
Thanks to Max Morrison for a number of slides

Optimization 
(Gradient Descent & Backprop)

1

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020



Supervised Machine Learning in one slide

1. Pick data X, labels Y,  model M(𝜽) and loss function L(𝐗, 𝐘; 𝜽)

2. Initialize model parameters 𝜽, somehow

3. Measure model performance with the loss function L(𝑿, 𝒀; 𝜽)

4. Modify parameters 𝜃 somehow, hoping to improve L(𝑿, 𝒀; 𝜽)

5. Repeat 3 and 4 until you stop improving or run out of time

HOW?



A common approach to picking the next parameters

1. Measure how the the loss changes when  we change the 
parameters 𝜃 slightly 

2. Pick the next set of parameters to be close to the current set, but in 
the direction that most changes the loss function for the better

3. Repeat

HOW?



Slope vs gradient 

• Slope of 𝑓(𝜃) is a scalar 
describing a line perpendicular 
to the tangent of the function at 
that point .

• Gradient 𝛻𝑓(𝛉) is a vector 
describing a hyperplane 
perpendicular to the tangent at 𝛉



What does the gradient tell us?
• If the loss function and hypothesis function encoded by the model are 

differentiable* (i.e., the gradient exists)
• We can evaluate the gradient for some fixed value of 𝜃 and get the 

direction in which the loss increases fastest

*or subdifferentiable



What does the gradient tell us?
• We want to decrease our loss, so let’s go the other way instead



Gradient Descent: Promises & Caveats

• Much faster than guessing new parameters randomly
• Finds the global optimum only if the objective function is convex

Lo
ss

 L
(𝑋
,𝑌
;𝜃

)

𝜃 : the value of some parameter



Step Size: how far should we go?

• The gradient we calculated was based on a fixed value of 𝜃
• As we move away from this point, the gradient changes

If the step size is too large, we may 
overshoot the minimum

If the step size is too small, we need to 
take more steps (more computation)



Gradient Descent Pseudocode

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t

∇𝐿(𝑋, 𝑌; 𝜃(")) is the gradient of the loss function with respect to model parameters 𝜃(")

𝜂 controls the step size

𝜃("!"#) is the set of parameters that did best on the loss function.



Design choices

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇𝐿(𝑋, 𝑌, 𝜃($))

Return 𝜃($!"#)

• Initialization of 𝜃
• Convergence criterion
• Choosing a loss function
• How much data to use at each step (batch size)
• Step size for updating model parameters



Parameter Initialization
Common initializations:
• 𝜃(") = 0
• 𝜃(") = random values
What happens if our initialization is bad?
• Convergence to a local minimum
• No way to determine if you’ve converged to 

the global minimum

If we start here

We could end here



Knowing when to stop gradient descent

• Stop when the gradient is close (within 𝜀) to 0 (i.e., we reached a 
minimum)

• Stop after some fixed number of iterations

• Stop when the loss on a validation set stops decreasing 
• This helps prevent overfitting



Stochastic, Batch, Mini-Batch Descent
• Call D the set X,Y pairs we measure loss on 

• In batch gradient descent, the loss is a function of both the 
parameters 𝜃 and the set of all training data D.                                    
(What if if |D| > memory?)

• In stochastic gradient descent, loss is a function of the parameters 
and a different single random training sample at each iteration. 

• In mini-batch gradient descent, random subsets of the data (e.g. 100 
examples) are used at each step in the iteration. 



Different data, different loss
• Call D the set X,Y pairs we measure loss on. 
• If D changes, then the landscape of the loss function changes
• You typically won’t know how it has changed.

𝐃$ 𝐃%

Lo
ss

 L
(𝑋
,𝑌
;𝜃

)

𝜃 : the value of some parameter



Loss functions



A good objective (loss) function L(X, Y; 𝜃)

L(X, Y; 𝜃) ≥ 0

L(X, Y; 𝜃) decreases as performance improves

L(X, Y; 𝜃) is differentiable*, with respect to 𝜃

The gradient of 𝐿 is bounded… 𝟎 < 𝛻𝐿 ≪ ∞

Required

Required
for gradient 
descent

helpful
For gradient
descent

data parameters
labels

*or subdifferentiable



h x( ) =  1 if g x( ) > 0
−1 otherwise

⎧
⎨
⎪

⎩⎪

SSE = (yi
i

n

∑ − h(xi ))
2

g(x) = w0 +w1x1 +w2x2 = 0

g(x) > 0g(x) < 0

SSE is same everywhere in the blue
Gradient 0  in the blue region!

