 1003 element one-hot vector for each word in a sentence
• Word index determined by popularity
• Start = 1001
• Stop = 1002
• Other (any word not in the top 1000) = 1003

• Examples:

An apple is good for you. -> [1001, 48, 927, 121, 7, 26, 1002]

Lilliputian dilatants prognosticate parsimoniously! -> [1001, 1003, 1003, 1003, 1003, 1002]

https://1000mostcommonwords.com/1000-most-common-english-words/

The goal: predict the next token

• Each sentence is its own label.

• Given “An apple is…”, predict “good” as the next word.

• Our model output will be a probability distribution over the 1003
element vector (top 1000 words + start + start + other).

• We can use cross-entropy loss, comparing the one-hot vector to the
probability vector output by the model.

Our network

An apple is good for you

good

INPUT:

Argmax output fruit is

t-2 t-1 t

4-node RNN
Hidden layer

Probability
distribution
over words

A RNN with 4 hidden nodes : how many weights?

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT LAYER

OUTPUT a 1003 element probability distribution over the set of words.

0.01, .0000098,… , . 0023,… , . 001,0, . 000053 Softmax activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

Hidden layer

Output layer

Input +
prev state

What if we use a more realistically sized net?

• Dictionary size = 50,000
• Hidden states = 100

• 50,000*100*2 = 10,000,000

• It’s just that easy to have 10 million weights.

• Adding a couple of extra hidden layers (even fully connected ones)
doesn’t cost you much, compared to the dictionary size.

RNN: the math

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

0, 0, 0, … , 1,… , 0,0,0 .2, 0, .001, .3
Previous state s(t-1): a vector of the output
from each hidden unit from time t-1

Hidden layer

Output layer

Input +
prev state

Sigmoid activation

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE INPUT LAYER

OUTPUT a 1003 element probability distribution over the set of words.

Softmax activation0.01, .0000098,… , . 0023,… , . 001,0, . 000053

ALL HIDDEN NODES ARE FULLY CONNECTED TO THE OUTPUT LAYER

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

Concatenation

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
prev state

OUTPUT a 1003 element probability distribution over the set of words.

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

RNN: the math

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 + 1) = argmax
*

[𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡]

RNN: making a prediction

Recurrent neural network-based language model (Interspeech 2010)

Perplexity

• A measure of how hard it is to guess the next word.
• The exponentiation of the cross-entropy

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2!(#) = 2%∑! #(')(()*"(+ ')

• A commonly used measure of how well a language model is doing
• Measures how confused the model is (how many choices it has

reduced the next word to)

A language model is a generative model

• If you have something that predicts the next word, you have
something that can “generate” the next word.

• Sentence completion is possible

• Sentence generation is possible

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
prev state

𝑤(𝑡) 𝑠(𝑡 − 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 − 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 − 1),… , 𝑠'(𝑡 − 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = G𝑤 𝑡 + 1 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚: [𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡]

Language model as a generative model:

Recurrent neural network-based language model (Interspeech 2010)

Generating a new sentence with the model

STARTPick an initialization token

She

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She
from model output at
previous time step

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She likes

cheeseShe likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

Sample from the conditional
distribution output by the model

Generating a new sentence with the model

START She likes cheese

cheese
Sample from the conditional
distribution output by the model

She likes

[𝑠!(𝑡 − 1), … , 𝑠"(𝑡 − 1)]

Random initialization

STOP

Continue till you
generate a stop
token

Getting more context

• We predict/generate a new token, based on a prior sequence.

• Our generated output is contextually informed by the past

• But wait….if our training data is whole sentences, can’t we do the
same thing from the ”future” (i.e. the next word or rest of sentence)?

• Sure we can. Just feed in the sequence backwards.

INPUT word w(t): a 1003 element
one-hot vector encoding word t.

