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Abstract—Conventional methods for finding audio in databases
typically search text labels, rather than the audio itself. This can
be problematic as labels may be missing, irrelevant to the audio
content, or not known by users. Query by vocal imitation lets
users query using vocal imitations instead. To do so, appropriate
audio feature representations and effective similarity measures
of imitations and original sounds must be developed. In this
paper, we build upon our preliminary work to propose Siamese
Style Convolutional Neural Networks (SS-CNN) to learn feature
representations and similarity measures in a unified end-to-end
training framework. Our Siamese architecture uses two CNNs to
extract features, one from vocal imitations and the other from
original sounds. The encoded features are then concatenated and
fed into a fully connected network to estimate their similarity.
We propose two versions of the system: IMINET is symmetric
where the two encoders have an identical structure and are
trained from scratch, while TL-IMINET is asymmetric and
adopts the transfer learning idea by pre-training the two encoders
from other relevant tasks: spoken language recognition for the
imitation encoder and environmental sound classification for the
original sound encoder. Experimental results show that both
versions of the proposed system outperform a state-of-the-art
system for sound search by vocal imitation, and the performance
can be further improved when they are fused with the state of the
art system. Results also show that transfer learning significantly
improves the retrieval performance. This paper also provides
insights to the proposed networks by visualizing and sonifying
input patterns that maximize the activation of certain neurons
in different layers.

Index Terms—Vocal imitation, information retrieval, Siamese
style convolutional neural networks, transfer learning, metric
learning.

I. INTRODUCTION

DESIGNING ways to efficiently access multimedia doc-
uments, such as audio recordings, is an important in-

formation retrieval task. The standard approach to index
and search audio documents is based on text metadata and
conventional text search engines. There are, however, many
scenarios where this approach has limited utility. In online
repositories, like freesound.org, the metadata often does not
describe the relevant details of the audio content, making the
target file undiscoverable or submerged within hundreds of
results returned by text-based queries.

Even for well-organized sound effect libraries with an
explicit hierarchical ontology, searching for sounds is still not
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easy. It requires the user to be familiar with the taxonomy and
text descriptors. In many situations, however, this requirement
is very difficult to satisfy, as many sounds, such as computer
synthesized sound effects, do not have accurate and commonly
accepted text descriptors.

A query-by-vocal-imitation sound retrieval system addresses
these issues [1], [2]. Such a system takes a vocal imitation
from the user as a query, and searches for sounds in the
library similar to the query. This approach does not have to be
done in isolation. It can be combined with text-based queries,
providing more effective and accurate results. This approach
is especially useful for sound retrieval in large-scale libraries
where many different sounds share the same text label and in
long recordings where the temporal location of labeled events
is not known.

Vocal imitation is a common human behavior that uses the
vocal organs to mimic sounds. It is an effective way to convey
ideas that are difficult to describe in words. For example,
callers to the National Public Radios Car Talk show [3] would
call in and illustrate symptoms of their vehicles by imitating
the sounds caused by mechanical or electrical failures. These
imitations make the conversations more effective. Designing
computer systems that can recognize vocal imitation for sound
search [4], [1] has broad applications. These include music
production, for the search of sound effects, security and
surveillance for the identification of sound events in long
recordings, and biodiversity monitoring for the recognition of
bird species in the field.

There are two main challenges in designing vocal-imitation-
based sound retrieval systems: feature representation and
matching algorithms. Feature representations of vocal imita-
tions and their corresponding original sounds should empha-
size the aspects that humans use to imitate sounds. They also
need to downplay differences between imitations and original
sounds, caused by the physical constraints of the human vocal
system. The matching algorithm needs to work with the feature
representations to discern target sounds from irrelevant sounds,
given a query.

In this paper, we address the two challenges in a unified
framework. We do this by extending our previous work on
Convolutional Siamese Network [5], [6] to a more general
Siamese Style Convolutional Neural Network (SS-CNN). A
Siamese network contains two encoders with identical struc-
tures to encode two inputs [7]. The proposed Siamese style
network contains two similar encoders whose structures can
be varied from each other to suit each encoder’s respective
input. In our system, the two inputs are a vocal imitation
query and an original sound from the database to be searched.
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Each of the two encoders uses a CNN to extract features from
the audio spectrograms. These features are then concatenated
and fed into a Fully Connected Network (FCN) to calculate
the similarity between the imitation and the sound candidate.
The CNN encoders and the FCN are trained simultaneously
using positive pairs (an original sound and a vocal imitation
of that sound) and negative pairs (the vocalization of a sound
different than the one it is paired with). Feature learning and
the matching algorithm are thus jointly optimized.