Example: 0 1 loss



The 0 1 Loss function 

• A generic term for machine learning model parameters is 𝜃

• Loss = 1 if 𝑦 ≠ ℎ$(𝑥), else it’s 0

• A count of mislabeled items

• Results in a step function 

• Not useful for for gradient descent 𝜃



Perceptron Problem: The step function

𝐰!𝐱

ℎ 𝐱

ℎ 𝑥 = ) 1 𝑖𝑓 0 < 𝐰*𝐱
−1 𝑒𝑙𝑠𝑒



Solution: Remove the step function

ℎ 𝐱 = 𝐰!𝐱

𝐰!𝐱

ℎ 𝐱



Squared loss: we now have a gradient

• Our hypothesis function is now 
ℎ* 𝐱 where 𝜃 are the model parameters.

•We write our loss function as..

• If we use a linear model, then..
ℎ* 𝐱 =𝜃+𝐱

𝑦ℎ& 𝐱



A simple example: where do you draw the line?
Happy faces have label y = +1 and sad faces have label y = -1.

We have a linear model with 2 parameters: 1𝑦 = 𝐰'𝐱 = 𝑤"𝑥" +𝑤$𝑥$
Our loss function will be sum-of-squared-errors: 

0
How does the loss change as we move the line defined by 𝒘𝟎 ?
Can we use that to decide where to move it?
What does 𝒘𝟏 do? 

𝒘𝟎

𝐿 𝑋, 𝑌,𝐰 = $
%(
∑)*$( (𝑦) − 1𝑦𝒊)𝟐



Measuring loss for a linear unit
•Model’s hypothesis ℎ* 𝐱 function outputs a label estimate 
1𝒚, given its parameters 𝜃. Let’s call them the weights, 𝐰

• Sum of squared errors loss function:

5𝒚 = ℎ5 𝐱 = 𝐰*𝐱

𝐿 𝑋, 𝑌,𝐰 =
1
2𝑁<

678

9

(𝐲6 − 5𝒚6)𝟐

𝐲$ is the true label for example 𝑖

This ½ makes the 
derivative simpler 

𝑖 is the index to the ith
example 𝐱$ and its label 𝐲$N is a normalizing factor so different batch 

sizes have comparable loss. Safe to remove.



If we consider a single example, then…

𝐿 𝑋, 𝑌,𝐰 =
1
2𝑁B

-./

0

(𝑦- − F𝑦𝒊)𝟐

𝐿 𝑋, 𝑌,𝐰 =
1
2 (𝑦 − ,𝑦)𝟐

Setting the number of data points N = 1 results in…



For each dimension i, take the partial derivative

𝜕𝐿
𝜕𝑤)

=
𝜕𝐿
𝜕 1𝑦

𝜕 1𝑦
𝜕𝑤)

gives the change of our loss function 𝐿 with respect to weight 𝑤'

For a linear unit: 4𝑦 = 𝐰(𝐱 and loss function: 𝐿 = )
*
(𝑦 − 4𝑦)𝟐,  then…

,-
, ./
= 𝑦 − 4𝑦 = 𝑦 −𝐰(𝐱

Let’s calculate , ./
,0%

…Recall 4𝑦 = 𝐰(𝐱 = 𝑤1𝑥1…+𝑤'𝑥' …+𝑤2𝑥2

𝑤' is the only variable weight in this partial derivative, therefore:  , ./
,0%

= 𝑥'

Therefore, ,-
,0%

= 𝑦 −𝐰(𝐱 𝑥'



We now have each weight’s portion of the gradient 
for a linear model.

