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Abstract—The Multi-resolution Common Fate Transform
(MCFT) is an audio signal representation useful for representing
mixtures of multiple audio signals that overlap in both time
and frequency. The MCFT combines the invertibility of a state-
of-the-art representation, the Common Fate Transform (CFT),
and the multi-resolution property of the cortical stage output
of an auditory model. Since the MCFT is computed based
on a fully invertible complex time-frequency representation,
separation of audio sources with high time-frequency overlap
may be performed directly in the MCFT domain, where there is
less overlap between sources than in the time-frequency domain.
The MCFT circumvents the resolution issue of the CFT by using
a multi-resolution 2D filter bank instead of fixed-size 2D windows.
This enables higher quality separation without the need to hand-
tune the window size to the specific case. In this work, we describe
the MCFT, discuss the properties of the MCFT with the aid
of illustrative examples and provide definitions and objective
measures for two desirable representation properties: separability
of source signals and clusterability of components of each signal.
The utility of the MCFT for source separation is illustrated by
performing ideal masking on a comprehensive dataset of audio
mixtures of musical tones played in unison, including audio sam-
ples from a wide pitch rage and a variety of instruments/playing
techniques. Results show that the ideal masks made in the MCFT
domain yield better separability than those made in commonly
used time-frequency signal representations as well as the CFT.
The use of the MCFT also results in more reliable clusterability
than the CFT in most cases.

Index Terms—Audio source separation, Multi-resolution Com-
mon Fate Transform, Separability, Clusterability.

I. INTRODUCTION

AUDIO source separation refers to the process of esti-
mating n source signals from m channel mixtures. It is

an important enabling technology to a variety of applications,
including: automatic speaker identification in a multi-speaker
scenario [1], [2], speech recognition in noisy environments
[3], musical instrument recognition in polyphonic audio [4],
music remixing [5], music transcription [6], upmixing of
stereo recordings to surround sound [7], [8], and lyric-music
synchronization [9].

Underdetermined source separation is an important case,
where the number of sources exceeds the number of recording
channels. We focus on one of the most common underde-
termined scenarios: performing separation on monophonic or
stereo recordings of mixtures of two or more sound sources.

Many approaches to separation of underdetermined mixtures
are applied to a time-frequency representation of the audio,
such as the widely-used short-time Fourier transform (STFT).
Dealing with high levels of energy overlap between sources is
a major challenge faced by source separation algorithms that
use time-frequency representations as their input. In general,
regardless of the algorithm, if the input mixture is represented
in the time-frequency domain, performance degrades as the
time-frequency energy overlap between sources increases.

A number of source separation approaches map a time-
frequency representation to another representation domain, so
that the source separation problem can be solved through
distance-based clustering. Clusters, which are assumed to
correlate with sources, are then used to create time-frequency
masks. Examples include approaches that perform the mapping
with a mathematical formula, such as DUET [10] and Kernel
Additive Modeling [11], as well as methods that learn a higher-
dimensional embedding from data, such as Deep Clustering
[12]. In all these cases, the final masking is performed in
the time-frequency domain, which leaves the issue of time-
frequency energy overlap unresolved.

The type of processing performed in human auditory system
can inspire the development of richer representations that in-
herently increase the chance of better separation. For instance,
a psychoacoustics principle called the common fate principle
[13] states that spectral components with the same modulation
properties (components moving up and down together in the
time-frequency space) are more likely to be grouped into a
single audio stream by human listeners.

The common fate principle has been employed by some
methods such as Non-negative Tensor Factorization (NTF)
[14] [15] at the algorithmic level, while leaving the underly-
ing audio representation (magnitude spectrogram) unchanged.
However, accounting for spectro-temporal modulation proper-
ties as explicit dimensions of the representation, would facil-
itate separation of sources with high time-frequency overlap
without requiring the algorithm to grow too complex.

The method proposed by Abe et al. [16] is an early work
that exploits modulation properties for source separation. In
a recent attempt to address the difficulty in the separation of
same pitch (unison), frequency-modulated sources, Stöter et
al. [17] proposed a 4D representation, named the Common
Fate Transform (CFT), which explicitly captures common fate.
The use of the CFT for the separation of unison mixtures with
different modulation properties has produced promising results
[17].

The CFT is computed by dividing the complex STFT of an
audio signal into overlapping 2D windows and then analyzing
each windowed segment by the 2D Fourier transform. The
main shortcoming of CFT is its use of the same fixed-size
window over the entire STFT. This limits the transform-
domain resolution, and hence affects the separation results for
sources with close modulation patterns. To achieve maximal
performance for a particular situation, a knowledgeable user
must select the appropriate window size. It would, however,
be preferable to attain good separation results without having
the need for hand-tuning the window size.

The resolution issue of the CFT can be addressed by using
a multi-resolution approach, i.e. analyzing the time-frequency
representation over a range of window sizes, or equivalently
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through a filter bank. The auditory model proposed by Chi et
al. [18] transforms the audio signal into a 4D representation
based on a multi-resolution analysis approach.

This auditory model emulates the important aspects of the
cochlear and cortical processing stages in the auditory system
of small mammals. The output representation captures spectro-
temporal modulation patterns as two additional dimensions,
named scale and rate. Since the main purpose of the model is
to emulate the auditory system output, its cochlear processing
stage includes non-linear operations and removal of phase
information. As a result, the output representation is not fully
invertible, which hinders its use in audio processing tasks,
where the perfect reconstruction of time-domain audio signals
is of crucial importance.

Krishnan et al. [19] proposed a source separation algorithm
that uses the output of Chi’s auditory model to build time-
frequency-domain masks, but since it applies masking in
the time-frequency domain, it remains susceptible to time-
frequency overlap between sources. Mesgarani et al. [20]
proposed a speech enhancement method based on filtering
the noisy signal in the full 4D domain. The method is able
to suppress noise with distinctive modulation patterns even
in cases where there is time-frequency overlap between the
speech and noise. However, to recover the acoustic signal they
use the signal estimation algorithm accompanying the auditory
model, which despite preserving the intelligibility of speech
signals suffers from poor reconstruction quality.

In a pilot conference paper [21], we proposed a new
representation, the Multi-resolution Common Fate Transform
(MCFT), which combines the strengths of the CFT and of
Chi’s auditory model. The MCFT is computed based on a fully
invertible complex time-frequency representation. It allows
separation of sources with high time-frequency overlap in a
4D domain, where there is less overlap between sources. The
MCFT circumvents the resolution issue of the CFT by using a
multi-resolution 2D filter bank instead of fixed-size windows.
This enables higher quality separation without the need to
hand-tune the window size to the specific case.

In this paper, we substantially extend our pilot work. The
mathematical formulation is described in greater detail. We
give a detailed presentation of the principles based on which
the common-fate-based representations, CFT and MCFT, are
designed. We study the properties of the CFT and MCFT using
illustrative examples. Furthermore, we discuss separability and
clusterability, two desired properties for audio representations
as well as objective metrics for evaluating these properties
in different representation domains. We compare the efficacy
for source separation of multiple audio representations on
mixtures with significant time-frequency overlap.

