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Recurrent Neural Networks (RNNs) are popular models that have shown great promise
in many NLP tasks. But despite their recent popularity I’ve only found a limited number
of resources that throughly explain how RNNs work, and how to implement them. That’s
what this tutorial is about. It’s a multi-part series in which I’m planning to cover the
following:

1. Introduction to RNNs (this post)
2. Implementing a RNN using Python and Theano
3. Understanding the Backpropagation Through Time (BPTT) algorithm and the

vanishing gradient problem
4. Implementing a GRU/LSTM RNN

As part of the tutorial we will implement a recurrent neural network based language
model. The applications of language models are two-fold: First, it allows us to score
arbitrary sentences based on how likely they are to occur in the real world. This gives us
a measure of grammatical and semantic correctness. Such models are typically used as
part of Machine Translation systems. Secondly, a language model allows us to generate
new text (I think that’s the much cooler application). Training a language model on
Shakespeare allows us to generate Shakespeare-like text. This fun post by Andrej
Karpathy demonstrates what character-level language models based on RNNs are
capable of.
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I’m assuming that you are somewhat familiar with basic Neural Networks. If you’re not,
you may want to head over to Implementing A Neural Network From Scratch,  which
guides you through the ideas and implementation behind non-recurrent networks.

W H AT  A R E  R N N S ?

The idea behind RNNs is to make use of sequential information. In a traditional neural
network we assume that all inputs (and outputs) are independent of each other. But for
many tasks that’s a very bad idea. If you want to predict the next word in a sentence you
better know which words came before it. RNNs are called recurrent because they
perform the same task for every element of a sequence, with the output being
depended on the previous computations. Another way to think about RNNs is that they
have a “memory” which captures information about what has been calculated so far. In
theory RNNs can make use of information in arbitrarily long sequences, but in practice
they are limited to looking back only a few steps (more on this later). Here is what a
typical RNN looks like:

A recurrent neural network and the unfolding in time of the computation involved in its forward

computation. Source: Nature

The above diagram shows a RNN being unrolled (or unfolded) into a full network. By
unrolling we simply mean that we write out the network for the complete sequence. For
example, if the sequence we care about is a sentence of 5 words, the network would be
unrolled into a 5-layer neural network, one layer for each word. The formulas that
govern the computation happening in a RNN are as follows:

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/rnn.jpg
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 is the input at time step . For example,  could be a one-hot vector corresponding
to the second word of a sentence.

 is the hidden state at time step . It’s the “memory” of the network.  is calculated
based on the previous hidden state and the input at the current step: 

. The function  usually is a nonlinearity such as tanh or ReLU.  
, which is required to calculate the first hidden state, is typically initialized to all

zeroes.
 is the output at step . For example, if we wanted to predict the next word in a

sentence it would be a vector of probabilities across our vocabulary. 
.

There are a few things to note here:

You can think of the hidden state  as the memory of the network.  captures
information about what happened in all the previous time steps. The output at step 
is calculated solely based on the memory at time . As briefly mentioned above, it’s a
bit more complicated  in practice because  typically can’t capture information from
too many time steps ago.
Unlike a traditional deep neural network, which uses di⤀fierent parameters at each
layer, a RNN shares the same parameters (  above) across all steps. This reflects
the fact that we are performing the same task at each step, just with di⤀fierent inputs.
This greatly reduces the total number of parameters we need to learn.
The above diagram has outputs at each time step, but depending on the task this
may not be necessary. For example, when predicting the sentiment of a sentence we
may only care about the final output, not the sentiment a⤀fier each word. Similarly, we
may not need inputs at each time step. The main feature of an RNN is its hidden state,
which captures some information about a sequence.

W H AT  C A N  R N N S  D O ?

RNNs have shown great success in many NLP tasks. At this point I should mention that
the most commonly used type of RNNs are LSTMs, which are much better at capturing
long-term dependencies than vanilla RNNs are. But don’t worry, LSTMs are essentially
the same thing as the RNN we will develop in this tutorial, they just have a di⤀fierent way
of computing the hidden state. We’ll cover LSTMs in more detail in a later post. Here are
some example applications of RNNs in NLP (by non means an exhaustive list).

https://reference.wolfram.com/language/ref/Tanh.html
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Long_short_term_memory
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L A N G U A G E  M O D E L I N G   A N D  G E N E R A T I N G  T E X T

Given a sequence of words we want to predict the probability of each word given the
previous words. Language Models allow us to measure how likely a sentence is, which is
an important input for Machine Translation (since high-probability sentences are
typically correct). A side-e⤀fiect of being able to predict the next word is that we get a
generative model, which allows us to generate new text by sampling from the output
probabilities. And depending on what our training data is we can generate all kinds of
stuⴠ〠. In Language Modeling our input is typically a sequence of words (encoded as one-
hot vectors for example), and our output is the sequence of predicted words. When
training the network we set  since we want the output at step  to be the actual
next word.

Research papers about Language Modeling and Generating Text:

Recurrent neural network based language model
Extensions of Recurrent neural network based language model
Generating Text with Recurrent Neural Networks

M A C H I N E  T R A N S L A T I O N

Machine Translation is similar to language modeling in that our input is a sequence of
words in our source language (e.g. German). We want to output a sequence of words in
our target language (e.g. English). A key di⤀fierence is that our output only starts a⤀fier we
have seen the complete input, because the first word of our translated sentences may
require information captured from the complete input sequence.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf
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RNN for Machine Translation. Image Source: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Research papers about Machine Translation:

A Recursive Recurrent Neural Network for Statistical Machine Translation
Sequence to Sequence Learning with Neural Networks
Joint Language and Translation Modeling with Recurrent Neural Networks

S P E E C H  R E C O G N I T I O N

Given an input sequence of acoustic signals from a sound wave, we can predict a
sequence of phonetic segments together with their probabilities.

Research papers about Speech Recognition:

Towards End-to-End Speech Recognition with Recurrent Neural Networks

G E N E R A T I N G  I M A G E  D E S C R I P T I O N S

Together with convolutional Neural Networks, RNNs have been used as part of a model
to generate descriptions for unlabeled images. It’s quite amazing how well this seems
to work. The combined model even aligns the generated words with features found in
the images.

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/Screen-Shot-2015-09-17-at-10.39.06-AM.png
http://www.aclweb.org/anthology/P14-1140.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://research.microsoft.com/en-us/um/people/gzweig/Pubs/EMNLP2013RNNMT.pdf
http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
http://cs.stanford.edu/people/karpathy/deepimagesent/
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Deep Visual-Semantic Alignments for Generating Image Descriptions. Source:

http://cs.stanford.edu/people/karpathy/deepimagesent/

T R A I N I N G  R N N S

Training a RNN is similar to training a traditional Neural Network. We also use the
backpropagation algorithm, but with a little twist. Because the parameters are shared by
all time steps in the network, the gradient at each output depends not only on the
calculations of the current time step, but also the previous time steps. For example, in
order to calculate the gradient at  we would need to backpropagate 3 steps and
sum up the gradients. This is called Backpropagation Through Time (BPTT). If this
doesn’t make a whole lot of sense yet, don’t worry, we’ll have a whole post on the gory
details. For now, just be aware of the fact that vanilla RNNs trained with BPTT have
diⴠ〠iculties learning long-term dependencies (e.g. dependencies between steps that are
far apart) due to what is called the vanishing/exploding gradient problem. There exists
some machinery to deal with these problems, and certain types of RNNs (like
LSTMs) were specifically designed to get around them.

R N N  E X T E N S I O N S

Over the years researchers have developed more sophisticated types of RNNs to deal
with some of the shortcomings of the vanilla RNN model. We will cover them in more
detail in a later post, but I want this section to serve as a brief overview so that you are
familiar with the taxonomy of models.

Bidirectional RNNs are based on the idea that the output at time  may not only
depend on the previous elements in the sequence, but also future elements. For

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/Screen-Shot-2015-09-17-at-11.44.24-AM.png
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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example, to predict a missing word in a sequence you want to look at both the le⤀fi and
the right context. Bidirectional RNNs are quite simple. They are just two RNNs stacked
on top of each other. The output is then computed based on the hidden state of both
RNNs.

