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Learned decision surfaces are 
messy and don’t align with 
human intuition



Looks good, right?

Learned decision surface for XOR problem 



Let’s zoom out a little

Learned decision surface for XOR problem 



Zooming out more…

What are these things really learning?



Spirals data



Decision surface  a human might draw



Actual decision  surface learned by a network

100% perfect accuracy on labeling 



These decision surfaces that don’t 
align with human decision surfaces 
make networks brittle & easy to fool



What if we “nudge” an example over the line?

• Gradient descent alters the decision 
boundary
• Adversarial attacks alter the input
• Do it right and a human won’t see a 

difference
• …but the machine might really screw up a 

classification



In 2 dimensions, a bad surface is obvious
• What about in 2 million dimensions?

Image from: https://www.borealisai.com/en/blog/advertorch-adversarial-training-tool-implement-attack-and-defence-strategies/

One of these was labeled “panda” by a trained net.
The other  was labeled “bucket”. Which is which?



The one on the right is a “perturbed” image

PANDA BUCKET



Gradient Descent Pseudocode

Initialize 𝜃(")

Repeat until stopping condition met:
𝜃($%&) = 𝜃($) − 𝜂∇'𝐿(𝑋, 𝑌; 𝜃($))

Return 𝜃($!"#)

𝜃(") are the parameters of the model at time step t

∇$ 𝐿(𝑋, 𝑌; 𝜃(")) is the gradient of the loss function with respect to model parameters 𝜃(")

𝜂 controls the step size

𝜃("!"#) is the set of parameters that did best on the loss function.



Just flip which thing we’re optimizing

Initialize 𝑋(")

Repeat until stopping condition met:
𝑋($%&) = 𝑋($) + 𝜂∇(𝐿(𝑋($), 𝑌; 𝜃)

Return 𝑋()*+,-.)

𝑋(") is an example at time t

∇% 𝐿(𝑋("), 𝑌; 𝜃) is the gradient of the loss function with respect to example features 𝑋(")

𝜂 controls the step size

𝑋(&'()*+) is the minimal change needed to flip the category of X 



Even Simpler: Fast Gradient Sign method

𝑋($%&) = 𝑋($) + 𝜂𝑠𝑖𝑔𝑛(∇(𝐿(𝑋($), 𝑌; 𝜃))

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES 
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy, ICLR 2015 



Gradient Sign attack

• The pixels are all independent dimensions

• Find the gradient in the pixel space

• Add (clipped) noise along the gradient (a little noise for every pixel)

• Do it right and the image looks the same to the user…
…but looks entirely different to the network.



That same thing in pictures

PANDAf (x + 𝛿…)  =  PANDA

f (x + 𝛿1)  =  PANDA

f (x + 𝛿0)  =  PANDA



That same thing in pictures

f (x + 𝛿…)  =  PANDA

f (x + 𝛿1)  =  PANDA

f (x + 𝛿0)  =  PANDA

GIBBON

f (x + 𝛿N)  =  GIBBON



Yes, it’s just that easy

(Image from Goodfellow et al 2014)



Why…..

• ….does this gradient-based attack make sense?

• …did they use the sign of the gradient multiplied by a fixed step size, 
instead of the actual gradient?



Defending against attacks



Our problem…

• An attacker can straightforwardly 
force the classifier to 
recategorize inputs.
• This could be a big problem for…

• Self driving cars
• Verification of identity
• Etc..

• What can we do about it?



Defenses 
• Security through obscurity (don’t let them see your weights)

• Can be helpful….not a guarantee. There are black-box attacks.

• Randomly modify the input to screw up the perturbation.
• At training time (use adversarial examples in training)
• At inference time (we’ll talk more about this)

• Ensembling
• Train N different networks with different architectures & training data
• Use majority voting for classification
• Hope they can’t attack a majority of them simultaneously 



Force them into the open

• If we think that our attacks will be 
nudges to put images just over 
the border….
• ..and these nudges are designed 

to be imperceptible.
• Perhaps we can force them to 

make a perceptible change if they 
want to force misclassification…



Randomized smoothing

• At inference, random 
perturbations are sampled 
from a Gaussian centered at 
the input  x and a majority 
vote is taken from the 
classifier’s predictions over 
these perturbed inputs.


