
Generative Adversarial
Networks

Deep Learning
Bryan Pardo
Spring 2022

Recap: Discriminators & Regressors

• Everything we’ve seen, so far, maps some high-dimensional input
(e.g. a still image with 10^6 pixels) to a low dimensional output (e.g. a
10-way classification, or a single real value)
• Something that outputs a finite set of classes is called a classifier.
• Something that outputs a vector of a few real values is a regressor.
• Are there other problems in the world that aren’t classification or

regression?

Generative models

•What about generating new examples of things in the world?

Real images of imaginary people generated by StyleGAN2 https://github.com/NVlabs/stylegan2

How can we create models that do this?

Recall adversarial examples

• We “nudge” an existing example of
class A over a discriminator’s decision
boundary to be labeled as C

• It typically still looks like class A

• Can we take this idea further to make
examples that actually LOOK like the
target class?

Fast gradient sign method (undirected attack)

Initialize 𝑋(")

Repeat until stopping condition met:
 𝑋($%&) 	= 𝑋($) + 𝜂 & 𝑠𝑖𝑔𝑛(∇'𝐿(𝑋($), 𝑌; 𝜃))
Return	𝑋(()*+,-)

𝑋(") is an example at time t

∇$	𝐿(𝑋("), 𝑌; 𝜃) is the gradient of the loss function with respect to example features	𝑋(")

𝜂 controls the step size

𝑋(%&'()*) is the minimal change needed to flip the category of X

Fast gradient sign method (directed attack)

Initialize 𝑋(+)

Repeat until stopping condition met:
 𝑋(-./) 	= 𝑋(-) − 𝜂 & 𝑠𝑖𝑔𝑛(∇0𝐿(𝑋 - , 𝑛𝑜𝑡𝑌; 𝜃))
Return	𝑋(123456)

𝑋(") is an example at time t

∇$	𝐿(𝑋("), 𝑌; 𝜃) is the gradient of the loss function with respect to example features	𝑋(")

𝜂 controls the step size

𝑋(%&'()*) is the minimal change needed to flip the category of X

notY is now the NEW CATEGORY WE WANT TO LABEL THE EXAMPLE AS

Fast gradient sign method (directed attack)

Initialize 𝑋(+)

Repeat until stopping condition met:
 𝑋(-./) 	= 𝑋(-) − 𝜂 & 𝑠𝑖𝑔𝑛(∇0𝐿(𝑋 - , 𝑛𝑒𝑤𝑌; 𝜃))
Return	𝑋(123456)

𝑋(") is an example at time t

∇$	𝐿(𝑋("), 𝑌; 𝜃) is the gradient of the loss function with respect to example features	𝑋(")

𝜂 controls the step size

𝑋(%&'()*) is the minimal change needed to flip the category of X

newY is now the NEW CATEGORY WE WANT TO LABEL THE EXAMPLE AS

What if 𝑋(6) started as random noise?

 𝑋($%&) 	= 𝑋($) − 𝜂𝑠𝑖𝑔𝑛(∇'𝐿(𝑋($), 𝑛𝑒𝑤𝑌; 𝜃))

• Would running this repeatedly be enough to generate good-
looking examples?

• Why? Or Why not?

Data vs Decision surface

• A discriminator will assign a label to EVERY region in the space,
regardless of whether there was any training data there.

Learned XOR decision surface Same decision surface, zoomed out

What happens to a nudge here?

• If we start with a random point in the input space, will nudging to the
nearest region labeled as the target class result in something similar to
examples in the training distribution?

What if we…..

• Aim for making new
examples that fall
within the training
distribution

• How can we tell when
we have generated
something in the
training distribution?

Training
example

Good generated
example

Bad generated
example

Could we use an LP norm in the image space?

Our 3-example Target Distribution Two generated examples

Which generated example is more like the target distribution?
Which generated example is closer to the distribution, as measured by an LP norm in the image space?

Let’s use a deep network as our measure

• Goal: a network that outputs the
probability some new example was
drawn from the training data.

• …but it should be smarter than just
applying a Gaussian fit directly to
the input representation.