We present two versions of the proposed SS-CNN system.
The first one is a symmetric model presented in our pre-
liminary work named IMINET [5], where the two encoders
share exactly the same structure, although the weights of
the encoders may be different. The entire network is trained
directly on positive and negative training pairs of imitations
and sound candidates from scratch. The second one is a
less symmetric model, where the two encoders use different
and domain-specific structures. The imitation encoder uses a
structure previously applied to a spoken language recognition
task. The original sound encoder adopts a structure used
for an environmental sound classification task. Moreover, the
encoders are pre-trained separately on these tasks before being
fine-tuned on the positive and negative pairs of imitations and
sound candidates. Since this lets learned concepts be trans-
ferred from other tasks, this version is named TL-IMINET,
noting its Transfer Learning (TL) nature.

Experiments are conducted on the VocalSketch Data Set
v1.0.4 [8]. Results show that the proposed Siamese style
networks outperform state-of-the-art systems [9], [10] where
feature learning and matching algorithms are optimized sep-
arately. Results also show that transfer learning significantly
improves the system performance. To provide insights to the
proposed networks, we visualize and sonify input patterns that
maximally excite certain neurons and filters.

The main contributions of this work are threefold. First,
building upon our preliminary work [5], [6], we propose
a novel network architecture (SS-CNN) for sound retrieval
by vocal imitation. This architecture jointly optimizes fea-
ture learning and metric learning in an end-to-end training
framework. Second, we design the TL-IMINET version of
the proposed system leveraging the idea of transfer learning
from other audio tasks (language classification and urban
sound classification). We show that the CNN encoders that
are pretrained on these audio tasks can extract effective
audio representations for vocal imitations and original sounds,
leading to significantly better sound retrieval performance.
Third, we visualize and sonify input patterns that excite the
learned filters/neurons in different layers of our proposed
neural network to provide insights on what the networks are
learning in the query-by-vocal-imitation task.

The rest of the paper is organized as follows: We first
review related work in Section II, then introduce the Siamese
style neural network structure in Section III. In Sections IV
and V, we describe the proposed IMINET and TL-IMINET
versions in detail. Section VI compares the performance of the
proposed systems against state-of-the-art systems. Section VII
provides insights to the proposed networks through visual-
ization and sonification of input patterns that excite certain

neurons and filters. Finally Section VIII concludes the paper.

II. RELATED WORK

Query by vocal imitation falls into the task of Query by
Example (QBE) [11]. There are numerous QBE applications
in the audio domain, such as cover song recognition [12] and
spoken document retrieval [13]. Audio fingerprinting [14] is
also a type of QBE. Originally, it required a portion of the
target audio file as the query. Recently, it has been extended to
include finding live versions of a song whose studio recording
is in the database [15], [16]. Vocal imitation of a sound takes
this one step further, and has been shown to be useful in many
scenarios, such as finding songs by humming the melody as a
query [17], [18] or beat boxing the rhythm [19], [20]. However,
little work has been reported on general sound search by vocal
imitation.

Roma and Serra [21] designed a QBE system that allows
users to search sounds on freesound.org by capturing audio
with a microphone as the query. Handcrafted features like
statistics of Mel-Frequency Cepstral Coefficients (MFCC) and
their derivatives were adopted as descriptors for a given audio
clip, but no formal evaluation was reported. Blancas et al. [4]
built a closed-set supervised system for sound query by vocal
imitation using hand-crafted features extracted by the Timbre
Toolbox [22] and an SVM classifier. A vocal imitation query
was classified to a pre-defined class and sounds in that class
were retrieved. The major limitation of closed-set supervised
systems, however, is that they cannot retrieve sounds that do
not have training imitations. Helén and Virtanen [2] designed
a query by recordings system for sound effects. Hand-crafted
frame-level features were extracted from both query and
sound samples and the query-sample pairwise similarity was
measured on probability distributions of the features.