Deep (Bidirectional) RNNs are similar to Bidirectional RNNs, only that we now have
multiple layers per time step. In practice this gives us a higher learning capacity (but we
also need a lot of training data).

LSTM networks are quite popular these days and we briefly talked about them above.
LSTMs don’t have a fundamentally di⤀fierent architecture from RNNs, but they use a
di⤀fierent function to compute the hidden state. The memory in LSTMs are called cells
and you can think of them as black boxes that take as input the previous state  and
current input . Internally these cells  decide what to keep in (and what to erase from)
memory. They then combine the previous state, the current memory, and the input. It

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/bidirectional-rnn.png
http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/Screen-Shot-2015-09-16-at-2.21.51-PM.png
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←  Speeding up your Neural Network with Theano and

the GPU

Recurrent Neural Networks Tutorial, Part 2 –

Implementing a RNN with Python, Numpy and

Theano  →

turns out that these types of units are very e⤀fiicient at capturing long-term
dependencies. LSTMs can be quite confusing in the beginning but if you’re interested in
learning more this post has an excellent explanation.

C O N C L U S I O N

So far so good. I hope you’ve gotten a basic understanding of what RNNs are and what
they can do. In the next post we’ll implement a first version of our language model RNN
using Python and Theano. Please leave questions in the comments!

Posted in: Deep Learning, Neural Networks, Recurrent Neural Networks

http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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This the second part of the Recurrent Neural Network Tutorial. The first part is here.

Code to follow along is on Github.

In this part we will implement a full Recurrent Neural Network from scratch using Python
and optimize our implementation using Theano, a library to perform operations on a
GPU. The full code is available on Github. I will skip over some boilerplate code that is
not essential to understanding Recurrent Neural Networks, but all of that is also on
Github.

L A N G U A G E  M O D E L I N G

Our goal is to build a Language Model using a Recurrent Neural Network. Here’s what
that means. Let’s say we have sentence of  words. A language model allows us to
predict the probability of observing the sentence (in a given dataset) as:

In words, the probability of a sentence is the product of probabilities of each word given
the words that came before it. So, the probability of the sentence “He went to buy some

RECURRENT NEURAL NETWORKS TUTORIAL,  PART 2 –
IMPLEMENTING A RNN WITH PYTHON,  NUMPY AND THEANO

http://www.wildml.com/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://github.com/dennybritz/rnn-tutorial-rnnlm
http://deeplearning.net/software/theano/
https://github.com/dennybritz/rnn-tutorial-rnnlm/
https://en.wikipedia.org/wiki/Language_model
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chocolate” would be the probability of “chocolate” given “He went to buy some”,
multiplied by the probability of “some” given “He went to buy”, and so on.

Why is that useful? Why would we want to assign a probability to observing a sentence?

First, such a model can be used as a scoring mechanism. For example, a Machine
Translation system typically generates multiple candidates for an input sentence. You
could use a language model to pick the most probable sentence. Intuitively, the most
probable sentence is likely to be grammatically correct. Similar scoring happens in
speech recognition systems.

But solving the Language Modeling problem also has a cool side e�ect. Because we can
predict the probability of a word given the preceding words, we are able to generate new
text. It’s a generative model. Given an existing sequence of words we sample a next word
from the predicted probabilities, and repeat the process until we have a full
sentence. Andrej Karparthy has a great post that demonstrates what language models
are capable of. His models are trained on single characters as opposed to full words, and
can generate anything from Shakespeare to Linux Code.

Note that in the above equation the probability of each word is conditioned on all
previous words. In practice, many models have a hard time representing such long-term
dependencies due to computational or memory constraints. They are typically limited
to looking at only a few of the previous words. RNNs can, in theory, capture such long-
term dependencies, but in practice it’s a bit more complex. We’ll explore that in a later
post.

T R A I N I N G  D AT A  A N D  P R E P R O C E S S I N G

To train our language model we need text to learn from. Fortunately we don’t need any
labels to train a language model, just raw text. I downloaded 15,000 longish reddit
comments from a dataset available on Google’s BigQuery. Text generated by our
model will sound like reddit commenters (hopefully)! But as with most Machine
Learning projects we first need to do some pre-processing to get our data into the right
format.

1 .  T O K E N I Z E  T E X T

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://bigquery.cloud.google.com/table/fh-bigquery:reddit_comments.2015_08


10/13/2016 Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano – WildML

http://www.wildml.com/2015/09/recurrent­neural­networks­tutorial­part­2­implementing­a­language­model­rnn­with­python­numpy­and­theano/ 3/21

We have raw text, but we want to make predictions on a per-word basis. This means we
must tokenize our comments into sentences, and sentences into words. We could just
split each of the comments by spaces, but that wouldn’t handle punctuation properly.
The sentence “He le䐕쟀!” should be 3 tokens: “He”, “le䐕쟀”, “!”. We’ll use NLTK’s
word_tokenize and sent_tokenize methods, which do most of the hard work

for us.

2 .  R E M O V E  I N F R E Q U E N T  W O R D S

Most words in our text will only appear one or two times. It’s a good idea to remove
these infrequent words. Having a huge vocabulary will make our model slow to train
(we’ll talk about why that is later), and because we don’t have a lot of contextual
examples for such words we wouldn’t be able to learn how to use them correctly
anyway. That’s quite similar to how humans learn. To really understand how to
appropriately use a word you need to have seen it in di�erent contexts.

In our code we limit our vocabulary to the vocabulary_size most common words

(which I set to 8000, but feel free to change it). We replace all words not included in our
vocabulary by UNKNOWN_TOKEN. For example, if we don’t include the word

“nonlinearities” in our vocabulary, the sentence “nonlineraties are important in neural
networks” becomes “UNKNOWN_TOKEN are important in Neural Networks”. The word
UNKNOWN_TOKEN will become part of our vocabulary and we will predict it just like any

other word. When we generate new text we can replace UNKNOWN_TOKEN again, for

example by taking a randomly sampled word not in our vocabulary, or we could just
generate sentences until we get one that doesn’t contain an unknown token.

3 .  P R E P E N D  S P E C I A L  S T A R T  A N D  E N D  T O K E N S

We also want to learn which words tend start and end a sentence. To do this we prepend
a special SENTENCE_START token, and append a special SENTENCE_END token to

each sentence. This allows us to ask: Given that the first token is SENTENCE_START,

what is the likely next word (the actual first word of the sentence)?

4 .  B U I L D  T R A I N I N G  D A T A  M A T R I C E S

http://www.nltk.org/
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The input to our Recurrent Neural Networks are vectors, not strings. So we create a
mapping between words and indices, index_to_word, and word_to_index. For

example,  the word “friendly” may be at index 2001. A training example  may look
like [0, 179, 341, 416], where 0 corresponds to SENTENCE_START. The

corresponding label  would be [179, 341, 416, 1]. Remember that our goal is

to predict the next word, so y is just the x vector shi䐕쟀ed by one position with the last
element being the SENTENCE_END token. In other words, the correct prediction for

word 179 above would be 341, the actual next word.

vocabulary_size = 8000
unknown_token = "UNKNOWN_TOKEN"
sentence_start_token = "SENTENCE_START"
sentence_end_token = "SENTENCE_END"
 
# Read the data and append SENTENCE_START and SENTENCE_END tokens
print "Reading CSV file..."
with open('data/reddit‐comments‐2015‐08.csv', 'rb') as f:
    reader = csv.reader(f, skipinitialspace=True)
    reader.next()
    # Split full comments into sentences
    sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode('utf‐8').lower()) for x in 
    # Append SENTENCE_START and SENTENCE_END
    sentences = ["%s %s %s" % (sentence_start_token, x, sentence_end_token) for x in sentences]
print "Parsed %d sentences." % (len(sentences))
     
# Tokenize the sentences into words
tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences]
 
# Count the word frequencies
word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences))
print "Found %d unique words tokens." % len(word_freq.items())
 
# Get the most common words and build index_to_word and word_to_index vectors
vocab = word_freq.most_common(vocabulary_size‐1)
index_to_word = [x[0] for x in vocab]
index_to_word.append(unknown_token)
word_to_index = dict([(w,i) for i,w in enumerate(index_to_word)])
 
print "Using vocabulary size %d." % vocabulary_size
print "The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[‐
 
# Replace all words not in our vocabulary with the unknown token
for i, sent in enumerate(tokenized_sentences):
    tokenized_sentences[i] = [w if w in word_to_index else unknown_token for w in sent]
 
print "\nExample sentence: '%s'" % sentences[0]

     



10/13/2016 Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano – WildML

http://www.wildml.com/2015/09/recurrent­neural­networks­tutorial­part­2­implementing­a­language­model­rnn­with­python­numpy­and­theano/ 5/21

Here’s an actual training example from our text:

B U I L D I N G  T H E  R N N

For a general overview of RNNs take a look at first part of the tutorial.