The remainder of this paper is organized as follows: We
introduce separability and clusterability, two important prop-
erties of audio representations affecting the performance of
source separation algorithms in Sections II and III. The
precursors to our work, the Common Fate Transform (CFT)
and Chi’s auditory model, are then studied in detail in Sec-
tions IV and V, respectively. In Section VI, we present the
Multiresolution Common Fate Transform (MCFT) and discuss
its important properties. Experimental results showing the
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Fig. 1. Examples of simple audio mixtures with different levels of separability
based on the representation used. Panels (a) and (b) display a mixture of
two single frequency sinusoids, represented in the time domain and in the
frequency domain respectively. In panels (c) and (d), a mixture of two linear
chirps is demonstrated, in the frequency domain and in the time-frequency
domain respectively. Panels (e) and (f) show mixtures with overlapping energy
in the time-frequency domain (a mixture of two linear crossing chirps and a
mixture of two sinusoids with different frequency modulation patterns).

separability and clusterability of a variety of representations
are presented in Section VII. Section VIII concludes the paper
and briefly discusses the significance of this work.

II. AUDIO REPRESENTATION AND SEPARABILITY

In this section, we introduce the concept of separability
as a measurable property of audio mixtures. The separability
of two signals depends on the properties of the signals and
also the properties of the representation domain. What seems
inseparable in one representation domain may be easy to
separate in another. Figure 1 shows four simple mixtures
represented in different domains. The first example, displayed
in Panels (a) and (b), is a mixture of two single-frequency
sinusoids in the time and frequency domains respectively.
Clearly, the separation task is very difficult in the former
case, while quite easy in the latter. Panels (c) and (d) present
the second example, a mixture of two linear chirps, in the
frequency and time-frequency domains respectively. Going
from the frequency domain to the time-frequency domain
decreases the energy overlap between the two sources, and
thus helps the separation. The two examples in Panels (e) and
(f) demonstrate that even the time-frequency domain is not
immune to overlap between sources as mixtures become more
complex. As a matter of fact, the example of Panel (f), where
the mixture consists of sources with significant time-frequency
overlap, presents one of the most challenging scenarios for the
source separation task.

We now provide basic definitions for an underdetermined,
linear mixture source separation problem. Let x(t) denote a
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mixture of N time-domain audio signals, that is

x(t) =

N∑
j=1

sj(t), (1)

where t is the time index, sj(t) is the amplitude of the jth

source in the mixture at time t, and uj(t) indicate the sum of
all sources interfering with sj(t), i.e.

uj(t) =

N∑
i=1,i6=j

si(t). (2)

Assume a linear transform, denoted by T , is applied to the
audio mixture and its constituent sources, taking them from
the time domain to a k-dimensional representation domain D.
Let d = (d1, d2, ..., dk) ∈ D be an arbitrary point in D,
and let Sj(d) = T {sj(t)} and Uj(d) = T {uj(t)} indicate
the transformed versions of sj(t) and uj(t), respectively. In
general, we assume transformed signals to be complex valued.

An ideal binary mask separating the jth source from the
rest of the mixture in the transform domain can be defined as
[22]

Mj,γ(d) =

{
1 if 20 log10

(
|Sj(d)|
|Uj(d)|

)
> γ

0 otherwise,
(3)

where γ, measured in deciBels (dB) is the masking threshold.
Note that for the above formula to be valid, both |Sj | and
|Uj | values are assumed to be nonzero. In practice, we use the
expression 20 log10 [(|Sj(d)|+ ε)/(|Uj(d)|+ ε)] with ε << 1
to avoid numerical errors.

Equation (3) simply states that the total mixture energy at
each point in the representation is assigned to the jth source
if it dominates the total interference from other sources by
γ dB. In other words, the jth source “loses” its energy at
a given point if the energy ratio between the source and the
interference does not pass the masking threshold. It is possible
to have points where none of the sources is dominant. The
values of all masks at such points are set to zero, and thus the
mixture energy is not assigned to any of the sources.

A measure of separability in a representation domain can
be defined as the energy portion of the jth source preserved
through masking, normalized by the total energy of the original
source, where both the original and masked signals are placed
within that representation domain. A version of such a mea-
sure, named approximate W-disjoint orthogonality (WDO),
introduced by Rickard et al. [22], is calculated by placing
the mixture into a time-frequency representation. It should
be noted that the use of this energy ratio measure is only
appropriate when comparing different mixtures represented in
the same domain. Due to the dimensionality mismatch between
the representation domains discussed throughout this work and
different types of analysis methods and parameters involved
in their computation (e.g. fixed-size windowing versus multi-
resolution filtering), the outputs of such a measure are not
comparable across representations.

To measure how well different representations naturally
separate sources in a mixture, we take an alternative approach,

which makes comparison of different domains possible. In-
stead of measuring the preserved energy ratio in the transform
domain, we infer the separability based on the quality of
the time-domain reconstructed sources that were separated
via ideal binary masking in different representation domains.
Since the main assumption in computing ideal binary masks
for a representation domain is the dominance of at most one
source at each point, the quality of the separated sources
using such masks would be highly correlated with the level of
separability provided by the representation. For time-domain
evaluation of the separation performance, we use the BSS-Eval
[23] objective measures: Source to Distortion Ratio (SDR),
Source to Interference Ratio (SIR), and Source to Artifact
Ratio (SAR).

III. AUDIO REPRESENTATION AND CLUSTERIBILITY

In this section, we present a measure of clusterability, an
important property of representations that, to our knowledge,
has been little studied in the context of source separation.
We define clusterability as the tendency of a representation
domain to map the energy of audio sources such that the
distance between points belonging to one source (intra-cluster
distance) is considerably smaller than the distance between
points from two different sources (inter-cluster distance). This
is known as distance-based clusteribility [24]. A representation
that enhances the distance-based clusterability would make
the source separation task more straightforward, as a simple
distance-based clustering algorithm (e.g. Gaussian Mixture
Models [25]) could be used to assign energy to sources.
This insight has been exploited in multiple source separation
approaches (e.g. Kernel Additive Modeling [11], DUET [10],
Deep Clustering [12]). We are unaware, however, of any
work using an objective measure to evaluate the clusterability
tendency of the input audio representation.

In their approach to image segmentation as a graph parti-
tioning problem, Shi et al. [26] proposed the normalized cut,
a criterion that simultaneously measures the total similarity
between nodes belonging to the same group and the total
dissimilarity between nodes in different groups. Bach et al.
[27] derived a loss function based on the normalized cut
for spectral clustering, a graph partitioning technique, which
relies on the eigenstructure of the similarity matrix in order
to assign nodes with high similarity to the same cluster and
those with low similarity to different clusters.

