Adversarial Examples

Deep Learning: Bryan Pardo & Patrick O’Reilly, Northwestern University, Spring 2022

earned decision surfaces are
messy and don’t align with
numan intuition

Looks good, right?

Learned decision surface for XOR problem

Let’s zoom out a little

Learned decision surface for XOR problem

/ooming out more...

-30 =20 -10 0 10 20

What are these things really learning?

Spirals data

10

a A Ny
A
A
®
. A
® A A
- Ay
&
@
&
$ -
=20 -10 0 10 20

Decision surface a human might draw

10 A

°
A
® & A/ o
° Ay
*
°
°
°
s o
—205 -10-10 -5 0 10 10 130

Actual decision surface learned by a network

15 -10 -5 0 5 10 15
100% perfect accuracy on labeling

These decision surfaces that don’t
align with human decision surfaces
make networks brittle & easy to fool

What if we “nudge” an example over the line?

* Gradient descent alters the decision
boundary

» Adversarial attacks alter the input

* Do it right and a human won’t see a
difference

e ...but the machine might really screw up a
classification

In 2 dimensions, a bad surface is obvious

e What about in 2 million dimensions?

One of these was labeled “panda” by a trained net.
The other was labeled “bucket”. Which is which?

Image from: https://www.borealisai.com/en/blog/advertorch-adversarial-training-tool-implement-attack-and-defence-strategies/

The one on the right is a “perturbed” image

PANDA BUCKET

Gradient Descent Pseudocode

Initialize 8(%
Repeat until stopping condition met:
O+ =g — vV, L(X,Y;00)

Return @ (tmax)

6() are the parameters of the model at time step t

Vg L(X,Y; 6(®) is the gradient of the loss function with respect to model parameters 6 (&)

n controls the step size

6 (tmax) js the set of parameters that did best on the loss function.

Just flip which thing we’re optimizing

Initialize X (©)

Repeat until stopping condition met:
XD = xO 4 pv, L(XD,Y; 0)

Return X (enough)

X® js an example at time t
Vy L(X(t), Y: 0) is the gradient of the loss function with respect to example features X ®
n controls the step size

X (enough) is the minimal change needed to flip the category of X

Even Simpler: Fast Gradient Sign method

XD = xO 4 pnsign(V4L(XD,Y;0))

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
lan J. Goodfellow, Jonathon Shlens & Christian Szegedy, ICLR 2015

Gradient Sign attack

* The pixels are all independent dimensions
* Find the gradient in the pixel space
* Add (clipped) noise along the gradient (a little noise for every pixel)

* Do it right and the image looks the same to the user...
...but looks entirely different to the network.

That same thing in pictures

T+ 0;

f(x+ 68, = PANDA

7
WA
KO —> VL
;OA'/,‘\Q

f(x+68,) = PANDA

O

f(x+6) = PANDA

Clip | €— | Scale

That same thing in pictures

f(x+ 68, = PANDA

f(x+68,) = PANDA

f(x+6) = PANDA

f(x+68y) = GIBBON

O
.k?m'f

Y%

GIBBON

KO —>

VL

Clip | €— | Scale

Yes, it’s just that easy

z ign(Vel(0,2,0) ion(v,0(8, 2,v))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

(Image from Goodfellow et al 2014)

edoes this gradient-based attack make sense?

e ...did they use the sign of the gradient multiplied by a fixed step size,
instead of the actual gradient?

Defending against attacks

f(x 4+ 8) = “Panda” flx + 61) = “Horse”

Our problem...

* An attacker can straightforwardly
force the classifier to
recategorize inputs.

* This could be a big problem for...
 Self driving cars
 Verification of identity
* Etc..

f(x) = “Panda”

e What can we do about it?

f(x + 62) = “Gibbon”

Defenses

 Security through obscurity (don’t let them see your weights)
* Can be helpful....not a guarantee. There are black-box attacks.

 Randomly modify the input to screw up the perturbation.
* At training time (use adversarial examples in training)
* At inference time (we’ll talk more about this)

* Ensembling
* Train N different networks with different architectures & training data
* Use majority voting for classification
* Hope they can’t attack a majority of them simultaneously

Force them into the open

* If we think that our attacks will be
nudges to put images just over
the border....

» ..and these nudges are designed Z A B o
to be imperceptible. Wil LY

* Perhaps we can force them to

make a perceptible change if they
want to force misclassification...

f(x) = “Panda”

flx + 62) = “Gibbon”

Randomized smoothing

* At inference, random
perturbations are sampled
from a Gaussian centered at
the input x and a majority
vote is taken from the
classifier’s predictions over
these perturbed inputs.

f(x) = “Panda”

f(x + 62) = “Gibbon”