𝜕𝐿
𝜕𝑤-

= 𝑥- 𝑦 −𝐰+𝐱

∇𝐿(𝑋, 𝑌; 𝜃(?)) =
𝜕𝐿
𝜕𝑤@

, …
𝜕𝐿

𝜕𝑤-…
,
𝜕𝐿
𝜕𝑤A



The gradient can now be used here

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃$ − 𝜂∇𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t

∇𝐿(𝑋, 𝑌; 𝜃(")) is the gradient of the loss function with respect to model parameters 𝜃(")

𝜂 controls the step size

𝜃("!"#) is the set of parameters that did best on the loss function.



Sigmoid (aka Logistic) function: best of both

• Perceptron

• Linear

• Sigmoid 

𝑓 𝑥 = 1 𝑖𝑓 0 <B
-.@

B

𝑤-𝑥-

−1 𝑒𝑙𝑠𝑒

𝑓 𝑥 = 𝐰+𝐱 =B
-.@

B

𝑤-𝑥-

𝑓 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒C(𝐰!𝐱)



What’s cool about the sigmoid function
• It looks like a rounded step function, so we can build circuits of 

arbitrary functions  like we can with perceptrons

• It has non-zero slope everywhere and no sharp corners

• The derivative of the function is this: 

• …and it’s easy to plug into the gradient descent algorithm to get the 
learning rule.

𝑑𝜎 𝑧
𝑑𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧 )



For each dimension i, take the partial derivative
01
023

= 01
0 34

0 34
05

05
023

gives the change of our loss function 𝐿 with respect to weight 𝑤'

Here, 𝐿 = )
*
(𝑦 − 4𝑦)𝟐 and      4𝑦 = σ 𝑧 = )

)45&'
and     𝑧 = 𝐰(𝐱

Therefore ,-
, ./
= 𝑦 − 4𝑦 = 𝑦 − σ 𝑧

..and , ./
,6
= 𝜎 𝑧 (1 − 𝜎 𝑧 ), as was given to us.

…and   ,6
,0%

= 𝑥' , since 𝑧 = 𝐰(𝐱 = 𝑤1𝑥1…+𝑤'𝑥' …+𝑤2𝑥2

Therefore, ,-
,0%

= 𝑦 − σ 𝑧 𝜎 𝑧 (1 − 𝜎 𝑧 )𝑥'



For each dimension i, take the partial derivative

From the previous slide: 01
023

= 𝑦 − σ 𝑧 𝜎 𝑧 (1 − 𝜎 𝑧 )𝑥)

Let6s compose σ 𝑧 = $
$7878

and   𝑧 = 𝐰'𝐱 into one function 
(called σ 𝐱 ), to get the following:

σ 𝐱 = $
$787𝐰:𝐱

This lets us now write the change in loss as:
01
023

= 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱 )𝑥)



Backpropagation of error



Where we left off

• We have the 𝜎(𝑥) sigmoid function that we can train with gradient 
descent, because it’s differentiable and has a non-zero gradient 
everywhere.

• We can plug multiple sigmoids together to form arbitrary Boolean 
functions, by just interpreting the last output with sign(𝜎(𝑥))

• We now need a way to have error from the output sigmoid function 
to flow to the input, so we can adjust the parameters of every 𝜎(𝑥)
on the path from the input to the output when we do our gradient 
descent.



Consider one output node

Output
Units

Input
Units

Weight 
Matrix

Weight 
Matrix

Hidden
Units

Let’s define a function…

𝛿 = 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱 )

Now this…

,-
,0%

= 𝑦 − σ 𝐱 𝜎 𝐱 (1 − 𝜎 𝐱 )𝑥'

…becomes this:   
IJ
IK"

= 𝛿𝑥-

For any output node 𝑘 we just use 
this, as before.



Consider one hidden node

Output
Units

Input
Units

Weight 
Matrix

Weight 
Matrix

Hidden
Units

For a hidden node ℎ we need to 
redefine 𝛿. Instead of comparing the 
output of the node to a known target 
output 𝑦, we look at its contribution to 
the output of the 𝑘 nodes it is 
connected to at the next layer.

𝛿 = M
<
𝑤< 𝛿< 𝜎 𝐱 (1 − 𝜎 𝐱 )

…and we then do:   
01
023

= 𝛿𝑥)

We can do this repeatedly for multiple
hidden layers.