A recurrent neural network and the unfolding in time of the computation involved in its forward

computation.

Let’s get concrete and see what the RNN for our language model looks like. The input 
will be a sequence of words ( just like the example printed above) and each  is a single
word. But there’s one more thing: Because of how matrix multiplication works we can’t
simply use a word index (like 36) as an input. Instead, we represent each word as a one-
hot vector of size vocabulary_size. For example, the word with index 36 would be

print "\nExample sentence after Pre‐processing: '%s'" % tokenized_sentences[0]
 
# Create the training data
X_train = np.asarray([[word_to_index[w] for w in sent[:‐1]] for sent in tokenized_sentences])
y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences])

x:
SENTENCE_START what are n't you understanding about this ? !
[0, 51, 27, 16, 10, 856, 53, 25, 34, 69]
 
y:
what are n't you understanding about this ? ! SENTENCE_END
[51, 27, 16, 10, 856, 53, 25, 34, 69, 1]

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/rnn.jpg
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the vector of all 0’s and a 1 at position 36. So, each  will become a vector, and  will be
a matrix, with each row representing a word. We’ll perform this transformation in our
Neural Network code instead of doing it in the pre-processing. The output of our
network  has a similar format. Each  is a vector of vocabulary_size elements,

and each element represents the probability of that word being the next word in the
sentence.

Let’s recap the equations for the RNN from the first part of the tutorial:

I always find it useful to write down the dimensions of the matrices and vectors. Let’s
assume we pick a vocabulary size  and a hidden layer size . You can
think of the hidden layer size as the “memory” of our network. Making it bigger allows us
to learn more complex patterns, but also results in additional computation. Then we
have:

This is valuable information. Remember that  and  are the parameters of our
network we want to learn from data. Thus, we need to learn a total of 
parameters. In the case of  and  that’s 1,610,000. The dimensions also
tell us the bottleneck of our model. Note that because  is a one-hot vector, multiplying
it with  is essentially the same as selecting a column of U, so we don’t need to perform
the full multiplication. Then, the biggest matrix multiplication in our network is .
That’s why we want to keep our vocabulary size small if possible.

Armed with this, it’s time to start our implementation.

I N I T I A L I Z A T I O N
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We start by declaring a RNN class an initializing our parameters. I’m calling this class
RNNNumpy because we will implement a Theano version later. Initializing the

parameters  and  is a bit tricky. We can’t just initialize them to 0’s because that
would result in symmetric calculations in all our layers. We must initialize them
randomly. Because proper initialization seems to have an impact on training results
there has been lot of research in this area. It turns out that the best initialization
depends on the activation function (  in our case) and one recommended

approach is to initialize the weights randomly in the interval from  where  is
the number of incoming connections from the previous layer. This may sound overly
complicated, but don’t worry too much it. As long as you initialize your parameters to
small random values it typically works out fine.

Above, word_dim is the size of our vocabulary, and hidden_dim is the size of our

hidden layer (we can pick it). Don’t worry about the bptt_truncate parameter for

now, we’ll explain what that is later.

F O R W A R D  P R O PA G A T I O N

Next, let’s implement the forward propagation (predicting word probabilities) defined by
our equations above:

class RNNNumpy:
     
    def __init__(self, word_dim, hidden_dim=100, bptt_truncate=4):
        # Assign instance variables
        self.word_dim = word_dim
        self.hidden_dim = hidden_dim
        self.bptt_truncate = bptt_truncate
        # Randomly initialize the network parameters
        self.U = np.random.uniform(‐np.sqrt(1./word_dim), np.sqrt(1./word_dim), (hidden_dim, word_dim))
        self.V = np.random.uniform(‐np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim))
        self.W = np.random.uniform(‐np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (hidden_dim, hidden_dim))

def forward_propagation(self, x):
    # The total number of time steps
    T = len(x)
    # During forward propagation we save all hidden states in s because need them later.
    # We add one additional element for the initial hidden, which we set to 0

   

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
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We not only return the calculated outputs, but also the hidden states. We will use them
later to calculate the gradients, and by returning them here we avoid duplicate
computation. Each  is a vector of probabilities representing the words in our
vocabulary, but sometimes, for example when evaluating our model, all we want is the
next word with the highest probability. We call this function predict:

Let’s try our newly implemented methods and see an example output:

    s = np.zeros((T + 1, self.hidden_dim))
    s[‐1] = np.zeros(self.hidden_dim)
    # The outputs at each time step. Again, we save them for later.
    o = np.zeros((T, self.word_dim))
    # For each time step...
    for t in np.arange(T):
        # Note that we are indxing U by x[t]. This is the same as multiplying U with a one‐hot vector.
        s[t] = np.tanh(self.U[:,x[t]] + self.W.dot(s[t‐1]))
        o[t] = softmax(self.V.dot(s[t]))
    return [o, s]
 
RNNNumpy.forward_propagation = forward_propagation

def predict(self, x):
    # Perform forward propagation and return index of the highest score
    o, s = self.forward_propagation(x)
    return np.argmax(o, axis=1)
 
RNNNumpy.predict = predict

np.random.seed(10)
model = RNNNumpy(vocabulary_size)
o, s = model.forward_propagation(X_train[10])
print o.shape
print o

(45, 8000)
[[ 0.00012408  0.0001244   0.00012603 ...,  0.00012515  0.00012488
   0.00012508]
 [ 0.00012536  0.00012582  0.00012436 ...,  0.00012482  0.00012456
   0.00012451]
 [ 0.00012387  0.0001252   0.00012474 ...,  0.00012559  0.00012588
   0.00012551]
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For each word in the sentence (45 above), our model made 8000 predictions
representing probabilities of the next word. Note that because we initialized  to
random values these predictions are completely random right now. The following gives
the indices of the highest probability predictions for each word:

C A L C U L A T I N G  T H E  L O S S

To train our network we need a way to measure the errors it makes. We call this the loss
function , and our goal is find the parameters  and  that minimize the loss
function for our training data. A common choice for the loss function is the cross-
entropy loss. If we have  training examples (words in our text) and  classes (the size
of our vocabulary) then the loss with respect to our predictions  and the true labels  is
given by:

The formula looks a bit complicated, but all it really does is sum over our training
examples and add to the loss based on how o� our prediction are. The further away 
(the correct words) and  (our predictions), the greater the loss will be. We implement
the function calculate_loss:

 ..., 
 [ 0.00012414  0.00012455  0.0001252  ...,  0.00012487  0.00012494
   0.0001263 ]
 [ 0.0001252   0.00012393  0.00012509 ...,  0.00012407  0.00012578
   0.00012502]
 [ 0.00012472  0.0001253   0.00012487 ...,  0.00012463  0.00012536
   0.00012665]]

predictions = model.predict(X_train[10])
print predictions.shape
print predictions

(45,)
[1284 5221 7653 7430 1013 3562 7366 4860 2212 6601 7299 4556 2481 238 2539
 21 6548 261 1780 2005 1810 5376 4146 477 7051 4832 4991 897 3485 21
 7291 2007 6006 760 4864 2182 6569 2800 2752 6821 4437 7021 7875 6912 3575]

https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_error_function_and_logistic_regression
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Let’s take a step back and think about what the loss should be for random predictions.
That will give us a baseline and make sure our implementation is correct. We have 
words in our vocabulary, so each word should be (on average) predicted with probability

, which would yield a loss of :

Pretty close! Keep in mind that evaluating the loss on the full dataset is an expensive
operation and can take hours if you have a lot of data!

