
Deep Reinforcement
Learning

Deep Learning: Bryan Pardo, Northwestern University, Fall 2020

Learning Types

• Supervised learning:
• (Input, output) pairs of the function to be learned are given (e.g. image labeling)

• Unsupervised Learning:
• No human labels provided (e.g. language modeling, image reconstruction)

• Reinforcement learning:
• Reward or punishment for actions (winning or losing a game)

Reinforcement Learning

• Task
• Learn how to behave to achieve a goal
• Learn through experience from trial and error

• Examples
• Game playing: The agent knows when it wins, but

doesn’t know the appropriate action in each state along
the way

• Control: a traffic system can measure the delay of cars,
but not know how to decrease it.

Basic RL Model

1. Observe state, st
2. Decide on an action, at
3. Perform action
4. Observe new state, st+1
5. Observe reward, rt+1
6. Learn from experience
7. Repeat

Goal: Find a control policy that will maximize the observed rewards over the
lifetime of the agent

AS R

World

A Cannonical Example: Gridworld

• States are grid cells
• 4 actions: N, S, E, W

• Reward for entering top right cell
• -0.01 for every other move

+1

The Markov Property

• RL needs a set of states that are Markov
• Everything you need to know to make a decision is included in the state
• Not allowed to consult the past

• Rule-of-thumb
• If you can calculate the reward function
from the state without any additional
information, youʼre OK

S G

K

Not holding key

Holding key

We need some background

• Simple decision theory

•Markov Decision Processes

• Value functions
• Dynamic programming

Making Single Decisions

• Single decision to be made
• Multiple discrete actions
• Each action has an associated reward

• Goal is to maximize reward
• Just pick the action with the largest reward

• State 0 has a value of 2
• Reward from taking the best action

0

1

22

1

Markov Decision Processes

• We can generalize the previous example to multiple sequential
decisions

• Each decision affects subsequent decisions

• This is formally modeled by a Markov Decision Process (MDP)

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Northwestern University, EECS 349, 2017

Markov Decision Processes

• Formally, a MDP is
• A set of states, S = {s1, s2, ... , sn}

• A set of actions, A = {a1, a2, ... , am}

• A reward function, R: S´A´S→Â

• A transition function,

• Sometimes T: S´A→S

• We want to learn a policy, p: S →A
• Maximize sum of rewards we see over our lifetime

()aai,s|jsPP tt1t
a
ij ==== +

Policies
• A policy p(s) returns the action to take in state s.

• There are 3 policies for this MDP
Policy 1: 0 →1 →3 →5
Policy 2: 0 →1 →4 →5
Policy 3: 0 →2 →4 →5

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Comparing Policies
• Which policy is best?
• Order them by how much reward they see

Policy 1: 0 →1 →3 →5 = 1 + 1 + 1 = 3
Policy 2: 0 →1 →4 →5 = 1 + 1 + 10 = 12
Policy 3: 0 →2 →4 →5 = 2 – 1000 + 10 = -988

0

1

2

A

B
2

1

5

3

4

A A

-1000

1

A A
10

1
B

1

Value Functions
• For a given policy, we can associate a value with each state

• How good is it to run policy p from that state s?
• This is the state value function, V

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A 10

1
B

1

V1(s0) = 3
V2(s0) = 12
V3(s0) = -988

V1(s1) = 2
V2(s1) = 11

V3(s2) = -990
V2(s4) = 10
V3(s4) = 10

V1(s3) = 1

A

A

How do you tell which
policy to follow from

each state?

Vp(s) = R(s, p(s), sʼ) + Vp(sʼ)

s’ is the
next state

a’ is the
next action

Q Functions

• Define value without specifying the policy
• It is the value of taking action A from state S and then performing optimally, thereafter

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A
10

1
B

1

Q(0, A) = 12
Q(0, B) = -988

Q(3, A) = 1

Q(4, A) = 10

Q(1, A) = 2
Q(1, B) = 11

Q(2, A) = -990

A

A

s’ is the
next state

a’ is the
next action

Q(s, a) = R(s, a, sʼ) + maxaʼ Q(sʼ, aʼ)

Value Functions
• These can be extended to probabilistic actions

(for when the results of an action are not certain, or when a policy is
probabilistic)