Hidden layer

Output layer

Input +
next state

𝑤(𝑡) 𝑠(𝑡 + 1)
x 𝑡 = 𝑤 𝑡 + 𝑠(𝑡 + 1)

𝑠% 𝑡 = 𝜎 1
&

𝑢&% 𝑥&(𝑡)

= [𝑠$(𝑡 + 1),… , 𝑠'(𝑡 + 1)]

𝜎 𝑧 = (1 + 𝑒"()"$

𝑔 𝑧) =
𝑒(!
∑* 𝑒("

𝑦* 𝑡 = 𝑔 1
*
𝑠%(𝑡)𝑣%*

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = G𝑤(𝑡 − 1) = max
*
[𝑦$ 𝑡 ,…,𝑦* 𝑡 ,…,𝑦) 𝑡]

RNN: predicting the “past” based on the “future”

Bidirectional RNN

• Inform output layer’s
probability distribution
using a forward layer
and a backwards layer

• The generated token(s)
are influenced by both
previous and
subsequent context

An apple is - for you

good

INPUT:

OUTPUT:

Multi-layer RNN

• You can have multiple
hidden layers, where
layer n feeds into layer
n+1

Image from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).

Long-Short Term Memories
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural
computation 9.8 (1997): 1735-1780.

Here’s a problem. What can learn to do it?

• X is a finite-length sequence composed of tokens, where each token
𝑥' ∈ ℝ ∪ 𝑎, 𝑏 .

• The length of X is unknown.

• Before beginning, the total = 0.

• Iterate through X and do the following
• If 𝑥- = 𝑎, add 𝑥-./to the total.
• If 𝑥- = 𝑏, return the total and reset the total to 0.

Let’s play

1, 3, -5, a, 5, -1, 8 , 2, 0, a, 9, b

a, -1, a, 100, b

1, 3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, b

= 99

= 14

= 9

Feed-forward: Fixed-length time window

• If your network needs to connect information from outside the
window, you lose.

1, 3, a, -5, 0, 0, 0, 0, a, 5, -1, 7 ,2, 0, a, 9, -12, ba, -1, a, 100, b

RNN: exponentially decaying influence

• If your network needs to connect information from a distant
timestep, the influence of the earlier one tends to get lost
• Why? Exponential decay.

-5 a 5 -1 8 a 9 b

Long Short Term Memory Units (LSTMs)
• Added a way of storing data over many time steps without decay
• Let networks to handle problems with long term dependencies

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

LSTM training
• Error is propagated indefinitely through its memory cell, the constant error

carousel (CEC)
• Error flow back through the unit is truncated at the incoming weights.

Image from: Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

An easy-to-follow-visual of a modern LSTM

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell state from
prev. time step

Hidden state input
from other LSTM cells

Network
input

Output

Cell state at
this timestep

Forget gates introduced in: Gers, F.A.
et al (1999). "Learning to forget:
Continual prediction with LSTM". 9th
International Conference on Artificial
Neural Networks: 1999

Forget Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Hidden state
passed in from
other cells

New input vector

Input Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Cell State

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Output Gate

Amazing gifs from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

The math of the modern LSTM

Image adapted from Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).
Forget gates introduced in: Gers, F.A. et al (1999). "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks: 1999

How many weights for a single LSTM unit?

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 4 𝑥 + 4 ℎ + 3 + 4

Input gate

forget gate

memory

output gate

final output

How many weights for this network?
• Input: 50,000 word vocabulary, 4 LSTM layers of 100 cells per layer

• Compare that to a vanilla RNN with the same number of layers and
vocabulary size….

• Can we shrink closer to a vanilla RNN but keep advantages of an
LSTM?

GRU: A simplified LSTM

Images from Michael Phi’s https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

GRU: The Math

Math based on: Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint
arXiv:1412.3555 (2014)

Final output

A linear interpolation between previous output and candidate output

ℎ" = 1 − 𝑧" ℎ"#$ + 𝑧" .ℎ"

Update gate 𝑧" = 𝜎 𝑊%𝐱" +𝑈%𝐡"#$

Determines how much to make the output be influenced by
the previous hidden state vs the current input.

.ℎ" = 𝑡𝑎𝑛ℎ 𝑊&'𝐱" +𝑈&' (𝐫"⨀𝐡"#$)Candidate output

Vector of all reset gates in
the hidden layer

Vector of all outputs in the
hidden layer𝑟"= 𝜎 𝑊(𝑥" +𝑈(ℎ"#$Reset gate

Determines how hard to reset this unit’s output

LSTM/GRU Plusses and Minuses

• Lets networks handle problems
with long term dependencies
• This lets LSTMs (or GRU) solve

problems simple recurrent
architectures cannot

• Still has trouble with XOR (time-
delayed XOR where you XOR two
inputs that are an unknown
number of time steps apart)
• Lots of extra weights compared to

regular cells
• Long and slow to train
• Not easy to inspect networks to

understand them