In this work, we use the normalized-cut-based loss function
of Bach et al. [27] as a measure of the clusterability offered by
a representation. The ideal binary masks in a representation
are considered the outputs of an ideal clustering algorithm
for that representation. We treat the mask points with a value
of one as the nodes of an undirected weighted graph. The
pairwise distance in the representation space defines edge
weights. This lets us compute the value of the normalized
cut for the partitioning of the high energy points produced by
ideal binary masks corresponding to sources in a mixture. Low
normalized cut values for a given representation imply high
levels of distance-based clusterability.

In practice, treating every point as equally important can be
problematic. Since the only criterion for passing a masking
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Transform Input Computation Steps Output
CFT x(t) STFT → 2D windows centered at (Ω, T ) → FT 2D Y (s, r,Ω, T )

ICFT Y (s, r,Ω, T ) IFT 2D → 2D overlap and add → ISTFT x(t)

TABLE I
AN OVERVIEW OF THE COMPUTATION STEPS IN CFT AND ICFT.

threshold is the dominance of the target source energy and
not the absolute energy level, there can be a large number
of low-energy points in each estimated source representation
that can be counted in the source cluster without contributing
much to the total signal energy. Thus, we apply magnitude
thresholding to masks to remove low-energy points. A second
motivation for the use of this thresholding stage is to lower the
computational burden in the calculation of similarity matrices
by removing points that contribute little. In our experiments,
we set the threshold to 20 dB below the maximum magnitude
value for each estimated source.

Let W denote the similarity matrix for a given set of high-
energy points in a k-dimensional representation domain, D.
Following the framework in Bach et al. [27], we assume
the similarity between two arbitrary points di and dj to
be defined as a diagonally scaled Gaussian function of the
distance between the two points, i.e.

Wij = exp(−(di − dj)>diag(α)(di − dj)), (4)

where Wij indicates the value on the ith row and jth column
of the similarity matrix, α ∈ Rk is a vector of positive weights,
and diag(α) is a k × k diagonal matrix with diagonal α.

We use a formulation of the loss function from Bach et al.
[27]. Let vn ∈ Rm be the indicator vector for the nth cluster,
i.e. vn ∈ {0, 1}m only has nonzero values for points belonging
to the nth cluster. With V = (v1, ..., vN ) ∈ Rm×N denoting
the set of all indicator vectors associated with the N clusters,
the loss function can be written as

L(V,W ) =
1

N − 1

N∑
n=1

v>n (D −W )vn
v>nDvn

, (5)

where D = diag(W1), (1 = (1, 1, ..., 1)> ∈ Rm), is a
diagonal matrix, whose ith diagonal element is the sum of
all elements in the ith row of W . The value of L(V,W ) is
always between zero and one, with lower values indicating
higher clusterability. A more intuitive objective measure can be
defined as 1−L(V,W ), such that higher values are associated
with better clusterability.

IV. COMMON FATE TRANSFORM

In this section, we provide a brief introduction to the
Common Fate Transform (CFT), proposed by Stöter et al. [17]
and study the prominent characteristics of audio representation
in this transform domain, which make its use beneficial for the
task of audio source separation.

To formulate the transform, let us denote a single
channel time-domain audio signal by x(t) and its com-
plex time-frequency-domain representation by X(ω, τ) =
|X(ω, τ)|ej∠X(ω,τ), where ω, τ , |.|, and ∠(.) respectively
denote frequency, time, the magnitude and phase operators.

In the original version of CFT [17], X(ω, τ) is defined as
the STFT of x(t). Due to the Hermitian symmetry of the
Fourier transform of real signals, only the values of X(ω, τ)
for positive frequencies are stored for future processing.

In the following step, 2D windows, overlapped along both
frequency and time axes are applied to X(ω, τ). The 2D
Fourier transforms of windowed segments are then computed
and concatenated to form a 4D tensor. To keep the terminology
and notation consistent throughout this paper, we refer to
the 2D Fourier transform domain as the scale-rate domain.
The scale and rate dimensions explicitly encode the spectro-
temporal modulation information, where the former captures
the spectral spread and the latter the modulation velocity
over time (see Section VI). Let Y (s, r,Ω, T ) denote the 4D
representation generated by the CFT. Here, (s, r) indicates the
scale-rate coordinate pair and (Ω, T ) the 2D window centers
along the frequency and time axes.

It should be noted that the CFT is perfectly invertible. The
single-sided complex STFT, X(ω, τ), can be reconstructed
from Y (s, r,Ω, T ) by taking the 2D inverse Fourier transform
of all patches and then performing 2D overlap-and-add. Sub-
sequently, the time-domain signal, x(t), can be obtained by
taking the 1D inverse Fourier transform of all time-frames and
performing 1D overlap-and-add. The operations performed
in the CFT and the inverse CFT (ICFT) computation are
summarized in Table I.

As mentioned earlier, the CFT maps the signal energy
from the time-frequency domain into a 4D space based on
the common fate principle. The time-frequency components
are, therefore, grouped based on their moving directions and
mapped into different points in the target domain. Such a
grouping property, which arises from the use of the 2D
Fourier transform is in particular advantageous when dealing
with mixtures of frequency-modulated harmonic signals. Since
components of harmonic signals move up and down together
in the time-frequency domain, they are likely to be mapped
into the same locations in the scale-rate domain, causing
harmonic elements of the same signal to group together
in this representation. Such a mapping potentially increases
the separability and/or clusterability of the data points, and
hence makes it easier to isolate only those sound components
belonging to the target source.

In the remainder of this section, we present illustrative
examples of taking the 2D Fourier transform of a time-
frequency representation. This will provide the reader a more
intuitive understanding of this domain. In these examples,
we consider the 2D representation domains in isolation and
compare their properties. This approach is taken mainly due to
the difficulty of higher-dimensional visualization. However, it
is important to note that merely going from the time-frequency
domain to the scale-rate domain does not necessarily result
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Fig. 2. Two harmonic signals, with and without frequency modulation and
their mixture. The two signals have the same fundamental frequency (400 Hz).
Columns (a) and (b) show the two separate signals and column (c) shows their
mixture. Signals are represented in the time-frequency domain (top row) and
in the scale-rate domain (bottom row).

Fig. 3. Two linear group-chirps (linear chirps with the same slope) with
upward and downward moving directions, each considered a separate source,
and their mixture. The two sources have energy overlap at various time-
frequency points. Columns (a) and (b) show the two separate signals and
column (c) shows their mixture. Signals are represented in the time-frequency
domain (top row) and in the scale-rate domain (bottom row). We note that the
opposing directions of signal representations with respect to the vertical axis
in the original and transform domains (i.e. upward in one and downward in
the other) is adopted to be in consistence with the image processing literature,
although we admit that it might seem counterintuitive to readers that are not
familiar with multi-dimensional signal processing concepts.

in better separability or clusteribility. The power of the 4D
representations studied in this work (CFT and MCFT) lies
in combining the information from the scale-rate domain and
the time-frequency domain. An analogy can be drawn to the
example of Figure 1, Panels (c) and (d). Panel (c) shows that
merely going from the time domain to the frequency domain
does not completely solve the problem of overlapping energy.
High separability is achieved when the time-domain infor-
mation is processed over short windows and then combined
with the frequency-domain information, resulting in a higher
dimensional representation, displayed in Panel (d).