() () ()() ()()s'Vs' ,s s,R(s)s,|s'PsV
s'

pp +p=å p

() () ()()a' ,s'Q maxs' a, s,Ra)s,|P(s'as,Q a'
s'

+=å

Getting the Policy

• If we have the value function, then finding the optimal policy, p*(s), is
easy…just find the policy that maximized value

p*(s) = arg maxa (R(s, a, s’) + Vp(s’))

p*(s) = arg maxa Q(s, a)

Learning Policies Directly

• Run whole policy, then receive a single reward

• Reward measures success of the whole policy

• If there are a small number of policies, we can exhaustively try them all

• This is not possible in most interesting problems

Problems with Our Functions

• Consider this MDP
• Number of steps is now unlimited because of loops
• Value of states 1 and 2 is infinite for some policies

Q(1, A) = 1 + Q(1, A)
Q(1, A) = 1 + 1 + Q(1, A)
Q(1, A) = 1 + 1 + 1 + Q(1, A)
Q(1, A) = ...

• This is bad
• All policies with a non-zero reward
cycle have infinite value

0

1

2

A

B
1000

-1000

3

0

0

A

A

B

B

1

1

Better Value Functions

• Introduce the discount factor g, to get around the problem of infinite
value

• Three interpretations
• Probability of living to see the next time step
• Measure of the uncertainty inherent in the world
• Makes the mathematics work out nicely

Assume 0 ≤ g ≤ 1

Vp(s) = R(s, p(s), sʼ) + gVp(sʼ)

Q(s, a) = R(s, a, sʼ) + gmaxaʼ Q(sʼ, aʼ)

Better Value Functions

• Optimal Policy:
p(0) = B
p(1) = A
p(2) = A

0

1

2

A

B
1000

-1000

3

0

0

A

A

B

B

1

1

Value now depends

on the discount, g

Dynamic Programming

• Given the complete MDP model, we can compute the optimal value
function directly

[Bertsekas, 87, 95a, 95b]

0

1

2

A

B
2

1

5

3

4

A

-1000

1

A
10

1
B

1

V(5) = 0

A
0

A

A

V(3) = 1 + 0g

V(4) = 10 + 0g

V(1) = 1 + 10g + 0g2

V(2) = - 1000 +10g + 0g2

V(0) = 1 + g + 10g2 +0g3

Reinforcement Learning

• What happens if we don’t have the whole MDP?
• We know the states and actions
• We donʼt have the system model (transition function) or reward function

• We’re only allowed to sample from the MDP
• Can observe experiences (s, a, r, sʼ)
• Need to perform actions to generate new experiences

• This is Reinforcement Learning (RL)
• Sometimes called Approximate Dynamic Programming (ADP)

Learning Value Functions

• We still want to learn a value function
• Weʼre forced to approximate it iteratively
• Based on direct experience of the world

• Four main algorithms
• Certainty equivalence
• TD l learning
• Q-learning
• SARSA

How are we going to do this?

• Reward whole policies?
• That could be a pain

• What about incremental
rewards?

• Everything has a reward
of 0 except for the goal

• Now what???

S

G

100
points

Exploration vs. Exploitation

• We want to pick good actions most of the time, but also do some
exploration

• Exploring means we can learn better policies

• But, we want to balance known good actions with exploratory ones

• This is the exploration/exploitation problem

On-Policy vs. Off Policy

• On-policy algorithms
• Final policy is influenced by the exploration policy
• Generally, the exploration policy needs to be “close” to the final policy
• Can get stuck in local maxima

• Off-policy algorithms
• Final policy is independent of exploration policy
• Can use arbitrary exploration policies
• Will not get stuck in local maxima

Given enoughexperience

Picking Actions

e-greedy
• Pick best (greedy) action with probability 1 - e
• Otherwise, pick a random action

• Boltzmann (Soft-Max)
• Pick an action based on its Q-value

…where t is the “temperature” å
÷
ø
ö

ç
è
æ

÷
ø
ö

ç
è
æ

=

a'

)a' Q(s,

a) Q(s,

e

e s) | P(a
t

t

TD(l)

• TD-learning estimates the value function directly
• Donʼt try to learn the underlying MDP

• Keep an estimate of Vp(s) in a table
• Update these estimates as we gather more experience
• Estimates depend on exploration policy, p
• TD is an on-policy method

[Sutton, 88]

Approach 1: Run the policy until you see the final outcome,
then update your value V(S). If G is the final outcome…then

Approach 2: Update as you go, using your existing estimate of
state values as your proxy for the final reward

What are we learning here?

