
Unsupervised Deep nets
Bryan Pardo

Northwestern University
(updated fall 2022)

Hebbian Learning

Donald Hebb

• A cognitive psychologist active mid 20th century

• Influential book: The Organization of Behavior (1949)

• Hebb’s postulate
"Let us assume that the persistence or repetition of a reverberatory activity (or

"trace") tends to induce lasting cellular changes that add to its stability.… When
an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A's efficiency, as one of the cells firing B, is increased.

Pithy version of Hebb’s postulate

Cells that fire together, wire together.

Hopfield networks

Hopfield nets are

• “Hebbian” in their learning approach
• Old technology. These are proof of concept things from the 80s and

earlier.
• Fast to train, slow to use
• Weights are symmetric
• All nodes are input & output nodes
• Use binary (1, -1) inputs and output
• Used as Associative memory (image cleanup)Classifier
• Precursors to Auto Encoders and Restricted Boltzman Machines

Using a Hopfield Net
10 by 10 Training patterns

Query pattern
(to clean or classify) Output pattern

Fully connected
100 node network

(too complex to draw)

Training a Hopfield Net
• Assign connection weights as follows

wij =
xc, i xc, j if i ≠ j

c=1

C

∑
0 if i = j

⎧

⎨
⎪

⎩
⎪

c index number for C many class exemplars
i, j index numbers for nodes
wi, j connection weight from node i to node j
xc, i ∈{+1,−1} element i of the exemplar for class c

Using a Hopfield Net
Force output to match an unknown input pattern

Iterate the following function until convergence

Note: this means you have to pick an order for updating nodes.
People often update all the nodes in random order

si (0) = xi ∀i

si (t +1) =
1 if 0 ≤ wijsj (t)

j=1

N

∑

−1 else

$

%
&

'
&

Here, si (t) is the state of node i at time t
and xi is the value of the input pattern at node i

Using a Hopfield Net

Once it has converged…

FOR INPUT CLEANUP: You’re done. Look at the final state of
the network.

FOR CLASSIFICATION: Compare the final state of the network
to each of your input examples. Classify it as the one it
matches best.

Input Training Examples

Image from:R. Lippman, An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, April 1987

Why isn’t 5 in the set of examples?

Output of network over 8 iterations

Image from:R. Lippman, An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, April 1987

Input pattern After 3 iterations

After 7 iterations

First iteration

Characterizing “Energy”

Image from: http://en.wikipedia.org/wiki/Hopfield_network#mediaviewer/File:Energy_landscape.png

• As is updated, the state of the system converges on an
“attractor”, where

• Convergence is measured with this “Energy” function:
si (t +1) = si (t)

si (t)

E(t) = − 1
2

wij
i, j
∑ si (t)s j (t)

Note: people often add a
“bias” term to this function.
I’m assuming we’ve added
an extra “always on”
node to make our “bias”

Limits of Hopfield Networks

• Input patterns become confused if they overlap

• The number of patterns it can store is about 0.15 times the number
of nodes

• Retrieval can be slow, if there are a lot of nodes (it can take thousands
of updates to converge)

Restricted boltzman
machine (RBM)

About RBNs

•Related to Hopfield nets

•Used extensively in Deep Belief Networks

•You can’t understand DBNs without understanding these

About RBNs

•Related to Hopfield nets

•Used extensively in Deep Belief Networks

•You can’t understand DBNs without understanding these

Standard RBM Architecture

2 layers (hidden & input) of Boolean nodes
Nodes only connected to the other layer

xixi xi xi xi

Hidden
Units

Input
Units

Weight
Matrix

Standard RBM Architecture

Setting the hidden nodes to a vector of values
updates the visible nodes…and vice versa

xixi xi xi xi

Hidden
Units

Input
Units

Weight
Matrix

Contrastive Divergence Training
1. Pick a training example.
2. Set the input nodes to the values given by the example.
3. See what activations this gives the hidden nodes.
4. Set the hidden nodes at the values from step 3.
5. Set the input node values, given the hidden nodes
6. Compare the input node values from step 5 to the the input node values

from step 2
7. Update the connection weights to decrease the difference found in step 6.
8. If that difference falls below some epsilon, quit. Else, go to step 1.

Deep BELIEF Network
(DBN)

What is a Deep Belief Network?