Figure 2 shows two harmonic signals, one with and one
without frequency modulation, and their mixture. Both signals
have a fundamental frequency of 400 Hz, and hence overlap
significantly in the time-frequency domain. The magnitude

Fig. 4. The top row shows the two sources and their mixture in the time-
frequency domain. The bottom row shows the 2D Fourier transform magnitude
of the complex STFT of the signal. Compare this to Figure 2, which shows
the 2D Fourier transform of the magnitude STFT of the same signal.

STFTs of the three signals are depicted in the top row and
the 2D Fourier transforms of magnitude STFTs in the bottom
row. As it can be seen, the energy of the non-modulated
source, represented by horizontal lines in the time-frequency
domain is mapped into the zero-rate line, whereas the energy
of upward or downward moving ripples of the modulated
source is mapped to points scattered over non-zero rate values.

Figure 3 illustrates two crossing linear group-chirps moving
in opposite directions and their mixture. Each group of linear
chirps with the same slope is considered as one source. The
two sources overlap at various points in the time-frequency
domain. The plots in columns (a) and (b) show the two sources
in the time-frequency domain (top row) and scale-rate domain
(bottom row) and the plots in column (c) show the mixture.
Each line in the “X” shape pattern that emerges in the scale-
rate-domain representation of the mixture corresponds to one
moving direction. In this case, going from the time-frequency
domain to the scale-rate domain increases separability to some
extent by remapping the components based on their moving
directions, and thus reducing the number of overlapping points
down to one. One might argue that the clusterability is also
increased since the energy from parallel lines in the time-
frequency domain, regardless of their relative spacing, is
mapped into a single line in the scale-rate domain.

In the above examples, we only considered the effect of
applying the 2D Fourier transform to the magnitude STFT.
Nevertheless, it should be noted that the CFT is computed
from the complex STFT, where the inclusion of the phase
would alternate previously observed patterns in the scale-
rate domain. This is what renders the time-frequency-domain
audio representation more challenging to analyze through the
2D Fourier transform than photographic images, which are
typically 2D real signals.

Figure 4 shows the same example as in Figure 2 along with
the scale-rate-domain representation of the complex STFT.
It can be observed that including the time-frequency-domain
phase results in a shift in the scale-rate domain. The scale-
rate-domain representation is still expected to offer more sep-
arability for the components overlapping in the time-frequency
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domain, although it seems to have lost the nice clusterability
property of the magnitude-only case. Our experimental find-
ings discussed in Section VII confirm this expectation. That is,
in going from the complex STFT domain to the CFT domain
the results show an increase in separability, although there is a
possibility for the loss of clusterability. We note that a general
study of the time-frequency phase is beyond the scope of this
work and would be the subject of our future research.

Similar to the frequency resolution of the STFT which is
determined by the time-domain window size, the scale and
rate resolutions are determined by the dimensions of the time-
frequency-domain windows. Consequently, the choice of the
2D window size has a direct impact on the representation
quality of the CFT in terms of the provided separability.

The effect of the window size on the transform-domain
resolution is illustrated in Figure 5. Panel (a) presents the
magnitude STFT of a frequency modulated harmonic signal
with a fundamental frequency of 200 Hz. The 2D Fourier
transforms of four windowed segments with different window
dimensions are depicted in Panels (b)-(e). As it is clearly
observed in the plots, an increase in the window size along
the time or frequency axis results in an increased resolution
along the rate or the scale axis respectively. In the case with
the lowest resolution in both directions shown in Panel (b), the
scale-rate-domain representation of the windowed segment is
quite blurry and only a large peak at the center can be detected,
whereas in higher resolution cases, e.g. Panel (e), a number
of lower peaks associated with upward and downward moving
components also appear in the plot. It can also be seen that
each window, depending on its duration over time captures one
or both moving directions. For instance, the upward direction
is not emphasized by the short window of Panel (b) as strongly
as it is by the longer windows of Panels (c) and (d).

No general guideline for choosing the window size is pro-
posed by Stöter et al. [17], as the ideal window clearly depends
on the signal content. In the two following sections, we show
how our proposed multi-resolution approach in computing the
time-frequency representation as well as the 4D representation
largely eliminates the need to select the right window size.

V. THE AUDITORY MODEL OF CHI ET AL.

In the design of our representation, we were inspired by
the multi-resolution aduitorty model of Chi et al. [18]. Recent
studies on the primary auditory cortex of small mammals have
shown the important role spectro-temporal modulation patterns
play in audio perception and streaming [28] [29] [18]. In
[18], Chi et al. present a computational model of early and
central stages of the auditory system. The model outputs a
4D multi-resolution representation capturing spectro-temporal
modulation patterns.

Their auditory model is composed of two stages: cochlear
and cortical. The cochlear stage, as the name suggests, emu-
lates the cochlear filter bank in performing spectral analysis
on the input time-domain audio signal. The filter bank model
is composed of 128 overlapping constant-Q bandpass filters,
with logarithmically-spaced center frequencies. The collective
passband of filters covers approximately 5.3 octaves. The goal

Fig. 5. The effect of 2D-window size on resolution of the scale-rate-domain
representation of the magnitude STFT. Panel (a) shows the magnitude STFT
of a harmonic, frequency-modulated signal with a fundamental frequency of
200 Hz. Panels (b-e) show the 2D Fourier transform magnitude of the signal
over window sizes of 16× 16, 16× 32, 32× 32, and 32× 64 respectively.

of the cochlear stage in the model is to replicate, as accurately
as possible, the time-frequency-domain representation of the
audio signal generated by the cochlea and termed auditory
spectrogram. To this end, additional operations such as high-
pass filtering, nonlinear compression, half-wave rectification,
and integration are performed on the output of the filter bank.
These operations model the effect of processes taking place
between the inner ear and midbrain.

The cortical stage replicates the type of analysis performed
by the primary auditory cortex. The neuronal response of the
primary auditory cortex to different spectro-temporal mod-
ulation patterns, termed Spectro-temporal Receptive Fields
(STRFs), can be regarded as a bank of 2D filters. The role of
the filter bank is to extract the spectro-temporal modulation
patterns from the auditory spectrogram. Each filter within the
filter bank is tuned to a particular modulation pattern. The
time-frequency-domain impulse responses of the filters in the
auditory model are modeled after STRFs ([28]).

An STRF is mainly characterized by: 1) its spectral spread
(broad/narrow), referred to as scale 2) its frequency mod-
ulation velocity over time (slow/fast), referred to as rate
3) its moving direction in the time-frequency plane (up-
ward/downward). Spectro-temporal modulation patterns are,
therefore, described in terms of their scale and rate values,
measured in cycles per octave and cycles per second, re-
spectively. Scale and rate form the two additional dimensions
(besides time and frequency) in the 4D output of the auditory
model. The STRF models proposed in [18] play the central
part in the multi-resolution analysis of modulation patterns. It
is, therefore, important to go into some technical detail in this
section about the computation of the model.