In our own prior work [9], [10], we proposed a system
for sound search by vocal imitation called IMISOUND. We
employed a Stacked Auto-Encoder (SAE) to learn feature
representations from vocal imitations of sounds not contained
in the search database and applied this same representation
to both queries and sound recordings during the search. We
then calculated their similarity through Kullback-Leibler (K-
L) divergence [23], Dynamic Time Warping (DTW) [24],
and cosine similarity. The feature representation and matching
algorithm in IMISOUND, however, were designed separately.
This means that the learned features may not be optimal for
the similarity measure.

Siamese networks were first proposed by Bromley et al.
[7] for signature verification. Since then, they have been
successfully applied to many image/video tasks such as face
verification [25] and image recognition [26]. More recently,
Bertinetto et al. [27] proposed a fully-convolutional Siamese
network for object tracking in videos. Han et al. [28] proposed
the MatchNet for patch-level image matching, a two tower
structure with convolutional layers for feature extraction and
fully connected layers for metric learning. Chen and Salman
[29] proposed a regularized Siamese deep network to extract
speaker-specific information from MFCCs for a speaker recog-
nition task.
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To overcome the problem of separately learning the distance
metric and feature representations, we developed a preliminary
model named IMINET [5] that uses a semi-Siamese architec-
ture to calculate the similarity between an imitation query and
a sound in the search database. IMINET uses two CNN towers
to extract features from the two inputs. The features are then
concatenated and fed into a Fully Connected Network (FCN)
to calculate their similarity. The CNN encoders and the FCN
are trained simultaneously using positive and negative pairs
of imitations and sound candidates, leading to superior results
over IMISOUND.

To understand what a neural network learns, several visual-
ization methods have been developed [30]. The most straight-
forward method is to visualize the activations of each layer
[31]. Another method is activation maximization [32], which
generates an input that maximally activates a certain neuron by
performing gradient ascent of the neuron activation w.r.t. the
input while keeping the filter fixed. A related technique is to
search for the inputs within a dataset that maximally activate
a neuron [33]; this requires a large dataset including extensive
input patterns. In [34], Deconvnet is proposed to interpret
the function of intermediate convolutional layers, where the
hidden layer activations are mapped back to the input pixel
space using deconvolution and unpooling.

In this paper, we extend this “semi-Siamese architecture”
idea by relaxing the structural symmetry normally used in
Siamese networks to explore non-symmetric Siamese-style
structures. We also compare alternative network structures and
late fusion techniques. We then alleviate the data scarcity
issue by applying a kind of transfer learning. We use domain-
specific encoder architectures that are pre-trained on different,
but relevant, datasets and tasks. Finally, we visualize and
sonify input patterns that activate the neurons in different
layers of our proposed model to provide insights on what
the networks are learning in the query-by-vocal-imitation task.
The sum of this greatly extended our preliminary work.

III. PROPOSED SIAMESE STYLE CONVOLUTIONAL
NEURAL NETWORKS

As shown in Figure 1, our proposed Siamese Style Con-
volutional Neural Networks (SS-CNN) can be represented
by a generic model that contains two Convolutional Neural
Network (CNN) towers for feature extraction: One tower
receives a vocal imitation (the query) as its input. The other
receives a sound from the searchable database (the candidate)
as its input. Each tower outputs a set of features (also known
as an embedding). These features are then concatenated and
fed into a Fully Connected Network (FCN) for similarity
calculation. The final similarity output of the Siamese-style
neural network is the probability of being a positive pair
between the query and the candidate. The CNNs and the
FCN are trained jointly on positive (i.e., related) and negative
(i.e., non-related) query-candidate pairs. Through this joint
optimization, feature representations learned by the CNNs are
better tuned for the FCN’s metric learning.

