
Deep Reinforcement Learning
(Policy Gradients & Pong)

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020



Policy Gradient Methods
Based on materials from
Andrej Karpathy  http://karpathy.github.io/2016/05/31/rl/
John Schulman https://www.youtube.com/watch?v=y4ci8whvS1E&t=2230s

http://karpathy.github.io/2016/05/31/rl/
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Policy vs Q or V

• A Q(s,a) function estimates the value of action a if you’re in state s.

• A V(s) function outputs the expected value of being in state s.

• Neither of these tells you what to do. They tell you what to value.

• A policy 𝜋 𝑠  outputs what action to take when you’re in state s.

• Why not learn the policy directly?



Policy Gradient Methods

• This results in hill-climbing in policy space
• So, itʼs subject to all the problems of hill-climbing
• But…we can also use tricks from search, like random restarts and momentum 

terms

• This is a good approach if you have a parameterized policy
• Often faster than value-based methods
• “Safe” exploration, if you have a good policy
• Learns locally-best parameters for that policy



Problem formulation

• Let 𝜃 be the parameters of our policy function 𝜋!
• We want to maximize the expected return R of the policy.

argmax
!

𝐸[𝑅| 𝜋!]

• We’ll do this by taking the gradient of the policy function with respect 
to the model parameters and then hill climbing.



Intuitive Approach

• Sample a bunch of action sequences from an existing policy 𝜋!

• Measure the return of these action sequences

• Make the good action sequences more probable by varying 𝜃



Example: Learning to play Pong



Markov Decision Processes: Pong edition

• A set of states, S = {s1, s2, ... , sn}: Image frames in Pong (or is it???)

• A set of actions, A = {a1, a2, ... , am}:  Move paddle up or down

• A reward function, R: S´A´S→Â  :   +1 for win, -1 for lose, 0 for all other states

• A transition function, Paddle action has intended effect

• Sometimes T: S´A→S

• A probability distribution over what the initial state will be: 𝜇(𝑠)

• We want to learn a policy, p: S →A

• Maximize sum of rewards we see over our lifetime
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The policy network

State  𝑠! is an image frame 
of  210 by 160 pixels (that’s kind of a 
lie. It’s actually the cropped  
difference between two time steps) 

Policy  𝜋"(𝑠!) is the function
encoded by a network with 
tunable parameters 𝜃  

Action distribution is the 
output of the policy  
𝑃# = 𝜋"(𝑠!).

Probability of 
choosing to 
move paddle 
up (vs down)



What do we need the input state to capture?

•We need
• Where the paddles are
• Where the ball is
• What direction they’re all moving in

• Can we get all that from one frame?

•What if we looked at the difference 
between 2 sequential frames?



What don’t we need?

•Do we need the score?
•Do we need full resolution?
•How much smaller is the 
state space without these 
things?



Score Function Gradient Estimator

• A trajectory 𝜏 is a state, action, reward sequence returned by a policy

𝜏 = {𝑠(, 𝑎(, 𝑟(, 𝑠), 𝑎),  𝑟), … , 𝑠*+), 𝑎*+),  𝑟*+), 𝑠*}

• Let 𝑅(𝜏) give the return for the trajectory.

• We want to estimate this gradient: ∇!𝐸[𝑅(𝜏)]



Trajectories in Pong



Let’s derive the “Score Function” estimator

• We thinking of 𝜏 as a random variable…and we want to do this

∇!𝐸[𝑅 𝜏 ] = 𝐸[∇!𝑃(𝜏|𝜃)𝑅 𝜏 ]

• To do this, we need to expand and understand 𝑃(𝜏|𝜃)

The gradient (with 
respect to the model 
parameters 𝜃) of  the 
expected reward for 
trajectory 𝜏 



Expanding and explaining 𝑃(𝜏|𝜃) 

𝑃 𝜏 𝜃 = 	𝜇(𝑠!)*
"#!

$%&

𝜋' 𝑎" 𝑠" 𝑃(𝑠"(&, 𝑟"|𝑠" , 𝑎")

A trajectory

𝜏 = {𝑠(, 𝑎(, 𝑟(, 𝑠), 𝑎),  𝑟), … , 𝑠*+), 𝑎*+),  𝑟*+), 𝑠*}

The probability of this 
trajectory, given our 
model parameters

Probability of 
starting a 
sequence in 
this state

The probability 
our policy 
would return 
this action, 
given this state

The probability 
we’d get state 
𝑠!"# & reward 𝑟! , 
given that state 
𝑠! 	& action 𝑎!