Let us denote an STRF that is tuned to an arbitrary scale-rate
parameter pair (S,R) by h(ω, τ ;S,R) with ω and τ denoting
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the frequency and time respectively. Note that S and R are
constant (scalar) values for a single filter and determine the
filter characteristics (i.e. spectral spread, frequency modulation
velocity, and moving direction). We denote the 2D Fourier
transform of the STRF by H(s, r;S,R), where the pair
(s, r) indicates an arbitrary point in the transform (scale-rate)
domain. The parameter pair (S,R), which is the same for h
and H indicates the filter center in the scale-rate domain.

Mainly due to their diagonal movement in the time-
frequency plain, STRFs cannot be modeled as separable func-
tions of frequency and time, that is, h(ω, τ) cannot be stated
as h(ω, τ) = f(ω) · g(τ). In other words, more than one prin-
cipal component would be required for describing the time-
frequency-domain representation of an STRF. Nevertheless,
the 2D Fourier transforms of STRFs are quadrant separable,
meaning that they are separable functions of scale and rate in
each quadrant of the scale-rate domain.

To derive the filter impulse response, first the spectral and
temporal seed functions are to be defined. Chi et al. modeled
the spectral seed function as a Gabor-like filter

f(ω;S) = S · (1− 2(πSω)2)e−(πSω)
2

, (6)

and the temporal seed function as a gammatone filter,

g(τ ;R) = R · (Rτ)2e−βRτ sin(2πRτ). (7)

The dilation factors of the Gabor-like and gammatone
filters in the above equations, S and R, are in fact the filter
centers in the scale-rate domain. The dropping rate of the
temporal envelop, or equivalently the filter bandwidth in the
scale-rate domain, is controlled by the time constant of the
exponential term, β. Since STRFs are not separable functions
of frequency and time, the moving direction (up/down) of the
time-frequency-domain components cannot be captured by a
simple product of the seed functions. However, the quadrant
separability of these functions allows computing their 2D
Fourier transform as the product of the 1D Fourier transforms
of the seed functions. This operation can be formulated as

F (s;S) = FT 1D{f(ω;S)}, (8)

G(r;R) = FT 1D{g(τ ;R)}, (9)

H(s, r;S,R) = F (s;S) ·G(r;R), (10)

where FT 1D denotes the 1D Fourier transform.
To generate the time-frequency-domain representation of

an up-/down-ward moving filter, the value of H over a pair
of opposing quadrants must be set to zero. The scale-rate
domain response of the upward-moving filter, indicated by
H⇑(s, r;S,R) is defined as

H⇑(s, r;S,R) =


H(s, r;S,R) (s ≥ 0, r ≤ 0)

H(s, r;S,R) (s < 0, r > 0)

0 otherwise.

(11)

Similarly, the response of the downward filter, H⇓(s, r;S,R)
can be defined as

H⇓(s, r;S,R) =


H(s, r;S,R) (s ≥ 0, r ≥ 0)

H(s, r;S,R) (s < 0, r < 0)

0 otherwise.

(12)
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Fig. 6. Impulse responses, known as Spectro-temporal Receptive Fields
(STRFs), of four filters from the 2D filter bank: (a) Upward-moving STRF
h⇑(ω, τ ;S = 0.5, R = 4) (low scale, high rate). (b) Upward-moving STRF
h⇑(ω, τ ;S = 2, R = 4) (high scale, high rate). (c) Downward-moving STRF
h⇓(ω, τ ;S = 0.5, R = 2) (low scale, low rate). (d) Downward-moving
STRF h⇓(ω, τ ;S = 2, R = 2) (high scale, low rate). The frequency is
displayed on a logarithmic scale based on a reference frequency f0.

In the next step, the impulse responses are computed as

h⇑(ω, τ ;S,R) = <{IFT 2D{H⇑(s, r;S,R)}} (13)

h⇓(ω, τ ;S,R) = <{IFT 2D{H⇓(s, r;S,R)}} (14)

where <{.} denotes the real part of a complex value, and
IFT 2D{.} the 2D inverse Fourier transform.

Examples of 2D filter impulse responses (STRFs) for dif-
ferent values of S and R are presented in Figure 6. Panels (a)
and (b) correspond to upward moving filters, both with a rate
of 4 cycles per second (a full cycle of the sinusoidal pattern
covers 0.25 seconds). Panels (c) and (d) show downward
moving filters with a rate of 2 cycles per second. In all
panels, the frequency is shown on a logarithmic scale based
on a reference frequency f0, which maps frequencies that
are separated by multiple octaves (an octave is a power of 2
relationship between frequencies) to a linear scale. The scale
value for Panels (a) and (c) is 0.5 cycles per octave (a full cycle
of 2 octaves), while Panels (b) and (d) demonstrate filters with
a scale of 2 cycles per octave.

To compute the output representation, a bank of 2D filters,
computed as described for various (S,R) values and different
moving directions is applied to the auditory spectrogram. We
denote the 4D output of the cortical stage by Z(S,R, ω, τ),
where (S,R) give the filter center in the scale-rate domain.
Note that since the fast Fourier transform has a lower computa-
tional complexity than convolution, filtering can be performed
more efficiently in the scale-rate domain.

The main disadvantage of the output representation of the
auditory model, which hinders its use in signal processing
tasks such as source separation, is the lack of invertibility.
The non-linear operations in the cochlear stage and the re-
moval of phase-related information makes perfect reconstruc-
tion impossible. An algorithm for estimating the time-domain
signal from the 4D output representation is proposed in [18].
Unfortunately, the quality of the estimated audio signal is not
acceptable for audio processing applications.
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Transform Input Computation Steps Output
MCFT x(t) CQT → FT 2D → 2D filters centerd at (S,R) → IFT 2D Z̃(S,R, ω, τ)

IMCFT Z̃(S,R, ω, τ) FT 2D → 2D inverse filters centered at (S,R) → IFT 2D → ICQT x(t)

TABLE II
AN OVERVIEW OF THE COMPUTATION STEPS IN MCFT AND IMCFT.

VI. MULTI-RESOLUTION COMMON FATE TRANSFORM

In this section, we propose a new representation, which
circumvents the shortcomings of the CFT and the auditory
model output and combines their strengths. To address the
invertibility issue, we replace the auditory spectrogram by a
fully invertible complex time-frequency representation with
log-scale frequency. The Constant-Q Transform (CQT) is
a multi-resolution time-frequency representation, where the
resolution is progressively more coarse-grained as frequency
increases. This is similar to how human audition and auditory
spectrogram models work. Unlike the typical auditory spectro-
gram, the CQT also captures the phase. In our implementation,
we use the CQT as proposed by Schörkhuber et al. [30], which
is fully invertible back to the time domain.

