Adversarial Examples

Deep Learning: Bryan Pardo & Patrick O'Reilly, Northwestern University, Spring 2022

Learned decision surfaces are messy and don't align with human intuition

Looks good, right?

Learned decision surface for XOR problem

Let's zoom out a little

Learned decision surface for XOR problem

Zooming out more...

What are these things really learning?

Spirals data

Decision surface a human might draw

Actual decision surface learned by a network

These decision surfaces that don't align with human decision surfaces make networks brittle & easy to fool

What if we "nudge" an example over the line?

- Gradient descent alters the decision boundary
- Adversarial attacks alter the input
- Do it right and a human won't see a difference
- ...but the machine might really screw up a classification

In 2 dimensions, a bad surface is obvious

• What about in 2 million dimensions?

One of these was labeled "panda" by a trained net. The other was labeled "bucket". Which is which?

Image from: https://www.borealisai.com/en/blog/advertorch-adversarial-training-tool-implement-attack-and-defence-strategies/

The one on the right is a "perturbed" image

PANDA

BUCKET

Gradient Descent Pseudocode

Initialize $\theta^{(0)}$ Repeat until stopping condition met: $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} L(X, Y; \theta^{(t)})$ Return $\theta^{(t_{max})}$

 $\theta^{(t)}$ are the parameters of the model at time step t

 $\nabla_{\theta} L(X, Y; \theta^{(t)})$ is the gradient of the loss function with respect to model parameters $\theta^{(t)}$ η controls the step size

 $\theta^{(t_{max})}$ is the set of parameters that did best on the loss function.

Just flip which thing we're optimizing

Initialize $X^{(0)}$ Repeat until stopping condition met: $X^{(t+1)} = X^{(t)} + \eta \nabla_X L(X^{(t)}, Y; \theta)$ Return $X^{(enough)}$

 $X^{(t)}$ is an example at time t

 $\nabla_X L(X^{(t)}, Y; \theta)$ is the gradient of the loss function with respect to example features $X^{(t)}$ η controls the step size

 $X^{(enough)}$ is the minimal change needed to flip the category of X

Even Simpler: Fast Gradient Sign method

$$X^{(t+1)} = X^{(t)} + \eta sign(\nabla_X L(X^{(t)}, Y; \theta))$$

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy, ICLR 2015

Gradient Sign attack

- The pixels are all independent dimensions
- Find the gradient in the pixel space
- Add (clipped) noise along the gradient (a little noise for every pixel)
- Do it right and the image looks the same to the user... ...but looks entirely different to the network.

That same thing in pictures

 $f(x + \delta_0) =$ **PANDA**

 $f(x + \delta_l) =$ **PANDA**

 $f(x + \delta_{\dots}) = PANDA$

That same thing in pictures

 $f(x + \delta_0) =$ **PANDA**

 $f(x + \delta_l) = PANDA$

 $f(x + \delta_{\dots}) = PANDA$

 $f(x + \delta_N) =$ **GIBBON**

Yes, it's just that easy

 $+.007 \times$

_

 $\operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

(Image from Goodfellow et al 2014)

Why.....

-does this gradient-based attack make sense?
- ...did they use the sign of the gradient multiplied by a fixed step size, instead of the actual gradient?

Defending against attacks

Our problem...

- An attacker can straightforwardly force the classifier to recategorize inputs.
- This could be a big problem for...
 - Self driving cars
 - Verification of identity
 - Etc..
- What can we do about it?

Defenses

- Security through obscurity (don't let them see your weights)
 - Can be helpful....not a guarantee. There are black-box attacks.
- Randomly modify the input to screw up the perturbation.
 - At training time (use adversarial examples in training)
 - At inference time (we'll talk more about this)
- Ensembling
 - Train N different networks with different architectures & training data
 - Use majority voting for classification
 - Hope they can't attack a majority of them simultaneously

Force them into the open

- If we think that our attacks will be nudges to put images just over the border....
- ...and these nudges are designed to be imperceptible.
- Perhaps we can force them to make a perceptible change if they want to force misclassification...

Randomized smoothing

 At inference, random perturbations are sampled from a Gaussian centered at the input *x* and a majority vote is taken from the classifier's predictions over these perturbed inputs.

 $f(\boldsymbol{x} + \boldsymbol{\delta}_2) =$ "Gibbon"