T R A I N I N G  T H E  R N N  W I T H  S G D  A N D  B A C K P R O PA G A T I O N  T H R O U G H  T I M E  ( B P T T )

Remember that we want to find the parameters  and  that minimize the total loss
on the training data. The most common way to do this is SGD, Stochastic Gradient
Descent. The idea behind SGD is pretty simple. We iterate over all our training examples
and during each iteration we nudge the parameters into a direction that reduces the

def calculate_total_loss(self, x, y):
    L = 0
    # For each sentence...
    for i in np.arange(len(y)):
        o, s = self.forward_propagation(x[i])
        # We only care about our prediction of the "correct" words
        correct_word_predictions = o[np.arange(len(y[i])), y[i]]
        # Add to the loss based on how off we were
        L += ‐1 * np.sum(np.log(correct_word_predictions))
    return L
 
def calculate_loss(self, x, y):
    # Divide the total loss by the number of training examples
    N = np.sum((len(y_i) for y_i in y))
    return self.calculate_total_loss(x,y)/N
 
RNNNumpy.calculate_total_loss = calculate_total_loss
RNNNumpy.calculate_loss = calculate_loss

# Limit to 1000 examples to save time
print "Expected Loss for random predictions: %f" % np.log(vocabulary_size)
print "Actual loss: %f" % model.calculate_loss(X_train[:1000], y_train[:1000])

Expected Loss for random predictions: 8.987197
Actual loss: 8.987440



10/13/2016 Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano – WildML

http://www.wildml.com/2015/09/recurrent­neural­networks­tutorial­part­2­implementing­a­language­model­rnn­with­python­numpy­and­theano/ 11/21

error. These directions are given by the gradients on the loss: . SGD also needs
a learning rate, which defines how big of a step we want to make in each iteration. SGD
is the most popular optimization method not only for Neural Networks, but also for
many other Machine Learning algorithms. As such there has been a lot of research on
how to optimize SGD using batching, parallelism and adaptive learning rates. Even
though the basic idea is simple, implementing SGD in a really e�icient way can become
very complex. If you want to learn more about SGD this is a good place to start. Due to
its popularity there are a wealth of tutorials floating around the web, and I don’t want to
duplicate them here. I’ll implement a simple version of SGD that should be
understandable even without a background in optimization.

But how do we calculate those gradients we mentioned above? In a traditional Neural
Network we do this through the backpropagation algorithm. In RNNs we use a slightly
modified version of the this algorithm called Backpropagation Through Time (BPTT).
Because the parameters are shared by all time steps in the network, the gradient at each
output depends not only on the calculations of the current time step, but also the
previous time steps. If you know calculus, it really is just applying the chain rule. The
next part of the tutorial will be all about BPTT, so I won’t go into detailed derivation here.
For a general introduction to backpropagation check out this and this post. For now you
can treat BPTT as a black box. It takes as input a training example  and returns the

gradients .

def bptt(self, x, y):
    T = len(y)
    # Perform forward propagation
    o, s = self.forward_propagation(x)
    # We accumulate the gradients in these variables
    dLdU = np.zeros(self.U.shape)
    dLdV = np.zeros(self.V.shape)
    dLdW = np.zeros(self.W.shape)
    delta_o = o
    delta_o[np.arange(len(y)), y] ‐= 1.
    # For each output backwards...
    for t in np.arange(T)[::‐1]:
        dLdV += np.outer(delta_o[t], s[t].T)
        # Initial delta calculation
        delta_t = self.V.T.dot(delta_o[t]) * (1 ‐ (s[t] ** 2))
        # Backpropagation through time (for at most self.bptt_truncate steps)
        for bptt_step in np.arange(max(0, t‐self.bptt_truncate), t+1)[::‐1]:
            # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
            dLdW += np.outer(delta_t, s[bptt_step‐1])              

 

http://cs231n.github.io/optimization-1/
http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://colah.github.io/posts/2015-08-Backprop/
http://cs231n.github.io/optimization-2/
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G R A D I E N T  C H E C K I N G

Whenever you implement backpropagation it is good idea to also implement gradient
checking, which is a way of verifying that your implementation is correct. The idea
behind gradient checking is that derivative of a parameter is equal to the slope at the
point, which we can approximate by slightly changing the parameter and then dividing
by the change:

We then compare the gradient we calculated using backpropagation to the gradient we
estimated with the method above. If there’s no large di�erence we are good. The
approximation needs to calculate the total loss for every parameter, so that gradient
checking is very expensive (remember, we had more than a million parameters in the
example above). So it’s a good idea to perform it on a model with a smaller vocabulary.

            dLdU[:,x[bptt_step]] += delta_t
            # Update delta for next step
            delta_t = self.W.T.dot(delta_t) * (1 ‐ s[bptt_step‐1] ** 2)
    return [dLdU, dLdV, dLdW]
 
RNNNumpy.bptt = bptt

def gradient_check(self, x, y, h=0.001, error_threshold=0.01):
    # Calculate the gradients using backpropagation. We want to checker if these are correct.
    bptt_gradients = self.bptt(x, y)
    # List of all parameters we want to check.
    model_parameters = ['U', 'V', 'W']
    # Gradient check for each parameter
    for pidx, pname in enumerate(model_parameters):
        # Get the actual parameter value from the mode, e.g. model.W
        parameter = operator.attrgetter(pname)(self)
        print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape))
        # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ...
        it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite'])
        while not it.finished:
            ix = it.multi_index
            # Save the original value so we can reset it later
            original_value = parameter[ix]
            # Estimate the gradient using (f(x+h) ‐ f(x‐h))/(2*h)
            parameter[ix] = original_value + h
            gradplus = self.calculate_total_loss([x],[y])

   



10/13/2016 Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano – WildML

http://www.wildml.com/2015/09/recurrent­neural­networks­tutorial­part­2­implementing­a­language­model­rnn­with­python­numpy­and­theano/ 13/21

S G D  I M P L E M E N T A T I O N

Now that we are able to calculate the gradients for our parameters we can implement
SGD. I like to do this in two steps: 1. A function sdg_step that calculates the gradients

and performs the updates for one batch. 2. An outer loop that iterates through the
training set and adjusts the learning rate.

            parameter[ix] = original_value ‐ h
            gradminus = self.calculate_total_loss([x],[y])
            estimated_gradient = (gradplus ‐ gradminus)/(2*h)
            # Reset parameter to original value
            parameter[ix] = original_value
            # The gradient for this parameter calculated using backpropagation
            backprop_gradient = bptt_gradients[pidx][ix]
            # calculate The relative error: (|x ‐ y|/(|x| + |y|))
            relative_error = np.abs(backprop_gradient ‐ estimated_gradient)/(np.abs(backprop_gradient) 
            # If the error is to large fail the gradient check
            if relative_error &gt; error_threshold:
                print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix)
                print "+h Loss: %f" % gradplus
                print "‐h Loss: %f" % gradminus
                print "Estimated_gradient: %f" % estimated_gradient
                print "Backpropagation gradient: %f" % backprop_gradient
                print "Relative Error: %f" % relative_error
                return
            it.iternext()
        print "Gradient check for parameter %s passed." % (pname)
 
RNNNumpy.gradient_check = gradient_check
 
# To avoid performing millions of expensive calculations we use a smaller vocabulary size for checking.
grad_check_vocab_size = 100
np.random.seed(10)
model = RNNNumpy(grad_check_vocab_size, 10, bptt_truncate=1000)
model.gradient_check([0,1,2,3], [1,2,3,4])

# Performs one step of SGD.
def numpy_sdg_step(self, x, y, learning_rate):
    # Calculate the gradients
    dLdU, dLdV, dLdW = self.bptt(x, y)
    # Change parameters according to gradients and learning rate
    self.U ‐= learning_rate * dLdU
    self.V ‐= learning_rate * dLdV
    self.W ‐= learning_rate * dLdW
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Done! Let’s try to get a sense of how long it would take to train our network:

Uh-oh, bad news. One step of SGD takes approximately 350 milliseconds on my laptop.
We have about 80,000 examples in our training data, so one epoch (iteration over the
whole data set) would take several hours. Multiple epochs would take days, or even
weeks! And we’re still working with a small dataset compared to what’s being used by
many of the companies and researchers out there. What now?