To compute the new 4D representation, the cortical filter
bank of the auditory model is applied to the complex CQT of
the audio signal. This new representation is termed the Multi-
resolution Common Fate Transform (MCFT), and denoted by
Z̃(S,R, ω, τ). The MCFT addresses the resolution issues of
the CFT in the time-frequency domain as well as the scale-rate
domain. The linear-scale frequency of the STFT offers a fixed
resolution for the whole range of musical notes. Given that
the fundamental frequency of musical notes are distributed on
a logarithmic scale, the STFT would not be able to resolve
low-frequency notes as effectively as high-frequency notes.

The use of a multi-resolution 2D filter bank instead of fixed
size 2D windows in the spectro-temporal modulation analysis
stage, results in an improvement in the scale-rate domain
resolution of the MCFT compared to the CFT. The difference
between the modulation analysis stages in the MCFT and CFT
is analogous to the difference between the frequency analysis
stages in the CQT and STFT, in that one of the transforms
performs the short-term analysis through fixed-size windowing
in the original domain, while the other by multi-resolution
filtering in the transform domain.

The time-domain signal can be reconstructed from
Z̃(S,R, ω, τ) in two steps. First, the time-frequency represen-
tation is reconstructed from Z̃(S,R, ω, τ) by inverse filtering:

X̂(ω, τ) = IFT 2D

{∑⇑⇓
S,R z̃(s, r;S,R)H∗(s, r;S,R)∑⇑⇓

S,R |H(s, r;S,R)|2

}
,

(15)
where ∗ is complex conjugate, z̃(s, r;S,R) denotes the 2D
Fourier transform of Z̃(ω, τ ;S,R) for a particular (S,R),
and

∑⇑,⇓
S,R indicates summation over the whole range of

(S,R) values and all up-/down-ward filters. The time domain
signal is then reconstructed from X̂(ω, τ) using the inverse
CQT method proposed in [30]. Table II gives a summary of
operations performed in the MCFT and IMCFT computation.

In previous sections, we mostly studied the scale-rate-
domain behavior of the magnitude of the time-frequency
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Fig. 7. (a) Magnitude spectrogram of a mixture of two harmonic sources one
with and one without frequency modulation. (b,d,f) Magnitude spectrograms
of the filtered mixture. Filters are applied to the magnitude spectrogram. (c,e,g)
Magnitude spectrogram of the filtered mixture. Filters are first modulated with
the mixture phase and then applied to the complex spectrogram.

representation. Including the phase in the time-frequency do-
main results in a shift in the location of scale-rate-domain
components (see Figure 4). Including the phase, however,
allows for invertibility of the CFT and MCFT back to the time
domain, which in turn allows separation to be performed in the
4D domain, where separability is improved, compared to the
time-frequency domain. The cost is that including phase may
introduce some scattering to the patterns in the representation
that could potentially reduce clusterability. In practical use,
this potential reduction in clusterability is outweighed by the
improvement for separability, as illustrated in the experiments
in Section VII. An in depth study of the phase behavior for
all types of audio signals is beyond the scope of this work.

The method we use to deal with the effect of phase is
shifting the filter components in the scale-rate domain in ac-
cordance with the shift in the location of mixture components.
This can be achieved through modulating the filters with the
phase of the mixture CQT, i.e. using filters with impulse
responses equal to h(ω, τ ;S,R)ej∠X(ω,τ). Panel (a) in Figure
7 shows the magnitude CQT of a mixture of harmonic and
non-harmonic signals. Panels (b), (d), and (f) present the
output of three filters applied to the magnitude CQT. The
upward and downward moving components of the modulated
source are clearly separated from the components of the non-
modulated source. Panels (c), (e), and (g) demonstrate the
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Instrument ModulationTechnique Note Instrument Modulation Technique Note

piano - C2, C3, C4, C5, C6, C7 english horn vibrato, major trill, minor trill C4, C5
contrabassoon vibrato C2 clarinet major trill, minor trill C4, C5, C6
contrabass vibrato C2, C3, C4 oboe vibrato, major trill, minor trill C4, C5, C6
bassoon vibrato, major trill, minor trill C2, C3, C4, C5 trumpet vibrato C4, C5, C6
cello vibrato C2, C3, C4, C5, C6 saxophone major trill, minor trill C5
viola major trill, minor trill C3, C4, C5, C6 trombone tremolo C5
tuba minor trill C3, C4 piccolo trumpet major trill, minor trill C5, C6
tuba major trill C4 piccolo flute vibrato, major trill, minor trill C6, C7
saxophone tremolo C4 violin vibrato, major trill, minor trill C7
flute vibrato C4, C5

TABLE III
SINGLE SOUND SOURCES USED IN GENERATING THE MIXTURE DATASETS. INSTRUMENTS ARE ORDED BY THE PITCH OF THE LOWEST NOTE USED.

outputs of three modulated filters applied to the complex
CQT. Although the emerged modulated patterns looks slightly
different from the output of the original filters in the left
column, they are still successfully separated from the non-
modulated components. Furthermore, it is worth noting that
due to phase preservation, the CQTs in the right column are
fully invertible to the time domain, while this is not the case
for the CQTs in the left column and not true for the auditory
model of Chi et al.

VII. EXPERIMENTS

In this section, we examine the separability and cluster-
ability of unison mixtures of instrumental sounds played with
different techniques when they are encoded in four different
representations. Two are commonly used for source separation:
the STFT and the CQT. The other two are common-fate-based
representations: the CFT and the proposed MCFT. We do not
compare to the auditory model of Chi et al. because audio
encoded in this model cannot be perfectly reconstructed.

A. Dataset

In our experiments, we primarily focus on evaluating the
efficacy of the MCFT in capturing spectro-temporal modula-
tion patterns as higher dimensions and in using them as source
separation cues in cases with high energy overlap in the time-
frequency domain. Mixtures of instrumental sound sources
played in unison (same pitch) but with different frequency
modulation techniques (e.g. vibrato versus tremolo) are a good
example of such cases. Such mixtures also happen to be one
of the most challenging cases for state-of-the-art audio source
separation algorithms. Our next goal is to study the effect of
the multi-resolution property of the MCFT, in the frequency
domain as well as the scale-rate domain, on the separation
quality and to compare its performance to CFT, which has
fixed resolution at both stages. To this end, we include a
wide range of musical octaves and a variety of modulation
techniques in our dataset.

The testing dataset in our prior work [21] included a single
pitch from a middle octave (D4 with a fundamental frequency
of 293.66 Hz). In this work, the pitch range is extended to
two lower and three higher octaves (6 octaves in total). The
set of single sources we used to generate our mixture dataset
is composed of 68 orchestral instrument samples generated

by the EastWest Symphonic Orchestra sampler 1, 7 samples
selected from the Philharmonia Orchestra 2, and 6 piano
samples recorded on a Steinway grand (81 samples in total).
All samples are 2 seconds long and are sampled at 44.1 kHz.