• A stack of RBNS

• Trained bottom to top with
Contrastive Divergence

• Trained AGAIN with supervised
training (similar to backprop in
MLPs)

xi

W1

W2

W3

W4

x

h1

h2

h3

RBN

• A stack of RBNS

• Trained bottom to top with
Contrastive Divergence

• Trained AGAIN with supervised
training (similar to backprop in
MLPs)

xi

W1

W2

W3

W4

x

h1

h2

h3

RBN

What is a Deep Belief Network?

• A stack of RBNS

• Trained bottom to top with
Contrastive Divergence

• Trained AGAIN with supervised
training (similar to backprop in
MLPs)

xi

W1

W2

W3

W4

x

h1

h2

h3
RBN

What is a Deep Belief Network?

• A stack of RBNS

• Trained bottom to top with
Contrastive Divergence

• Trained AGAIN with supervised
training (similar to backprop in
MLPs)

xi

W1

W2

W3

W4

x

h1

h2

h3
RBN

What is a Deep Belief Network?

Why are DBNs important?

• Around 2005 they were state-of-the-art systems for doing certain
recognition tasks

• Handwritten digits
• Phonemes

• They got the whole “Deep learning” thing going. Before these, nets
maxed out at about 4 layers.

• They had a good marketing campaign “Deep learning” vs “shallow
learning”

Why not use standard MLP training?

• Fading signal from backprop. (this was later solved with normalization
layers)

• The more complex the network, the more likely there are local
minima

• Memorization issues

• Training set size and time to learn

Benefits

• Allowed relatively deep networks (e.g. 10 layers), compared to regular
multilayer perceptrons with sigmoid activations

• In the mid 2000’s this approach made networks better than anything
else out there for some problems (e.g. digit recognition, phoneme
recognition)

• Today, they’ve been superseded by other approaches

Autoencoders

Simplest Autoencoder: Linear model, 1 hidden layer

input 𝑥

output (𝑥

weights 𝑉

weights 𝑈

loss ℒ = 𝑥 − (𝑥 !

(𝑥 = 𝑈𝑉𝑥

Linear
activations Maps d dimensional

input x to k dimensional
embedding subspace S

loss ℒ = 𝑥 − (𝑥 !

(𝑥 = 𝑈𝑉𝑥

Maps d dimensional
input x to k dimensional
embedding subspace S

The projection of x onto S is the point in S
which minimizes the 2-norm distance to x.

Simplest Autoencoder: Linear model, 1 hidden layer

loss ℒ = 𝑥 − (𝑥 !

Maps d dimensional
input x to k dimensional
embedding subspace S

The projection of x onto S is the point in S
which minimizes the 2-norm distance to x.

The linear autoencoder learns U = Q and V = QT,

where Q is an orthonormal basis for S.

Simplest Autoencoder: Principal Component Analysis

(𝑥 = 𝑈𝑉𝑥

This was just to get the idea…

• You wouldn’t actually do this by training a neural net.

• The standard algorithm is called principal component analysis
(PCA).

• Read about it here:
https://en.wikipedia.org/wiki/Principal_component_analysis

More generally

• With multiple layers & nonlinear
activations we can map on to a
nonlinear embedding space

• We can represent complex data this
way and use the encoder as the
input to a supervised network

• This lets us learn features from
unlabeled data, which is far easier to
get than labeled data.

bottleneck

Encoder

Decoder

Sparsity constraints are good

• Often better data representations
can be gotten by adding a sparsity
constraint to the loss function.

Here W is the network weights.

• This is a sparse autoencoder.

ℒ = 𝑥 − 𝐷(𝐸 𝑥) ! + 𝑊 !
bottleneck

Encoder

Decoder

They’re also great for denoising

• Autoencoders can be trained to
remove noise from images, speech, etc.
• Just add noise to the input and require

reconstruction of the non-noisy output.

• This is a denoising autoencoder.

bottleneck

Encoder

Decoder

Add
Noise

ℒ = 𝑥 − 𝐷(𝐸 𝑥 + 𝑛) ! + 𝑊 !

Same idea as PCA, in
some sense, but
nonlinear….

DAE: Maps to a learned non-linear embedding

ℒ = 𝑥 − 𝐷(𝐸 𝑥 + 𝑛) ! + 𝑊 !

𝑥 + 𝑛

x

Also great for imputation/inpainting

• If the “noise” we add is masking out
large patches….

• We can train it to fill in blanks.

bottleneck

Encoder

Decoder

Mask