RNNNumpy.sgd_step = numpy_sdg_step

# Outer SGD Loop
# ‐ model: The RNN model instance
# ‐ X_train: The training data set
# ‐ y_train: The training data labels
# ‐ learning_rate: Initial learning rate for SGD
# ‐ nepoch: Number of times to iterate through the complete dataset
# ‐ evaluate_loss_after: Evaluate the loss after this many epochs
def train_with_sgd(model, X_train, y_train, learning_rate=0.005, nepoch=100, evaluate_loss_after
    # We keep track of the losses so we can plot them later
    losses = []
    num_examples_seen = 0
    for epoch in range(nepoch):
        # Optionally evaluate the loss
        if (epoch % evaluate_loss_after == 0):
            loss = model.calculate_loss(X_train, y_train)
            losses.append((num_examples_seen, loss))
            time = datetime.now().strftime('%Y‐%m‐%d %H:%M:%S')
            print "%s: Loss after num_examples_seen=%d epoch=%d: %f" % (time, num_examples_seen, epoch, loss)
            # Adjust the learning rate if loss increases
            if (len(losses) &gt; 1 and losses[‐1][1] &gt; losses[‐2][1]):
                learning_rate = learning_rate * 0.5 
                print "Setting learning rate to %f" % learning_rate
            sys.stdout.flush()
        # For each training example...
        for i in range(len(y_train)):
            # One SGD step
            model.sgd_step(X_train[i], y_train[i], learning_rate)
            num_examples_seen += 1

np.random.seed(10)
model = RNNNumpy(vocabulary_size)
%timeit model.sgd_step(X_train[10], y_train[10], 0.005)
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Fortunately there are many ways to speed up our code. We could stick with the same
model and make our code run faster, or we could modify our model to be less
computationally expensive, or both. Researchers have identified many ways to make
models less computationally expensive, for example by using a hierarchical so䐕쟀max or
adding projection layers to avoid the large matrix multiplications (see also here or here).
But I want to keep our model simple and go the first route: Make our implementation
run faster using a GPU. Before doing that though, let’s just try to run SGD with a small
dataset and check if the loss actually decreases:

Good, it seems like our implementation is at least doing something useful and
decreasing the loss, just like we wanted.

T R A I N I N G  O U R  N E T W O R K  W I T H  T H E A N O  A N D  T H E  G P U

I have previously written a tutorial on Theano, and since all our logic will stay exactly the
same I won’t go through optimized code here again. I defined a RNNTheano class that

replaces the numpy calculations with corresponding calculations in Theano. Just like
the rest of this post, the code is also available Github.

np.random.seed(10)
# Train on a small subset of the data to see what happens
model = RNNNumpy(vocabulary_size)
losses = train_with_sgd(model, X_train[:100], y_train[:100], nepoch=10, evaluate_loss_after=

2015‐09‐30 10:08:19: Loss after num_examples_seen=0 epoch=0: 8.987425
2015‐09‐30 10:08:35: Loss after num_examples_seen=100 epoch=1: 8.976270
2015‐09‐30 10:08:50: Loss after num_examples_seen=200 epoch=2: 8.960212
2015‐09‐30 10:09:06: Loss after num_examples_seen=300 epoch=3: 8.930430
2015‐09‐30 10:09:22: Loss after num_examples_seen=400 epoch=4: 8.862264
2015‐09‐30 10:09:38: Loss after num_examples_seen=500 epoch=5: 6.913570
2015‐09‐30 10:09:53: Loss after num_examples_seen=600 epoch=6: 6.302493
2015‐09‐30 10:10:07: Loss after num_examples_seen=700 epoch=7: 6.014995
2015‐09‐30 10:10:24: Loss after num_examples_seen=800 epoch=8: 5.833877
2015‐09‐30 10:10:39: Loss after num_examples_seen=900 epoch=9: 5.710718

np.random.seed(10)
model = RNNTheano(vocabulary_size)

http://arxiv.org/pdf/1301.3781.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf
http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/
https://github.com/dennybritz/rnn-tutorial-rnnlm
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This time, one SGD step takes 70ms on my Mac (without GPU) and 23ms on a g2.2xlarge
Amazon EC2 instance with GPU. That’s a 15x improvement over our initial
implementation and means we can train our model in hours/days instead of weeks.
There are still a vast number of optimizations we could make, but we’re good enough for
now.

To help you avoid spending days training a model I have pre-trained a Theano model
with a hidden layer dimensionality of 50 and a vocabulary size of 8000. I trained it for 50
epochs in about 20 hours. The loss was was still decreasing and training longer would
probably have resulted in a better model, but I was running out of time and wanted to
publish this post. Feel free to try it out yourself and trian for longer. You can find the
model parameters in data/trained­model­theano.npz in the Github

repository and load them using the load_model_parameters_theano method:

G E N E R AT I N G  T E X T

Now that we have our model we can ask it to generate new text for us! Let’s implement a
helper function to generate new sentences:

%timeit model.sgd_step(X_train[10], y_train[10], 0.005)

from utils import load_model_parameters_theano, save_model_parameters_theano
 
model = RNNTheano(vocabulary_size, hidden_dim=50)
# losses = train_with_sgd(model, X_train, y_train, nepoch=50)
# save_model_parameters_theano('./data/trained‐model‐theano.npz', model)
load_model_parameters_theano('./data/trained‐model‐theano.npz', model)

def generate_sentence(model):
    # We start the sentence with the start token
    new_sentence = [word_to_index[sentence_start_token]]
    # Repeat until we get an end token
    while not new_sentence[‐1] == word_to_index[sentence_end_token]:
        next_word_probs = model.forward_propagation(new_sentence)
        sampled_word = word_to_index[unknown_token]
        # We don't want to sample unknown words
        while sampled_word == word_to_index[unknown_token]:
            samples = np.random.multinomial(1, next_word_probs[‐1])

 

https://aws.amazon.com/ec2/instance-types/#g2
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A few selected (censored) sentences. I added capitalization.

Anyway, to the city scene you’re an idiot teenager.
What ? ! ! ! ! ignore!
Screw fitness, you’re saying: https
Thanks for the advice to keep my thoughts around girls.
Yep, please disappear with the terrible generation.

Looking at the generated sentences there are a few interesting things to note. The model
successfully learn syntax. It properly places commas (usually before and’s and or’s) and
ends sentence with punctuation. Sometimes it mimics internet speech such as multiple
exclamation marks or smileys.

However, the vast majority of generated sentences don’t make sense or have
grammatical errors (I really picked the best ones above). One reason could be that we
did not train our network long enough (or didn’t use enough training data). That may be
true, but it’s most likely not the main reason. Our vanilla RNN can’t generate
meaningful text because it’s unable to learn dependencies between words that are
several steps apart. That’s also why RNNs failed to gain popularity when they were first
invented. They were beautiful in theory but didn’t work well in practice, and we didn’t
immediately understand why.

