
Adversarial Examples
Deep Learning: Bryan Pardo & Patrick O’Reilly, Northwestern University, Spring 2022

Learned decision surfaces are
messy and don’t align with
human intuition

Looks good, right?

Learned decision surface for XOR problem

Let’s zoom out a little

Learned decision surface for XOR problem

Zooming out more…

What are these things really learning?

Spirals data

Decision surface a human might draw

Actual decision surface learned by a network

100% perfect accuracy on labeling

These decision surfaces that don’t
align with human decision surfaces
make networks brittle & easy to fool

What if we “nudge” an example over the line?

• Gradient descent alters the decision
boundary
• Adversarial attacks alter the input
• Do it right and a human won’t see a

difference
• …but the machine might really screw up a

classification

In 2 dimensions, a bad surface is obvious
• What about in 2 million dimensions?

Image from: https://www.borealisai.com/en/blog/advertorch-adversarial-training-tool-implement-attack-and-defence-strategies/

One of these was labeled “panda” by a trained net.
The other was labeled “bucket”. Which is which?

The one on the right is a “perturbed” image

PANDA BUCKET

Gradient Descent Pseudocode

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇'𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t

∇$ 𝐿(𝑋, 𝑌; 𝜃(")) is the gradient of the loss function with respect to model parameters 𝜃(")

𝜂 controls the step size

𝜃("!"#) is the set of parameters that did best on the loss function.

Just flip which thing we’re optimizing

Initialize 𝑋(")

Repeat until stopping condition met:
𝑋($%&) = 𝑋($) + 𝜂∇(𝐿(𝑋($), 𝑌; 𝜃)

Return 𝑋()*+,-.)

𝑋(") is an example at time t

∇% 𝐿(𝑋("), 𝑌; 𝜃) is the gradient of the loss function with respect to example features 𝑋(")

𝜂 controls the step size

𝑋(&'()*+) is the minimal change needed to flip the category of X

Even Simpler: Fast Gradient Sign method

𝑋($%&) = 𝑋($) + 𝜂𝑠𝑖𝑔𝑛(∇(𝐿(𝑋($), 𝑌; 𝜃))

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy, ICLR 2015

Gradient Sign attack

• The pixels are all independent dimensions

• Find the gradient in the pixel space

• Add (clipped) noise along the gradient (a little noise for every pixel)

• Do it right and the image looks the same to the user…
…but looks entirely different to the network.

That same thing in pictures

PANDAf (x + 𝛿…) = PANDA

f (x + 𝛿1) = PANDA

f (x + 𝛿0) = PANDA

That same thing in pictures

f (x + 𝛿…) = PANDA

f (x + 𝛿1) = PANDA

f (x + 𝛿0) = PANDA

GIBBON

f (x + 𝛿N) = GIBBON

Yes, it’s just that easy

(Image from Goodfellow et al 2014)

Why…..

• ….does this gradient-based attack make sense?

• …did they use the sign of the gradient multiplied by a fixed step size,
instead of the actual gradient?

Defending against attacks

Our problem…

• An attacker can straightforwardly
force the classifier to
recategorize inputs.
• This could be a big problem for…

• Self driving cars
• Verification of identity
• Etc..

• What can we do about it?

Defenses
• Security through obscurity (don’t let them see your weights)

• Can be helpful….not a guarantee. There are black-box attacks.

• Randomly modify the input to screw up the perturbation.
• At training time (use adversarial examples in training)
• At inference time (we’ll talk more about this)

• Ensembling
• Train N different networks with different architectures & training data
• Use majority voting for classification
• Hope they can’t attack a majority of them simultaneously

Force them into the open

• If we think that our attacks will be
nudges to put images just over
the border….
• ..and these nudges are designed

to be imperceptible.
• Perhaps we can force them to

make a perceptible change if they
want to force misclassification…

Randomized smoothing

• At inference, random
perturbations are sampled
from a Gaussian centered at
the input x and a majority
vote is taken from the
classifier’s predictions over
these perturbed inputs.