Doing some math

𝑃 𝜏 𝜃 = 	𝜇 𝑠( (
-.(

*+)

𝜋! 𝑎- 𝑠- 𝑃 𝑠-/), 𝑟- 𝑠- , 𝑎-

              log(𝑃 𝜏 𝜃) = log 𝜇 𝑠( + ∑-.(* log 𝜋! 𝑎- 𝑠- + log 𝑃(𝑠-/), 𝑟-|𝑠- , 𝑎-)

	 ∇!log(𝑃 𝜏 𝜃) = ∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠-



Our original “Score Function” equation again

∇!𝐸[𝑅 𝜏 ] = 𝐸[∇!𝑃(𝜏|𝜃)𝑅 𝜏 ]

• We’re going to plug what we got in the last slide into this equation
• Note, since I took the log in the previous slide, I’ll switch from using a 

= to using a ∝

We’re replacing this 
bit here



Plugging that back into the original equation

∇!𝐸 𝑅 𝜏 ∝ 𝐸 𝑅 𝜏 	∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠-

	 ∝ 𝐸 6
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log 𝜋! 𝑎- 𝑠-

	 ∝ 𝐸 ∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠- 6
-!.-

*+)

𝑟-!
This reorders things so that we 
consider the value of an action as 
being the sum of future rewards in 
the trajectory



What are we doing again?

• We want to maximize the expected return of the actions taken by our policy.
• This means estimating the gradient of the reward for taking some action.

• What if all actions have positive rewards, but some are much bigger?
• Can we do better? 

∇!𝐸 𝑅 𝜏 ∝ 𝐸 ∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠- 6
-!.-

*+)

𝑟-!



Comparing to a baseline b(s)

Q: Why do we introduce a baseline?

A: We would prefer to increase the probability  actions that give more 
future reward than you typically see when you take an action.

Given a set of trajectories, the average reward over the trajectories from 
time t to the end and call that our baseline value 𝑏(𝑠-)

This is a baseline 
expectation for how 
much reward we 
might typically see in 
this state

∇!𝐸 𝑅 𝜏 ∝ 𝐸 ∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠- 6
-!.-

*+)

𝑟-! 	− 𝑏(𝑠-)



Adding a discount factor for distant rewards

If you think that rewards far into the future are unrelated to the current action, 
we add the discount factor 𝛾-!+*. 
 
Note: we need to calculate our baseline 𝑏(𝑠-) using the same discount factor. 

∇!𝐸 𝑅 𝜏 ∝ 𝐸 ∇! 6
-.(

*+)

log 𝜋! 𝑎- 𝑠- 6
-!.-

*+)

𝛾-!+-(𝑟-! 	− 𝑏(𝑠-!))



The advantage function

	 𝐴"= ∑"!#"
$%& 𝛾"!%"(𝑟"! 	− 𝑏(𝑠"!))

We call the difference between the baseline expectation for reward at 
step t and the observed reward at step t on this particular trajectory 
the Advantage 𝐴-. This gives the formula below.

 
∇!𝐸 𝑅 𝜏 ∝ 𝐸 ∇! 6

-.(

*+)

log 𝜋! 𝑎- 𝑠- 𝐴-



The advantage function: what this does

	 𝐴-= ∑-!.-
*+) 𝛾-!+-𝑟-! 	− 𝑏(𝑠-)

Actions that have higher-than-baseline rewards have a positive Advantage.

Actions with lower-than baseline rewards will have negative Advantage

When we optimize to maximize the expected advantage, this means our 
policy will vary the parameters to make advantageous actions more likely 
and disadvantageous actions less likely.

 



The policy gradient algorithm

John Schulman @ Open AI 



Visualizing probabilities of taking actions 



Proximal Policy 
Optimization
https://arxiv.org/pdf/1707.06347.pdf



One more tweak: clipping our learning

• Often, our policy gradient estimates give us really steep gradients that 
cause overstepping the goal.

• This can negatively impact on learning.

• In supervised learning, we can “fix” this with gradient clipping.

• Gradient clipping can be done in RL, too.



In a nutshell:

• Run your RL algorithm on the old policy 𝜋!"#$ 	to get a new policy 𝜋!

• Calculate how much the policy has changed the probability of an action

    𝑥 = )"(+#|-#)
)"$%&(+#|-#)

 

• Re-calculate the loss now by clipping it so that the ratio of the 
probabilities between the old and new policy is never more than.

𝐿/012 = 7Ε" min(𝑥, 𝑐𝑙𝑖𝑝(𝑥, 1 − 𝜖, 1 + 𝜖) C𝐴"



This seems to help a lot.



This seems to help a lot.