Fortunately, the di�iculties in training RNNs are much better understood now. In the
next part of this tutorial we will explore the Backpropagation Through Time (BPTT)
algorithm in more detail and demonstrate what’s called the vanishing gradient problem.

            sampled_word = np.argmax(samples)
        new_sentence.append(sampled_word)
    sentence_str = [index_to_word[x] for x in new_sentence[1:‐1]]
    return sentence_str
 
num_sentences = 10
senten_min_length = 7
 
for i in range(num_sentences):
    sent = []
    # We want long sentences, not sentences with one or two words
    while len(sent) &lt; senten_min_length:
        sent = generate_sentence(model)
    print " ".join(sent)

http://arxiv.org/abs/1211.5063
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←  Recurrent Neural Networks Tutorial, Part 1 –

Introduction to RNNs

Recurrent Neural Networks Tutorial, Part 3 –

Backpropagation Through Time and Vanishing

Gradients  →

-  C O N N E C T  -

-  R E C E N T  P O S T S  -

Learning Reinforcement Learning (with Code, Exercises and Solutions)

This will motivate our move to more sophisticated RNN models, such as LSTMs, which
are the current state of the art for many tasks in NLP (and can generate much better
reddit comments!). Everything you learned in this tutorial also applies to LSTMs and
other RNN models, so don’t feel discouraged if the results for a vanilla RNN are
worse then you expected.

That’s it for now. Please leave questions or feedback in the comments! and don’t
forget to check out the /code.
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October 8, 2015

This the third part of the Recurrent Neural Network Tutorial.

In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go
into detail on how Backpropagation Through Time (BPTT) algorithms calculates the
gradients. In this part we’ll give a brief overview of BPTT and explain how it di�ers from
traditional backpropagation. We will then try to understand the vanishing gradient
problem, which has led to the development of  LSTMs and GRUs, two of the currently
most popular and powerful models used in NLP (and other areas). The vanishing
gradient problem was originally discovered by Sepp Hochreiter in 1991 and has been
receiving attention again recently due to the increased application of deep
architectures.

To fully understand this part of the tutorial I recommend being familiar with how partial
di�erentiation and basic backpropagation works. If you are not, you can find excellent
tutorials here and here and here, in order of increasing di�iculty.

B A C K P R O PA G AT I O N  T H R O U G H  T I M E  ( B P T T )

RECURRENT NEURAL NETWORKS TUTORIAL,  PART 3 –
BACKPROPAGATION THROUGH TIME AND VANISHING
GRADIENTS

http://www.wildml.com/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
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http://people.idsia.ch/~juergen/fundamentaldeeplearningproblem.html
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Let’s quickly recap the basic equations of our RNN. Note that there’s a slight change in
notation from  to . That’s only to stay consistent with some of the literature out there
that I am referencing.

We also defined our loss, or error, to be the cross entropy loss, given by:

Here,  is the correct word at time step , and  is our prediction. We typically treat the
full sequence (sentence) as one training example, so the total error is just the sum of the
errors at each time step (word).

Remember that our goal is to calculate the gradients of the error with respect to our
parameters  and  and then learn good parameters using Stochastic Gradient
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Descent. Just like we sum up the errors, we also sum up the gradients at each time step

for one training example:   .

To calculate these gradients we use the chain rule of di�erentiation. That’s the
backpropagation algorithm when applied backwards starting from the error. For the
rest of this post we’ll use  as an example, just to have concrete numbers to work with.

In the above, , and  is the outer product of two vectors. Don’t worry if you
don’t follow the above, I skipped several steps and you can try calculating these

derivatives yourself (good exercise!). The point I’m trying to get across is that  only
depends on the values at the current time step, . If you have these, calculating
the gradient for  a simple matrix multiplication.

But the story is di�erent for  (and for ). To see why, we write out the chain rule, just
as above:

Now, note that  depends on , which depends on  and , and
so on. So if we take the derivative with respect to  we can’t simply treat  as a
constant! We need to apply the chain rule again and what we really have is this:

We sum up the contributions of each time step to the gradient. In other words, because 
 is used in every step up to the output we care about, we need to backpropagate

gradients from  through the network all the way to :

http://colah.github.io/posts/2015-08-Backprop/
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Note that this is exactly the same as the standard backpropagation algorithm that we
use in deep Feedforward Neural Networks. The key di�erence is that we sum up the
gradients for  at each time step. In a traditional NN we don’t share parameters across
layers, so we don’t need to sum anything. But in my opinion BPTT is just a fancy name
for standard backpropagation on an unrolled RNN. Just like with Backpropagation you

could define a delta vector that you pass backwards, e.g.:  with 
. Then the same equations will apply.

In code, a naive implementation of BPTT looks something like this:

def bptt(self, x, y):
    T = len(y)
    # Perform forward propagation
    o, s = self.forward_propagation(x)
    # We accumulate the gradients in these variables
    dLdU = np.zeros(self.U.shape)
    dLdV = np.zeros(self.V.shape)
    dLdW = np.zeros(self.W.shape)
    delta_o = o
    delta_o[np.arange(len(y)), y] ‐= 1.
    # For each output backwards...
    for t in np.arange(T)[::‐1]:
        dLdV += np.outer(delta_o[t], s[t].T)
        # Initial delta calculation: dL/dz

         

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/10/rnn-bptt-with-gradients.png
http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
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This should also give you an idea of why standard RNNs are hard to train: Sequences
(sentences) can be quite long, perhaps 20 words or more, and thus you need to back-
propagate through many layers. In practice many people truncate the
backpropagation to a few steps.

T H E  VA N I S H I N G  G R A D I E N T  P R O B L E M

In previous parts of the tutorial I mentioned that RNNs have di�iculties learning long-
range dependencies – interactions between words that are several steps apart. That’s
problematic because the meaning of an English sentence is o�en determined by words
that aren’t very close: “The man who wore a wig on his head went inside”. The sentence
is really about a man going inside, not about the wig. But it’s unlikely that a plain RNN
would be able capture such information. To understand why, let’s take a closer look at
the gradient we calculated above:

Note that  is a chain rule in itself! For example, . Also note that because
we are taking the derivative of a vector function with respect to a vector, the result is
a matrix (called the Jacobian matrix) whose elements are all the pointwise derivatives.
We can rewrite the above gradient:

        delta_t = self.V.T.dot(delta_o[t]) * (1 ‐ (s[t] ** 2))
        # Backpropagation through time (for at most self.bptt_truncate steps)
        for bptt_step in np.arange(max(0, t‐self.bptt_truncate), t+1)[::‐1]:
            # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
            # Add to gradients at each previous step
            dLdW += np.outer(delta_t, s[bptt_step‐1])              
            dLdU[:,x[bptt_step]] += delta_t
            # Update delta for next step dL/dz at t‐1
            delta_t = self.W.T.dot(delta_t) * (1 ‐ s[bptt_step‐1] ** 2)
    return [dLdU, dLdV, dLdW]

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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It turns out (I won’t prove it here but this paper goes into detail) that the 2-norm, which
you can think of it as an absolute value, of the above Jacobian matrix has an upper
bound of 1. This makes intuitive sense because our  (or sigmoid) activation function
maps all values into a range between -1 and 1, and the derivative is bounded by 1 (1/4 in
the case of sigmoid) as well:

tanh and derivative. Source: http://nn.readthedocs.org/en/rtd/transfer/

You can see that the  and sigmoid functions have derivatives of 0 at both ends. They
approach a  flat line. When this happens we say the corresponding neurons are
saturated. They have a zero gradient and drive other gradients in previous layers
towards 0. Thus, with small values in the matrix and multiple matrix multiplications (

 in particular) the gradient values are shrinking exponentially fast, eventually
vanishing completely a�er a few time steps. Gradient contributions from “far away”
steps become zero, and the state at those steps doesn’t contribute to what you are
learning: You end up not learning long-range dependencies. Vanishing gradients aren’t
exclusive to RNNs. They also happen in deep Feedforward Neural Networks. It’s just that

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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RNNs tend to be very deep (as deep as the sentence length in our case), which makes
the problem a lot more common.

It is easy to imagine that, depending on our activation functions and network
parameters, we could get exploding instead of vanishing gradients if the values of the
Jacobian matrix are large. Indeed, that’s called the exploding gradient problem. The
reason that vanishing gradients have received more attention than exploding gradients
is two-fold. For one, exploding gradients are obvious. Your gradients will become NaN
(not a number) and your program will crash. Secondly, clipping the gradients at a pre-
defined threshold (as discussed in this paper) is a very simple and e�ective solution to
exploding gradients. Vanishing gradients are more problematic because it’s not obvious
when they occur or how to deal with them.