We chose the note C as a representative pitch class over
octaves 2 to 7 (65.41 Hz to 2093 Hz). Table III presents the
list of all instruments included in our dataset along with their
playing techniques and octave coverage. We note that a single
sound source in our experiments refers to a single note played
by an instrument-technique pair, e.g. a C4-viola-major trill is
considered a different source than a C4-viola-minor trill. It can
be clearly observed that the number of samples per octave
follows a bell-shaped distribution (there are respectively 7,
9, 21, 22, 15, 7 samples in octaves 2 to 7). This is because
orchestral instruments have a limited pitch range, as a result
of which the number of samples for all pitch classes is much
larger in middle octaves than in high/low octaves.

Due to the imbalance in the number of sources per octave,
there is a large difference between the number of mixtures per
octave. For instance, the total number of two-source mixtures
ranges from 21 for the second and seventh octaves to 231 for
the fifth octave. We keep the number of mixtures the same
for all octaves by randomly selecting 21 mixtures (minimum
number) in octaves 3 to 6. This gives rise to a testing dataset
of size 126 two-source mixtures.

To study the behavior of representations as the number of
sources increases, we create three-, four-, and five-source-
mixture datasets, each of size 126, following the same pro-
cedure described for two-source mixtures.

It should be taken into account that the MCFT is designed
to explicitly capture frequency modulation. Our dataset is thus
almost entirely composed of frequency-modulated samples
(vibrato, major trill, minor trill), such that we can attribute
the dominant effect on the behavior of separability and clus-
terability results to frequency-modulation. Since tremolo is
sometimes defined as amplitude and sometimes as frequency
modulation, we expect the MCFT to provide improvement
only if there is frequency modulation that is greater than the
minimum detectible frequency change, which is controlled by
the resolution of the underlying transform.

1http://www.soundsonline.com/symphonic-orchestra
2www.philharmonia.co.uk

http://www.soundsonline.com/symphonic-orchestra
www.philharmonia.co.uk
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B. Audio Representations

In our experiments, the window length and overlap ratio
of the STFT are set to 93 ms (4096 samples) and 75%
respectively. At its time-frequency representation stage, the
CFT uses the same parameter values.

To study the effect of the 2D window on separability and
clusterability of the CFT, we experiment with a grid of values
including all combinations of Lω ∈ {2, 4, 8, 16, 32} (21.6 Hz
- 344.5 Hz) and Lτ ∈ {4, 8, 16, 32, 64, 90} (93 ms - 2 sec)
and present the results for the best and worst window sizes.
There is 50% overlap between windows in both dimensions.

For computation of CQTs, we use the MATLAB toolbox
in [30]. The minimum frequency, maximum frequency, and
frequency resolution of the CQT are respectively set to 61.74
Hz (note B1), 4435 Hz (note C#8) , and 96 bins per octave.

The same parameter values are used in the time-frequency
representation stage of the MCFT. In the modulation analysis
stage, the MCFT uses a spectral filter bank F (s;S) including
a lowpass filter centered at 2−4 (cyc/oct), 6 bandpass filters at
20, 21, ..., 25 (cyc/oct), and a highpass filter at 25.5 (cyc/oct).
The temporal filter bank G(r;R) is composed of a lowpass fil-
ter centered at 2−2 (cyc/sec), 5 bandpass filters at 20, 21, ..., 24

(cyc/sec), and a highpass filter at 24.5 (cyc/sec). The time
constant parameter, β, is set to 1. The product of F and G
gives rise to a 2D filter response, which is then split into two
analytic filters (see Section V). Since one advantage of the
MCFT is that it is inherently multi-resolution, we used only
the single setting described above, rather than experimenting
with 30 settings, as was done with the CFT. We have provided
an implementation of the MCFT and audio examples from our
experimental results in the accompanying website 3.

C. Separability Results

Figure 8 presents an example of source separation via ideal
binary masking in different representation domains for one of
the mixtures in our dataset. For easier visual comparison, all
signals are presented in the STFT domain. The top row shows
the mixture and the original signal, and the next two rows
show the results of separation in the 4D and 2D domains. It
can be observed that the MCFT preserves more of the signal
energy and harmonic structure, and introduces fewer masking
artifacts compared to other representations.

The separability of the representations is evaluated over the
testing dataset through ideal binary masking (see Section II).
We use a range of threshold values (0 dB to 30 dB with a
step of 5 dB) in the computation of ideal binary masks in
each representation domain. We perform separation through
ideal binary masking in each representation domain and then
compare the preserved energy level and separation quality of
all reconstructed signals in the time domain. For time-domain
evaluation of the separation performance, we use the BSS-
Eval [23] objective measures: SDR, SIR, and SAR. The mean
SDR values over the whole dataset are used as a measure of
separability. In the separability results the “CFT-best-sep” and
“CFT-worst-sep” correspond to the window sizes (drawn from

3https://interactiveaudiolab.github.io/MCFT
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Fig. 8. An example of separation via ideal binary masking with a threshold of
γ = 25 dB for a mixture of C4-clarinet-major trill and C4-flute-vibrato. (a,b)
Magnitude spectrograms of the mixture and C4-flute-vibrato. (c-f) Magnitude
spectrograms of the estimated source by applying the mask respectively in
the CFT-best-sep, MCFT, STFT, and CQT domains.
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Fig. 10. Mean SDR versus masking threshold for 2D and 4D representations
over (a) three-, (c) four-, and (d) five-source mixture datasets. Higher values
are better. Only the results for the best two-dimensional window size used in
CFT computation (4× 64) are presented.

the set of 30 window sizes we used) that resulted in the best
and worst mean SDR values.

Figure 9 presents the mean values of separability metrics
as a function of masking threshold used for the ideal binary
mask, γ, for two-source mixtures. It can be clearly seen that

https://interactiveaudiolab.github.io/MCFT
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the MCFT outperforms all other representations in terms of
SDR and SAR at all threshold values and in terms of SIR for
threshold values above 10 dB (i.e. the source energy must be
10 dB louder than the interference to be included in the ideal
binary mask).

The reason why all representations have a better SIR per-
formance for middle thresholds (15-20 dB) can be explained
by considering the fact that low threshold values would let in
a large amount of noise and interference along with the energy
from the target source and high threshold values would remove
a significant potion of the target signal energy, both resulting
in a decrease in SIR. The performance of the CFT depends
heavily on the 2D window size and ranges from much worse
than the STFT to better than the CQT. Such dependency makes
the use of the CFT less reliable in blind source separation
scenarios, since it is highly sensitive to data-dependent settings
to achieve maximal performance.

The mean SDR values over masking threshold for datasets
with more than two sources per mixture are shown in Figure
10. While the performance of all representations degrades in
general with an increase in the number of sources, the MCFT
stays strictly dominant in all cases. Moreover, the MCFT
shows the slowest dropping rate over increasing threshold
values for mixtures with more than two sources.