Once the Siamese-style neural network is trained, it can be
used to search for sounds in a database of audio files, using a

CNN: Feature Extraction CNN: Feature Extraction

FCN: Metric Learning

Input: Vocal Imitation Input: Sound Recording

Output: Similarity

Fig. 1: Basic framework of the proposed Siamese style neural
network, SS-CNN, for sound retrieval by vocal imitation.
The two CNN feature extraction blocks can be of the same
structure (IMINET) or designed and pre-trained differently for
the respective inputs (TL-IMINET).

vocal imitation as the query. To do so, we pair the imitation
query with each sound candidate in the database and use
the neural network to calculate the similarity, where a sound
candidate refers to the original sound recording representing a
certain concept within the entire dataset. Let the similarity for
the i-th sound candidate be pssn(i). We then rank all sound
candidates by their probabilities from high to low and return
them in this order.

Although the Siamese-style model is trained in a supervised
fashion on positive and negative query-candidate pairs, the
sound retrieval process is unsupervised, similar to systems that
use hand-crafted similarity measures [9], [10], [2]. In other
words, the system can be applied to sound candidates and
queries that did not appear in the training set, as shown in our
experiments in Section VI. This lets the user add new classes
of audio to the database and search for them without having
to retrain the model.

We will now discuss two architectures and training ap-
proaches to building a network to measure similarity between
a vocal imitation and an audio file: A symmetric model
and an asymmetric one that applies transfer learning. The
symmetric model, or IMINET, has two convolutional towers
of the same structure. We explore different variants of weight
sharing configurations between the two towers in this work, i.e.
tied, partially tied, and untied weights. The transfer learning
model, or TL-IMINET, has two convolutional towers that
are domain-specific. Vocal imitations are generated by human
vocal organs, which are closely related to speech audio, so
the vocal imitation tower structure originates from a spoken
language recognition model [35]. General sound recordings are
more varied, hence we design the recording tower structure
based on an environmental sound classification model [36].
Rigorously speaking, TL-IMINET is not a Siamese network
as its two towers are not identical. However, it is derived
from a Siamese network, IMINET, which itself contains three
versions with different levels of symmetry. By calling TL-
IMINET “Siamese style”, we would like to highlight the
evolving trend from the most symmetric version, IMINET
with tied weights, to IMINET with partially tied and untied
weights, and to the least symmetric version, TL-IMINET. This
offers a refreshing perspective for the evolution of the network
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Fig. 2: Architecture of the symmetric model, IMINET. The
two input spectrograms are of the same size. The two CNN
feature extraction towers are of the same structure, yet their
weights can be tied, partially tied, or untied.

structure in our research through a wide spectrum of Siamese
style networks. Thereform, “Siamese style” in this paper does
not necessarily indicate a strict symmetry between the two
towers.

IV. SYMMETRIC MODEL

The symmetric model IMINET is a Convolutional Semi-
Siamese Network (CSN). The overall structure is shown in
Figure 2. The two towers of convolutional layers for feature
extraction share the same structure, yet their weights can be
tied, partially tied, or non-tied, making them not fully Siamese.

A. Preprocessing

Both the vocal imitations and original recordings are first
downsampled to 16 kHz to have a direct comparison with
our previously proposed IMISOUND system [9]. A 6-octave
(50-3200 Hz) Constant-Q Transform (CQT) is then employed
to calculate their spectrograms using the MATLAB CQT
toolbox [37]. The CQT uses 12 bins in each octave and a
hop size of 26.25 ms. Considering the fixed size input for
convolution in the two towers, both imitation and recording
CQT spectrograms truncate the end to maintain 129 frames.
Spectrograms shorter than 129 frames are zero-padded. There-
fore, the CQT spectrograms have a dimensionality of 72×129
(frequency bins × time frames). The reasons for using a CQT
instead of linear-frequency spectrograms are twofold: 1) the
log-frequency scale in a CQT better corresponds to human
auditory perception; 2) the representation is more compact
compared with linear frequency spectrograms such as STFT
for the ease of network training.

B. Feature Learning

Each tower of the Siamese network is a Convolutional
Neural Network (CNN) with 4 convolutional layers. The
parameters are shown on the upper right side in Figure 2. Both
towers receive a 72 × 129 sized CQT spectrogram as input.
Both Conv1 and Conv2 have 12 filters with a receptive field of
3×3 and a stride size of 1×1, followed by a Rectified Linear
Unit (ReLU) activation function. They are then each followed
by a 2 × 4 (both shape and stride) max-pooling layer with 2
in frequency and 4 in time, where every time-frequency point
in the feature map is covered by exactly one max-pool. For
Conv3 and Conv4, each has 6 filters with a receptive field of
3×3 and a stride size of 1×1 followed by ReLU activations,
but no pooling layer follows.