Fortunately, there are a few ways to combat the vanishing gradient problem. Proper
initialization of the  matrix can reduce the e�ect of vanishing gradients. So can
regularization. A more preferred solution is to use ReLU instead of  or sigmoid
activation functions. The ReLU derivative is a constant of either 0 or 1, so it isn’t as likely
to su�er from vanishing gradients. An even more popular solution is to use Long Short-
Term Memory (LSTM) or Gated Recurrent Unit (GRU) architectures. LSTMs were first
proposed in 1997 and are the perhaps most widely used models in NLP today. GRUs,
first proposed in 2014, are simplified versions of LSTMs. Both of these RNN architectures
were explicitly designed to deal with vanishing gradients and e�iciently learn long-range
dependencies. We’ll cover them in the next part of this tutorial.

Please leave questions or feedback in the comments!
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The code for this post is on Github. This is part 4, the last part of the Recurrent Neural
Network Tutorial. The previous parts are:

Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs
Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python,
Numpy and Theano
Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and
Vanishing Gradients

In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs
(Gated Recurrent Units).  LSTMs were first proposed in 1997 by Sepp Hochreiter and
J ürgen Schmidhuber, and are among the most widely used models in Deep Learning
for NLP today. GRUs, first used in  2014, are a simpler variant of LSTMs that share many
of the same properties.  Let’s start by looking at LSTMs, and then we’ll see how GRUs are
di㥶erent.

L S T M  N E T W O R K S

In part 3 we looked at how the vanishing gradient problem prevents standard RNNs
from learning long-term dependencies. LSTMs were designed to combat vanishing
gradients through a gating mechanism.  To understand what this means, let’s look at

RECURRENT NEURAL NETWORK TUTORIAL,  PART 4 –
IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO
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how a LSTM calculates a hidden state  (I’m using  to mean elementwise
multiplication):

These equations look quite complicated, but actually it’s not that hard. First, notice that
a LSTM layer is  just another way to compute a hidden state. Previously, we computed
the hidden state as  . The inputs to this unit were  , the current
input at step , and , the previous hidden state.  The output was a new hidden state 

. A LSTM unit does the exact same thing, just in a di㥶erent way! This is key to
understanding the big picture. You can essentially treat LSTM (and GRU) units as a
black boxes. Given the current input and previous hidden state, they compute the next
hidden state in some way.
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With that in mind let’s try to get an intuition for how a LSTM unit computes the hidden
state. Chris Olah has an excellent post that goes into details on this and to avoid
duplicating his e㥶ort I will only give a brief explanation here. I urge you to read his post
to for deeper insight and nice visualizations. But, to summarize:

 are called the input, forget and output gates, respectively. Note that they have
the exact same equations, just with di㥶erent parameter matrices. They care called
gates because the sigmoid function squashes the values of these vectors between 0
and 1, and by multiplying them elementwise with another vector you define how
much of that other vector you want to “let through”. The input gate defines how much
of the newly computed state for the current input you want to let through. The forget
gate defines how much of the previous state you want to let through. Finally, The
output gate defines how much of the internal state you want to expose to the external
network (higher layers and the next time step). All the gates have the same
dimensions , the size of your hidden state.

 is a “candidate” hidden state that is computed based on the current input and the
previous hidden state. It is exactly the same equation we had in our vanilla RNN, we

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/10/gru-lstm.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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just renamed the parameters  and  to  and . However, instead of taking  as
the new hidden state as we did in the RNN, we will use the input gate from above to
pick some of it.

 is the internal memory of the unit. It is a combination of the previous memory 
multiplied by the forget gate, and the newly computed hidden state , multiplied by
the input gate. Thus, intuitively it is a combination of how we want to
combine previous memory and the new input. We could choose to ignore the old
memory completely (forget gate all 0’s) or ignore the newly computed state
completely (input gate all 0’s), but most likely we want something in between these
two extremes.
Given the memory  , we finally compute the output hidden state  by multiplying the
memory with the output gate. Not all of the internal memory may be relevant to the
hidden state used by other units in the network.

LSTM Gating. Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on

sequence modeling.” (2014)

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/10/Screen-Shot-2015-10-23-at-10.00.55-AM.png
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Intuitively, plain RNNs could be considered a special case of LSTMs. If you fix the input
gate all 1’s, the forget gate to all 0’s (you always forget the previous memory) and the
output gate to all one’s (you expose the whole memory) you almost get standard RNN.
There’s just an additional   that squashes the output a bit. The gating mechanism is
what allows LSTMs to explicitly model long-term dependencies. By learning the
parameters for its gates, the network learns how its memory should behave.

Notably, there exist several variations on the basic LSTM architecture. A common one is
creating peephole connections that allow the gates to not only depend on the
previous hidden state , but also on the previous internal state , adding an
additional term in the gate equations. There are many more variations. LSTM: A Search
Space Odyssey empirically evaluates di㥶erent LSTM architectures.

G R U S

The idea behind a GRU layer is quite similar to that of a LSTM layer, as are
the equations. 

A GRU has two gates, a reset gate , and an update gate .  Intuitively, the reset gate
determines how to combine the new input with the previous memory, and the update
gate defines how much of the previous memory to keep around. If we set the reset to all
1’s and  update gate to all 0’s we again arrive at our plain RNN model. The basic idea of
using a gating mechanism to learn long-term dependencies is the same as in a LSTM,
but there are a few key di㥶erences:

A GRU has two gates, an LSTM has three gates.
GRUs don’t possess and internal memory ( ) that is di㥶erent from the
exposed hidden state. They don’t have the output gate that is present in LSTMs.
The input and forget gates are coupled by an update gate   and the reset gate  is
applied directly to the previous hidden state. Thus, the responsibility of the reset gate
in a LSTM is really split up into both  and .

http://arxiv.org/pdf/1503.04069.pdf
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We don’t apply a second nonlinearity when computing the output.

GRU Gating. Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural networks on

sequence modeling.” (2014)

G R U  V S  L S T M

Now that you’ve seen two models  to combat the vanishing gradient problem you may
be wondering: Which one to use? GRUs are quite new (2014), and their tradeo㥶s haven’t
been fully explored yet.  According to empirical evaluations in Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling  and An Empirical
Exploration of Recurrent Network Architectures, there isn’t a clear winner. In many
tasks both architectures yield comparable performance and tuning hyperparameters
like layer size is probably more important than picking the ideal architecture. GRUs
have fewer parameters (U and W are smaller) and thus may train a bit faster or need
less data to generalize. On the other hand, if you have enough data, the greater
expressive power of LSTMs may lead to better results.

I M P L E M E N T AT I O N

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/10/Screen-Shot-2015-10-23-at-10.36.51-AM.png
http://arxiv.org/abs/1412.3555
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
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Let’s return  to the implementation of the Language Model from part 2 and let’s use GRU
units in our RNN. There is no principled reason why I’ve chosen GRUs instead LSTMs in
this part (other that I also wanted to become more familiar with GRUs). Their
implementations are almost identical so you should be able to  modify the code to go
from GRU to LSTM quite easily by changing the equations.

We base the code on our previous Theano implementation. Remember that a GRU
(LSTM) layer is just another way of computing the hidden state. So all we really need to
do is change the hidden state computation in our forward propagation function.

In our implementation we also added bias units . It’s quite typical that these are not
shown in the equations. Of course we also need to change the initialization of our
parameters  and    because they now have a di㥶erent sizes. I don’t show the
initialization code here, but it is on Gitub. I also added a word embedding layer , but
more on that below.