The temporal difference error: 𝛿!
This is the difference between our current estimate of this
state’s value and our bootstrapped estimate of the value, now
that we’ve taken an action according to a policy.

TD(0)-Learning Algorithm

R = reward
a= learning rate
g= discount factor

this formulation is from Sutton & Barto’s “Reinforcement Learning”

Driving example
(MC) Waiting till end (TD) Updating incrementally

Why not wait till the end to do our update?

TD-Learning
• Vp(s) is guaranteed to converge to V*(s)
• After an infinite number of experiences
• If we decay the learning rate

will work, where c is a constant and t is the step index

• In practice, we often don’t need value convergence
• Policy convergence generally happens sooner

tc
c

t +
=a

What if we want to predict the action, not the
state?
Replace our existing update as you go learning rule:

With one that updates the Q table instead of the V table:

SARSA

• SARSA iteratively approximates the state-action value function, Q
• L, SARSA learns the policy and the value function simultaneously

• Keep an estimate of Q(s, a) in a table
• Update these estimates based on experiences
• Estimates depend on the exploration policy
• SARSA is an on-policy method
• Policy is derived from current value estimates

SARSA: The algorithm

Windy Grid World

• There is wind where there are
arrows
• Wind moves you 1 step up at

each turn
• This means there are some

policies that will never terminate
• Therefore you must learn the

policy on-the-fly
• You can’t just try all policies and

wait till you see the final result

Replace our existing update to the Q table:

….with this:

What if we want to learn the best action,
regardless of current policy?

Q-Learning

• Q-learning iteratively approximates the state-action
value function, Q

• We wonʼt estimate the MDP directly
• Learns the value function and policy simultaneously

• Keep an estimate of Q(s, a) in a table
• Update these estimates as we gather more experience
• Estimates do not depend on exploration policy
• Q-learning is an off-policy method

[Watkins & Dayan, 92]

Q-Learning Algorithm

1. Initialize Q(s, a) to small random values, "s, a
(what if you make them 0? What if they are big?)

2. Observe state, s
3. Randomly (or e greedy) pick action, a
4. Observe next state, s’, and reward, r
5. Q(s, a)←Q(s, a) + a(r + gmaxa’Q(s’, a’) – Q(s, a))
6. s ←s’
7. Go to 2

0 ≤ a ≤ 1 is the learning rate & we should decay a, just like in TD
Note: this formulation is from Sutton & Barto’s “Reinforcement Learning”

Breaking apart that update formula

Q(s, a)←Q(s, a) + a(R + gmaxa’Q(s’, a’) – Q(s, a))

This can be written another way…

Q(s, a)←(1- a)Q(s, a) + a(R + gmaxa’Q(s’, a’))

Looked at this way, it is more obvious that a controls whether we value
past experience more or new experience more.

r(state, action)
immediate reward values

Q(state, action) valuesV*(state) values

100

0

0

100

G

0

0

0

0

0

0

0

0

0

90

81

100
G

0

81

72

90

81
81

72

90

81

100

G
90 100 0

81 90 100

Q-learning
• Q-learning, learns the expected utility of taking a

particular action a in state s

Convergence Guarantees

• The convergence guarantees for RL are “in the limit”
• The word “infinite” crops up several times

• Don’t let this put you off
• Value convergence is different than policy convergence
• Weʼre more interested in policy convergence
• If one action is significantly better than the others, policy convergence will

happen relatively quickly

Rewards

• Rewards measure how well the policy is doing
• Often correspond to events in the world

• Current load on a machine
• Reaching the coffee machine
• Program crashing

• Everything else gets a 0 reward

• Things work better if the rewards are incremental
• For example, distance to goal at each step
• These reward functions are often hard to design

These aredense rewards

These aresparse rewards

Northwestern University, EECS 349, 2017

Let’s talk state space & combinatorics

• The idea is to learn a probability distribution over the set of actions
possible at each state
• We’ve assumed that there is a table of states and actions
• How big could such a table get?

Playing Video Games

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

We need to replace the table with….