Besides sharing the same architecture, Siamese networks
usually tie the parameters of the two towers, i.e., the two inputs
pass through exactly the same networks for feature learning.
This is suitable when the two inputs share many traits, i.e.,
image matching [28]. In our work, however, vocal imitations
lie in a much more restricted sound space than general sound
recordings, due to the physical constraints of the human vocal
system. Conceptually, vocal imitations and original recordings
should pass through two different feature learning networks.
Therefore, in IMINET we explore three configurations when
designing the convolutional towers:

1) Tied Configuration: The two towers share exactly the
same weights and biases in all layers.

2) Untied Configuration: The two towers do not share
weights and biases at all, although their structures are the
same. This allows the two towers to be tuned for their input
domains independently.

3) Partially Tied Configuration: The weights and biases in
the two towers are not shared for Conv1 and Conv2 layers, but
are shared for Conv3 and Conv4 layers. The rationale behind
this design is that layers close to the input should be tuned to
adapt to the input’s unique characteristics and extract surface-
level features that are closely related to the specific input
domain, while deeper layers should behave like “grandmother
cells” [38] that extract more complex and highly conceptual
features [39] that are shared across input domains.

In both untied and partially tied configurations, the symme-
try between the two towers are less strict, and we call such
structures semi-Siamese networks.

C. Metric Learning

After the features from the two towers are extracted, they
are vectorized and concatenated. Then they are fed into a 3-
layer Fully Connected Network (FCN), where each unit in
layer l is connected to every unit in layer l − 1. There are
432 neurons in the first layer of the fully connected network
(FC1) and 32 in the second layer (FC2). The ReLU activation
function is used in both layers. The number of FCN layers and
the number of neurons in FC1 and FC2 are chosen after trial
and error to achieve the highest retrieval performance on the
validation set (see Experiments section). To avoid overfitting,
we use 20% dropout on both FC1 and FC2. The third layer
(FC3) has only one neuron which uses the sigmoid activation
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function to squash the output value between 0 and 1. This
value is viewed as the similarity between the query-candidate
pair.

D. Training

Training the network requires positive and negative pairs of
vocal imitations and sound recordings.

We combine vocal imitations with the original sound record-
ings that they imitate as positive pairs, and with other sound
recordings as negative pairs. There exist a total of 840 positive
pairs and 840 negative pairs in the training set, without
data augmentation. Details about the dataset segmentation are
discussed in Section VI.

In our training the ground truth label is 1 for positive pairs
and 0 for negative pairs. The loss function we minimize is
the binary cross-entropy between the probability output of
the network and the binary ground-truth label. We use the
Adaptive Moment Estimation (Adam) optimization algorithm
[40]. The learning rate is 0.001; β1 and β2 are 0.9 and
0.999, respectively; ε is 1e-8. The batch size is 128. Early
stopping based on validation loss with patience of 5 epochs is
employed for training termination. Parameters are chosen by
extensive experimentation and fine-tuning for better validation
set performance.

Back-propagation is carried out from the FCN to the two
Siamese towers. Compared to common distance/similarity
measures such as Euclidean distance or cosine similarity, this
similarity is learned together with the feature representations
of the vocal imitations and original recordings, likely leading
to a better retrieval performance.

V. TRANSFER LEARNING MODEL

The partially tied and untied configurations of IMINET
introduced flexibilities to the feature extraction towers for them
to adapt to their respective inputs, their structures, however,
are still the same. In this section, we extend the idea to
allow structural differences between the two CNN towers. We
introduce the transfer learning idea to pre-train the two CNN
towers on their own relevant external tasks, leading to the TL-
IMINET model.

The overall structure of TL-IMINET is shown in Figure 3.
It is also a Siamese style convolutional neural network, but
the structure is not as symmetric as IMINET. The record-
ing and imitation towers for feature extraction are adapted
from environmental sound classification and spoken language
recognition tasks, respectively, hence are asymmetric. The
two tower weights and biases are initialized by pre-training
them on external datasets for these tasks. They are then fine-
tuned together with the FC layers on the sound retrieval task.
At test time, the sound retrieval procedure is the same as
IMINET: The network output is a similarity value between
an imitation query and an original sound candidate from
the search database. Sound candidates with highest similarity
values are returned.