Some stuff I should 
mention



Sigmoid + SSE are not your only choices

• Pick an activation function

• Pick a loss function

• Make sure they’re both differentiable (or sub-differentiable)

• You can now do backpropagation of error



Rectified Linear Unit (ReLU) & Soft Plus :

•ReLU

• Soft Plus

•Both can be combined in layers 
to make non-linear functions

𝑓 𝑥 = max(0,𝐰'𝐱)

𝑓 𝑥 = ln(1 + 𝑒𝐰%𝐱)



“One Hot” Encoding

• A vector of values where a single element is 1 and all the rest are 0
• Common way to encode the true label, y,  in a multi-class labeling 

problem
• Can be interpreted as a probability distribution 

y = 0 0 1 0 0 0 0 0 0 0 y = 0 0 0 0 0 1 0 0 0 0



Probability distribution 

å
=

=
n

i
i

n

xP

xxXP

X

1

1

1)(   :one  tosum iesprobabilitTheir   *

exclusive.mutually  are outcomes These  *

X.for  outcomes possible  ofset     the
 },,...,{over  onsdistributiy probabilit  theis )(  *

.experiment some represents   variablerandom Discrete  *



Soft Max Function

• Turns an N-dimensional vector of real numbers into a probability 
distribution, even if the numbers are both pos

• For a deep net, 𝑎) is the output of the ith node in the output layer

𝑝!=
"/0

∑123
4 "/1



Why softmax?

Why do I need this? 𝑝#=
$"%

∑()*
+ $"(

Wouldn’t taking the absolute value and averaging do just as well?

𝑝#=
|𝑎#|

∑&'() |𝑎&|

• Softmax is a multivariate extension of the sigmoid (logistic) function

• When combined with cross entropy loss function, the resulting derivative is 
a very nice one.



Entropy
• Entropy is the measure of the skewedness of a distribution
• The higher the entropy, the harder it is to guess the value a random 

variable will take when we draw from the distribution.
• Here,  

𝐻(𝑃) = −0
567

8

𝑃(𝑖)log(𝑃(𝑖))



Some examples

entropy =3.1525e-305

1 2 3
0

0.2

0.4

0.6

0.8

1

pr
ob
ab
ilit
y

entropy =0.69315

1 2 3
0

0.2

0.4

0.6

0.8

1

entropy =1.0297

1 2 3
0

0.2

0.4

0.6

0.8

1



Cross Entropy

• Cross entropy is a measure of the similarity between distributions
• It is *NOT* symmetric. 

𝐻(𝑃, 𝑄) = −0
567

8

𝑃(𝑖)log(𝑄(𝑖))



An example

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Distribution P Distribution Q

𝐻(𝑃,𝑄) = −M
'=)

>

𝑃(𝑖)log(𝑄(𝑖)) = 1.39



An example

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Distribution P Distribution Q

𝐻(𝑃,𝑄) = −M
'=)

>

𝑃(𝑖)log(𝑄(𝑖)) = ∞

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1



Cross Entropy Loss Function 

Given: “true” distribution 𝑦 = {𝑦(,𝑦*, … 𝑦)} <-often a one-hot encoding
and  estimated distribution +𝑦 = { +𝑦(, +𝑦*, … +𝑦)} <-soft max over the last layer

Define cross entropy loss between 2 distributions as 

𝐿 𝑦, ,𝑦 = −0
567

8

𝑦5log( ,𝑦5)



A common approach…

• Define labels with a one-hot vector encoding

• Make the last layer have n nodes for an n-way classification problem

• Apply soft max to the last layer

• Use a cross-entropy loss function

• The resulting derivative of the loss function is wonderfully simple:
𝜕𝐿
𝜕𝑎)

= 1𝑦) − 𝑦)
L is the loss, i is the index to a node, a is the output of the last layer, 3𝑦 is the softmax probability 
distribution over the output layer of the network  and y is the one-hot-encoding label. 



There are many activation & loss functions

• As a system designer, you need to consider what activation function 
make sense for your problem

• The right loss function makes the difference between a learnable 
problem and an unlearnable one

• Different layers may have different activation functions

• Multiple loss functions may be used when teaching the network