• …a parameterized function that can output the policy

• Historically, this could be any function

• These days it means…you guessed it…a deep net

• ...and this also means we need differentiable policy gradient

Policy Gradient Methods

• Assume that our policy, p, has a set of n real-valued parameters, q =
{q1, q2, q3, ... , qn }
• Running the policy with a particular q results in a reward, rq

• Estimate the reward gradient, , for each qi

iθ
R
¶
¶

i
ii θ

Rθθ
¶
¶

+¬ a

This is another
learning rate

Policy Gradient Methods

• This results in hill-climbing in policy space
• So, itʼs subject to all the problems of hill-climbing
• But…we can also use tricks from search, like random restarts and momentum

terms

• This is a good approach if you have a parameterized policy
• Typically faster than value-based methods
• “Safe” exploration, if you have a good policy
• Learns locally-best parameters for that policy

Going to a parameterized Q model

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv:1312.5602.

Take the standard Bellman equation for estimating the Q function:

Take a loss function for a parameterized function , where 𝑦! is the target value and 𝜃! are the parameters :

Take the gradient:

Deep Q-learning

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv:1312.5602.

This was a breakthrough

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv:1312.5602.

Let’s watch!

https://www.youtube.com/watch?v=V1eYniJ0Rnk

The game of GO
• 19 by 19 board
• Each position is either empty,

white, or black
• At each turn you can place a

stone of your color on any
empty position
• How big would the Q table be

for this world?

Image Creator: Zozulya | Credit: Getty Images/iStockphoto

AlphaGO
• 2015: First program to beat a

professional Go master with no
handicap
• 2017: Beat Ke Jie, the number

one ranked player in the world
at the time

Image Creator: Zozulya | Credit: Getty Images/iStockphoto

Silver, David, et al. "Mastering the game of Go with
deep neural networks and tree
search." nature 529.7587 (2016): 484-489

https://en.wikipedia.org/wiki/Ke_Jie

The parts of Alpha Go

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Train the policy network with
supervised learning, based on prior
human games
𝜎 are the network weights
𝑝#(𝑎|𝑠) is the distribution over the
next actions output by the model.
𝑝#(𝑎|𝑠) is compared to true action y.

After training this predicted the true
human move 57% of the time

The parts of Alpha Go

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

They also trained a small fast “rollout”
policy network to predict actions.
𝑝$(𝑎|𝑠) is the distribution over the
next actions output by fast model.
After training this predicted the true
human move 24% of the time.

…but it took 2 microseconds to predict
the next move, which was useful for
rollouts to play out games.

The parts of Alpha Go

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

The parts of Alpha Go

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Once they had a trained policy network,
they engaged in self-play.
Make 2 copies of the network.
They play.
Apply reinforcement learning to the
winner.
Thereafter, always play vs a previous
version of the RL network.
Learn as you go…

The parts of Alpha Go

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Then….they generated 30 million
game states from self play and
taught a Value network to
estimate the value of every one of
those states, based on the
outcome of the game the state
came from.

Monte Carlo Tree Search (MCTS)

Select the edge with maximum
action-value Q , plus a bonus u(P)
that depends on a stored prior
probability P for that edge

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Monte Carlo Tree Search (MCTS)

• The leaf node may be expanded;
the new node is processed once
by the supervised policy
network 𝑝! and the output
probabilities are stored as prior
probabilities P for each action.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Monte Carlo Tree Search (MCTS)

• At the end of a simulation,
the leaf node is evaluated in
two ways:
• using the value network 𝑣"
• running a rollout to the end

of the game with the fast
rollout policy 𝑝#, then
computing the winner with
function r.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Monte Carlo Tree Search (MCTS)

• Action-values Q are updated to
track the mean value of all
evaluations r() and v() in the
subtree below that action.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Do they really need to learn from humans?

• Alpha0 jettisoned all the human-trained supervised learning

• It learns exclusively from self play

• How well does that work?

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.

Alpha0 is a general game winner

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.

Learning to Walk
• RoboCup legged league
• Walking quickly is a big advantage

• Robots have a parameterized gait controller
• Multiple REAL VALUED parameters
• Controls step length, height, etc.

• Robots walk across soccer pitch and are timed
• Reward is a function of the time taken

Image courtesy of: Ralf Roletschek
https://www.wikidata.org/wiki/Q15080600