That was pretty simple. But what about the gradients? We could derive the gradients for 
 and  by hand using the chain rule, just like we did before. But in practice most

people use libraries like Theano that support auto-di㥶erenation of expressions. If you
are for somehow forced to calculate the gradients yourself, you probably want to

def forward_prop_step(x_t, s_t1_prev):
      # This is how we calculated the hidden state in a simple RNN. No longer!
      # s_t = T.tanh(U[:,x_t] + W.dot(s_t1_prev))
       
      # Get the word vector
      x_e = E[:,x_t]
       
      # GRU Layer
      z_t1 = T.nnet.hard_sigmoid(U[0].dot(x_e) + W[0].dot(s_t1_prev) + b[0])
      r_t1 = T.nnet.hard_sigmoid(U[1].dot(x_e) + W[1].dot(s_t1_prev) + b[1])
      c_t1 = T.tanh(U[2].dot(x_e) + W[2].dot(s_t1_prev * r_t1) + b[2])
      s_t1 = (T.ones_like(z_t1) ‐ z_t1) * c_t1 + z_t1 * s_t1_prev
       
      # Final output calculation
      # Theano's softmax returns a matrix with one row, we only need the row
      o_t = T.nnet.softmax(V.dot(s_t1) + c)[0]
 
      return [o_t, s_t1]

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
https://github.com/dennybritz/rnn-tutorial-gru-lstm
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modularize di㥶erent units and have your own version of auto-di㥶erentiation using the
chain rule. We let Theano calculate the gradients for us:

That’s pretty much it. To get better results we also use a few additional tricks in our
implementation.

U S I N G  R M S P R O P  F O R  PA R A M E T E R  U P D A T E S

In part 2 we used the most basic version of Stochastic Gradient Descent (SGD) to update
our parameters. It turns out this isn’t such a great idea. If you set your learning rate low
enough, SGD is guaranteed to make progress towards a good solution, but in practice
that would take a very long time. There exist a number of commonly used variations on
SGD, including the (Nesterov) Momentum Method, AdaGrad, AdaDelta and rmsprop.
 This post contains a good overview of many of these methods. I’m also planning to
explore the implementation of each of these methods in detail in a future post. For this
part of the tutorial I chose to go with rmsprop. The basic idea behind rmsprop is to
adjust the learning rate per-parameter according to the a (smoothed) sum of the
previous gradients. Intuitively this means that frequently occurring features get a smaller
learning rate (because the sum of their gradients is larger), and rare features get a larger
learning rate.

The implementation of rmsprop is quite simple. For each parameter we keep a cache
variable and during gradient descent we update the parameter and the cache as follows
(example for ):

# Gradients using Theano
dE = T.grad(cost, E)
dU = T.grad(cost, U)
dW = T.grad(cost, W)
db = T.grad(cost, b)
dV = T.grad(cost, V)
dc = T.grad(cost, c)

cacheW = decay * cacheW + (1 ‐ decay) * dW ** 2
W = W ‐ learning_rate * dW / np.sqrt(cacheW + 1e‐6)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf
http://arxiv.org/abs/1212.5701
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://cs231n.github.io/neural-networks-3/#update
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The decay is typically set to 0.9 or 0.95 and the 1e-6 term is added to avoid division by 0.

A D D I N G   A N  E M B E D D I N G  L A Y E R

Using word embeddings such as word2vec and GloVe is a popular method to improve
the accuracy of your model. Instead of using one-hot vectors to represent our words, the
low-dimensional vectors learned using word2vec or GloVe carry semantic meaning –
similar words have similar vectors. Using these vectors is a form of pre-
training. Intuitively, you are telling the network which words are similar so that it needs
to learn less about the language. Using pre-trained vectors is particularly useful if you
don’t have a lot of data because it allows the network to generalize to unseen words. I
didn’t use pre-trained word vectors in my experiments, but adding an embedding layer
(the matrix  in our code) makes it easy to plug them in. The embedding matrix is really
just a lookup table – the ith column vector corresponds to the ith word in our
vocabulary. By updating the matrix  we are learning word vectors ourselves, but they
are very specific to our task (and data set) and not as general as those that you can
download, which are trained on millions or billions of documents.

A D D I N G  A  S E C O N D  G R U  L A Y E R

Adding a second layer to our network allows our model to capture higher-level
interactions. You could add additional layers, but I didn’t try that for this experiment.
You’ll likely see diminishing returns aㄫ瑄er 2-3 layers and unless you have a huge amount
of data (which we don’t) more layers are unlikely to make a big di㥶erence and may lead
to overfitting.

https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
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Adding a second layer to our network is straightforward, we (again) only need to modify
the forward propagation calculation and initialization function.

# GRU Layer 1
z_t1 = T.nnet.hard_sigmoid(U[0].dot(x_e) + W[0].dot(s_t1_prev) + b[0])
r_t1 = T.nnet.hard_sigmoid(U[1].dot(x_e) + W[1].dot(s_t1_prev) + b[1])
c_t1 = T.tanh(U[2].dot(x_e) + W[2].dot(s_t1_prev * r_t1) + b[2])
s_t1 = (T.ones_like(z_t1) ‐ z_t1) * c_t1 + z_t1 * s_t1_prev
 
# GRU Layer 2
z_t2 = T.nnet.hard_sigmoid(U[3].dot(s_t1) + W[3].dot(s_t2_prev) + b[3])

     

http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/10/gru-lstm-2-layer.png
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The full code for the GRU network is available here.

A  N O T E  O N  P E R F O R M A N C E

I’ve gotten questions about this in the past, so I want to clarify that the code I
showed here isn’t very e㥶icient. It’s optimized for clarity and was primarily written for
educational purposes. It’s probably good enough to play around with the model, but
you should not use it in production or expect to train on a large dataset with it. There are
many tricks to optimize RNN performance, but the perhaps most important one would
be to batch together your updates. Instead of learning from one sentence at a time, you
want to group sentences of the same length (or even pad all sentences to have the same
length) and then perform large matrix multiplications and sum up gradients for the
whole batch. That’s because such large matrix multiplications are e㥶iciently handled by
a GPU. By not doing this we can get little speed-up from using a GPU and training can be
extremely slow.

So, if you want to train a large model I highly recommended using one of the existing
Deep Learning libraries that are optimized for performance. A model that would take
days/weeks to train with the above code will only take a few hours with these libraries. I
personally like Keras, which is quite simple to use and comes with good examples for
RNNs.

R E S U LT S

To spare you the pain of training a model over many days I trained a model very similar
to that in part 2. I used a vocabulary size of 8000, mapped words into 48-dimensional
vectors, and used two 128-dimensional GRU layers. The iPython notebook contains
code to load the model so you can play with it, modify it, and use it to generate text.

Here are a few good examples of the network output (capitalization added by me).

I am a bot , and this action was performed automatically .

r_t2 = T.nnet.hard_sigmoid(U[4].dot(s_t1) + W[4].dot(s_t2_prev) + b[4])
c_t2 = T.tanh(U[5].dot(s_t1) + W[5].dot(s_t2_prev * r_t2) + b[5])
s_t2 = (T.ones_like(z_t2) ‐ z_t2) * c_t2 + z_t2 * s_t2_prev

https://github.com/dennybritz/rnn-tutorial-gru-lstm/blob/master/gru_theano.py
http://svail.github.io/
http://www.teglor.com/b/deep-learning-libraries-language-cm569/
http://keras.io/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
https://github.com/dennybritz/rnn-tutorial-gru-lstm
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←  Recurrent Neural Networks Tutorial, Part 3 –

Backpropagation Through Time and Vanishing

Gradients

Understanding Convolutional Neural Networks for

NLP  →

-  C O N N E C T  -

-  R E C E N T  P O S T S  -

Learning Reinforcement Learning (with Code, Exercises and Solutions)

RNNs in Tensorflow, a Practical Guide and Undocumented Features

I enforce myself ridiculously well enough to just youtube.
I’ve got a good rhythm going !
There is no problem here, but at least still wave !
It depends on how plausible my judgement is .
( with the constitution which makes it impossible )

It is interesting to look at the semantic dependencies of these sentences over multiple
time steps. For example, bot and automatically are clearly related, as are the opening
and closing brackets. Our network was able to learn that, pretty cool!

That’s it for now. I hope you had fun and please leave questions/feedback in the
comments! 
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