• How will we do this?

p(x) > 0.5

p((x) < 0.5

p((x) > 0.9

Layers/Embeddings/Data Transformations

• Each layer of a deep net maps its N by M by D input into a N’ by M’
by D’ output
• This output can be higher or lower dimensional than the input
• We can treat the output of any layer as a representation of the data
• This representation is commonly called an “embedding”
• Embeddings from deeper layers of a well-trained discriminator

network allow meaningful clustering of the data

Looking at the Discriminator’s embedding space

Example in
training data

Good generated
example

Bad generated
example

Layer 1

Layer2

Layer 3

Layer 4

“It’s a zero!”

Good generated
example

Bad generated
example

Layer 1

Layer2

Layer 3

Layer 4

“It’s NOT a zero!”

Looking at the Discriminator’s embedding space

Example in
training data

The data distribution is implicitly coded

• The discriminator doesn’t output the distribution. It only
tells you if a particular example falls within the
distribution.

• So how would you generate a good image with this?

Let’s make an image generator.

• Take some N-dimensional vector as input
 (N is usually small, like 8 or 128). Call it Z.

• Run it through a bunch of layers that
increase the representation size until you…

• Output an H by W by C dimensional matrix
that we interpret as an image

• No…I haven’t told you how to train it, yet.

Layer 1

Layer2

Layer 3

Layer 4

Z = [1, .2, 3, 52, .09, 12, 500, 0]

A more accurate representation of the
untrained output
• Take some N-dimensional vector as input
 (N is usually small, like 8 or 128). Call it Z.

• Run it through a bunch of layers that
increase the representation size until you…

• Output an H by W by C dimensional matrix
that we interpret as an image

• No…I haven’t told you how to train it, yet.

Layer 1

Layer2

Layer 3

Layer 4

Z = [1, .2, 3, 52, .09, 12, 500, 0]

Using our image generator

• (randomly??) pick some input vector Z

• Output an image

• See what our discriminator thinks of it

• Repeat until the discriminator says an
image is good

Layer 1

Layer2

Layer 3

Layer 4

Z = [1, .2, 3, 52, .09, 12, 500, 0]

Random guessing

• In the end we want an example
generator, not a discriminator.

• If we have a perfect discriminator, how
can we ensure that we don’t have to
make 10,000 or 10^6 random guesses
to generate a one good example?

• Could we train a generator to make
only good examples?

Generative Adversarial Networks (GANs)

• The big idea: We’ll train our Discriminator and our Generator
simultaneously, so that they both learn the data distribution.

• That way, once we have a trained Generator, it will generate
something good on the 1st try instead of on the 10,000th try.

The training setup

noise	
vector

Generator	Net
𝐺 𝑧	

𝑥	given	to	
Discriminator	

Z = [1, .2, 3, 52, .09, 12, 500, 0]

OR

𝑥	sampled
from data

Generated
example	𝑥

𝑥~𝑝!"#"	

z~𝑝:	 Discriminator	Net
𝐷 𝑥

p 𝑥 	came	
from	the	data

The data

For true examples

𝑥	given	to	
Discriminator	

𝑥	sampled
from data

𝑥~𝑝!"#"	

Discriminator	Net
𝐷 𝑥

p 𝑥 	came	
from	the	data

The data

Target	value = 1

For generated examples

noise	
vector

Generator	Net
𝐺 𝑧	

Z = [1, .2, 3, 52, .09, 12, 500, 0]

Generated
example	𝑥

z~𝑝:	 Discriminator	Net
𝐷 𝑥

p 𝑥 	came	
from	the	data

Discriminator;s	target	
p(𝑥) = 	0

Generator;s	target	
p(𝑥) = 1

Framed as mini-max

Training the Discriminator

Let’s put this in Binary Cross Entropy (BCE) terms.

Recall that D(x) is the Discriminator’s …estimate of the probability x is
drawn from the real data.

Training the Generator

Notice that G is NEVER trained directly on the real data!
It learns to generate real-looking images without ever seeing one.

The hope

• As D improves on identifying members of the training distribution, G
is forced to make better and better fakes.

• Eventually G only generates items close to the training distribution.

• Put another way, G learns the data distribution…even if it’s never
seen any of the data set.

So what’s the catch?

GANs are like the Force. Balance is needed.

• What if the Discriminator is
never fooled (or always
fooled) by the Generator for
some stretch during
training?

• What happens to the
gradients for the Generator?

• Will either D or G improve?

It can be tricky

• Strategies to make G relatively stronger
• Give it 2 training steps for every 1 of D
• Give it an extra loss function that isn’t based on D
• Add capacity to the model (make it bigger)

• Strategies to make D stronger
• Pretrain on out-of-distribution examples of real data
• Give it 2 training steps for every 1 of G
• Add capacity to the model

Also there’s this….