D. Clusterability Results

We use the clusterability measure defined in Section III
to measure how well each representation groups together
elements of a single source. Higher values are better. The
Gaussian kernel in Equation (5) along with the Euclidean
distance measure are used in the computation of similarity
values in our experimental results.

An increase in the similarity kernel width assigns higher
weights to points farther from the center of each cluster and
thus increases the likelihood of mislabeling points from neigh-
boring clusters. On the other hand, increasing the masking
threshold means removing lower-energy points, which are
presumably located towards the boundaries of neighboring
classes and therefore producing wider inter-cluster margins.
We study the effect of the similarity kernel width, α as well
as the masking threshold, γ. Figure 11 demonstrates the mean
clusterability values for two-source mixtures versus these two
parameters. As it can be observed in Figure 11, an increase in
the similarity width results in a drop in clusterability values for
all representations, whereas an increase in masking threshold
causes an increase in clusterability values. The MCFT seems
to outperform the 2D representations over α values larger
than 2 and γ values below 30 dB. The performance of the
CFT is again dependent on the window size and can vary
dramatically as shown by the results for the best- and worst-
performing window sizes, where it goes from outperforming
to underperforming all the other representations.

An interesting difference between the MCFT curve and
others is that it almost levels out after 20 dB while the
others keep increasing. This behavior is not unexpected since
the MCFT tends to project the signal energy to a larger
number of points in the higher-dimensional space and thus

2 4 6 8 10
Sim. Kernel Width ( )

0.2

0.4

0.6

0.8

(a)

1 
- N

cu
t L

os
s

MCFT CFT-best-clus CFT-worst-clus CQT STFT

0 10 20 30
Masking Threshold (dB)

0.4

0.6

0.8

(b)

Fig. 11. Mean clusterability for 2D and 4D representations versus similarity
kernel width, α (a) and masking threshold, γ (b). Higher values are better.
The results for 2 out of 30 2D window sizes tried in CFT computation are
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Fig. 12. Mean clusterability versus masking threshold for 2D and 4D
representations over (a) three-, (b) four-, and (c) five-source mixture datasets.
Higher values are better. Only the results for the best 2D window sizes used
in CFT computation (2× 90) are presented.

preserve a much larger portion of signal energy for higher
thresholds compared to other representations (see Figure 9).
This behavior is more noticeable in Figure 12 for mixtures
composed of more than two sources. The slower decrease
of the MCFT separability and slower increase of the MCFT
clusterability over thresholds higher than 20 dB compared to
other sources demonstrate the existence of a tradeoff between
these two properties (preserving more signal energy versus
creating wider inter-cluster margins).

Note, however, that higher separability (i.e. sources are not
overlapped) is a neccessary precursor to high-quality source
separation while higher clusterability (sources are in separate
regions of the representation space) is strongly desireable, but
not technically neccessary, depending on the sophistication of
the separation algorithm.

The mean SDR and mean clusterability over the whole two-
source dataset and all parameter values are respectively shown
on the y-axis and x-axis in Figure 13. The plot depicts the
mean performance for the STFT, CQT, MCFT, and CFT (all 30
2D window sizes). The bold dashed lines delimit the range of
values that are inferior to the MCFT performance across both
dimensions. The MCFT clearly outperforms all other repre-
sentations in terms of separability and only underperforms the
CFT in terms of clusterability for 2 out of 30 different window
sizes. Even in these two cases, the clusterability is similar
between CFT and MCFT, while MCFT strongly dominates
the CFT on separability.

The bar plots of mean SDR and mean clusterability measure
for all representations and all mixture types are demonstrated
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Fig. 13. Mean SDR versus mean clusterability over all samples and masking
thresholds for two-source mixtures. The results for all 30 2D window sizes
used in CFT computation are presented, along with the results for the MCFT,
CQT and STFT. Higher values are better in both dimensions.
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Fig. 14. Bar plots of mean separability measured by SDR (top panel) and
mean clusterability measured by normalized cut loss (bottom panel) over all
masking thresholds and similarity kernel parameter values for two-, three-,
four-, and five-source mixtures. Higher values are better. Number of samples
is n = 882 in the top panel and n = 8820 in the bottom panel. Error bars
indicate the range of values between the first and third quartiles. The results
for CFT window size with the best separability and the CFT window size
with the best clustering are presented.

in Figure 14. The error bars indicate the range of values
between the first and third quartiles.

Note that, as the number of sources increases, MCFT’s sep-
arability (as measured by SDR) degrades much less than other
representations. All other representations drop by more than
half in their SDR values when moving from 2 to 5 sources,
making the MCFT the obvious choice of representation when
there are many sources. This improved separability can come
at a price, however. Although many more points associated
with a single source are not overlapped in the MCFT, these
points can become interspersed with points from interfering
sources, which reduces clusterability.

To compare the result distributions, we used the Wilcoxon
rank sum test. The SDR values for the MCFT show significant
improvement over all other representations and for all mixture
types with p ≤ 0.0001 in all cases. The MCFT performs
significantly better on clusterability than CFT-best-sep for all

mixture types with p ≤ 0.0001, significantly better than CQT
for two-, three-, and four-source mixtures with p ≤ 0.05 in the
worst case, and significantly better than the STFT for two-, and
three-source mixtures with p ≤ 0.0001. Although MCFT out-
performs most other representations on clusterability, the CFT-
best-clus improves on the MCFT in all cases with p ≤ 0.0001.

Note that the superior clustering of CFT-best-clus is due
to a careful selection of the window size in the presence of
ground truth, which is typically not possible in real-world use.
Moreover, separability for CFT-best-clus remains worse than
the separability of the MCFT. Therefore, even if it is easier to
cluster energy from a single source, the resulting separation
will have a ceiling of performance that is lower for other
representations than for the MCFT.

VIII. CONCLUSION

The efficacy of source separation algorithms can be limited
by the representation used for the input audio. A representation
that reduces overlap and interspersal of sources can simplify
the separation process and improve results. We presented
the Multi-resolution Common Fate Transform (MCFT), a
representation that is fully invertible and increases the separa-
bility of audio signals with significant time-frequency-domain
overlap, through explicitly representing spectro-temporal mod-
ulation patterns. We placed it in the context of two exist-
ing common-fate-based models: the Common Fate Transform
(CFT) and the auditory model of Chi et al. The MCFT,
by being multi-resolution and fully invertible combines the
strengths of both approaches.

We also introduced and provided metrics for two desir-
able properties of audio representations for source separa-
tion: separability and clusterability. Experiments on a dataset
of unison mixtures of musical instrumental sounds showed
that the MCFT strictly dominates the other representations
on separability. It also outperforms other representations on
clusterability in the majority of cases, without requiring data-
dependant parameter setting to achieve these results. Given
these results, the MCFT is a promising representation to be
used as the input to source separation algorithms. Moving
forward, we plan to use the MCFT as the input representation
to state-of-the-art separation methods such as Common Fate
Modeling (CFM) [17] and deep clustering [12].
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