Let’s look at the generator’s loss function again.

𝐿𝑜𝑠𝑠 = −log(𝐷(𝐺 𝑧)

Remember, the generator never sees the true training
distribution.

Is there something missing in this loss function?

Modeling the 𝑝>?@? distribution with G(z)

𝑝.(/) is the Generator’s estimate of 𝑝01$1
Our loss function is: 𝐿𝑜𝑠𝑠 = −log(𝐷(𝐺 𝑧)

CO
U

N
T

O
F

EX
AM

PL
ES

SOME FEATURE

Training
example

Modeling the 𝑝>?@? distribution with G(z)

𝑝.(/) is the Generator’s implicit estimate of 𝑝01$1
Our loss function is: 𝐿𝑜𝑠𝑠 = −log(𝐷(𝐺 𝑧)

CO
U

N
T

O
F

EX
AM

PL
ES

SOME FEATURE

Training
example

𝑝<(:) before training

One possible outcome

𝑝.(/) is the Generator’s estimate of 𝑝01$1
Our loss function is: 𝐿𝑜𝑠𝑠 = −log(𝐷(𝐺 𝑧)

CO
U

N
T

O
F

EX
AM

PL
ES

SOME FEATURE

Training
example

𝑝$(&) after training

Another possible outcome: Mode Collapse

Our loss function is: 𝐿𝑜𝑠𝑠 = −log(𝐷(𝐺 𝑧)
Is anything stopping this outcome?

CO
U

N
T

O
F

EX
AM

PL
ES

SOME FEATURE

Training
example𝑝$(&) after training

Explicitly model the distribution?

• Fit a Gaussian distribution to the training
data in the embedding space.

• Variational Auto Encoders (VAEs) do this

• How does that let me generate new
example pictures?

• That is for another course…

What should D and G look like?

• There is nothing in a GAN formulation that says *what kind* of
network is embodied by G or by D.
• The design space is huge. How do we pick?
• Short story:

• Try a lot of things.
• Read a lot of papers by other people that tried a lot of things.
• Borrow the best architecture you can find.
• Modify to make it work for your problem.

DC GAN: Deep Convolutional GAN

• One of the more successful architectures
• Combines lots of tricks you already know

Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep
convolutional generative adversarial networks.” ICLR 2016

DC GAN: Architectural Guide

• Replace any pooling layers with strided convolutions (discriminator)
and fractional-strided convolutions (generator).

• Use batch norm in both the generator and the discriminator.

• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in generator for all layers except for the output,
which uses Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

What happens as we vary z?

• Train the network on a dataset of bedroom images.
• Pick 2 values for z and interpolate between them.
• Run these interpolated values through the network. Results are below.

Fun with vector math on z.

That same thing again, but in pixel space

Add class conditioning

Generator	Net
𝐺 𝑧; 𝑐	

𝑥; 𝑐	given	to	
Discriminator	

OR

𝑥	sampled
from data

Generated
example	𝑥

𝑐~ 𝑝()"**
𝑥~𝑝!"#"|(

z~𝑝:
𝑐~ 𝑝?@ABB
	

Discriminator	Net
𝐷 𝑥; 𝑐

p 𝑥 	came	
from	class	c

The data

Now we can make a variety of images!

https://arxiv.org/pdf/1809.11096.pdfBrock, Andrew, Jeff Donahue, and Karen Simonyan. "Large scale GAN
training for high fidelity natural image synthesis.” ICLR 2019

What if we condition on text?

http://proceedings.mlr.press/v48/reed16.pdfReed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. & Lee, H..
(2016). Generative Adversarial Text to Image Synthesis. ICML 2016

The algorithm + example output

In fact, you could condition on MANY things

• Condition on text to output images
• Condition on text to generate speech
• Condition on photos to output maps
• Condition on drawings to output “photos”
• Try this demo: https://affinelayer.com/pixsrv/
• Check out this overview of GAN projects:

https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-
4c9ecca35900

https://affinelayer.com/pixsrv/
https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900
https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900

Generative Models are a big topic

• Too big for 1 week. There’s a class on this in the fall.
•Covers things like…
• GANs
• Variational Auto Encoders (VAEs)
• Transformers
• Diffusion Models
•Mixing and matching these approaches