As a new task, sound retrieval through vocal imitation
suffers from the data scarcity issue, therefore, we hope to use
transfer learning to alleviate the problem. Transfer learning has
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Fig. 3: Architecture of the asymmetric model, TL-IMINET.
The two input spectrograms are of different sizes, and pass
through different neural network structures in the two CNN
towers for feature extraction.

the benefit of passing knowledge learned from related relevant
tasks that are often data-rich to the task at hand, which is
often data-hungry. The key consideration is to find appropriate
relevant data-rich tasks to transfer knowledge from. In the
following subsections, we will describe our design in detail.

A. Imitation Tower Pre-training

Vocal imitations are produced by the human vocal system
and share some similar acoustical characteristics with speech
utterances. Here we use a spoken language classification task
to pre-train the vocal feature extraction tower of TL-IMINET.
Compared to other speech processing tasks such as speech
recognition and sining classification, the audio materials in
language classification contain various kinds of phonemes
among different languages and are much richer. This richness
is preferred as vocal imitations are freely generated using a
variety of vocal organs such as tongues, cheeks, and teeth.

We adopt the CNN architecture proposed in [35] with
slight modifications. The original system segments the audio
signal into 5-second long windows, and feeds each window
to the network. It encodes the audio into a 39-band log-mel
spectrogram with a frame hop size of 8.33 ms, where filter
center frequencies range between 0 and 5 kHz. It then uses
a 3-layer CNN followed by 2 FC layers to classify the input
into three classes: English, French, and German.

Our modified structure is shown in Figure 4. First, we
reduce the speech signal window size to 4 seconds because
most vocal imitations in the data set are less than 4 seconds
long. Then each 4 second speech is converted to a 39-
band log-mel spectrogram with an 8.33 ms non-overlapping
analysis window in accordance with [35]. Therefore, the final
spectrogram has a dimensionality of 39 frequency bins in by
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Fig. 4: The neural network structure derived from [35] with
slight modifications. The input is a log-mel spectrogram with
39 mel frequency bands (0-5 kHz) and 482 time frames (4
seconds). The exemplar spectrogram represents a male speech
in English.

482 time steps (39× 482). For layers Conv1 and Conv2, each
layer has 48 filters with ReLU activations, and each is followed
by a 6 × 6 pooling layer. Conv3 also has 48 filters and a
receptive field of 6×6, followed by a 1×2 pooling layer with
1 in frequency and 2 in time. More detailed parameters are
described in the figure.

We pre-train this network on VoxForge, a free speech corpus
and acoustic model repository for open source speech recog-
nition engines [41], [35]. It contains user-uploaded speech
recordings in different languages, in both 8 kHz and 16 kHz
sampling rates. We use 16 kHz recordings in this work. We
choose seven languages to construct a 7-class classification
task: Dutch, English, French, German, Italian, Russian, and
Spanish, which have the most recordings. For each language,
we choose 8,000 speech clips (about 4 seconds long on
average) from different people. This dataset is split into
70% for training and 30% for testing. After training, our
model achieves 69.8% accuracy on the test set, which is
relatively good for a 7-class classification task, compared with
the reported 80.1% accuracy for a 3-class classification task
in [35].

B. Recording Tower Pre-training

The original sound recordings in our dataset represent a
large number of concepts, generated by various sound sources.
The design of our tower for the original recordings is based on
a CNN architecture used for environmental sound classifica-
tion [36]. In this task, an audio clip to be classified (3 seconds
long) is first converted into a log-mel spectrogram with a 23
ms non-overlapping analysis window, with frequency range
of 0 to 22,050 Hz. This leads to a input dimensionality of
128 × 128, representing 128 mel-frequency bands and 128
frames in time.
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Fig. 5: The neural network structure in [36]. The input is a
log-mel spectrogram with 128 mel frequency bands and 128
frames. The exemplar spectrogram represents a “dog bark”
sound event for 3 seconds.

The spectrogram is fed into a convolutional neural network
with 3 convolutional layers and 2 fully connected layers. The
neural network structure is shown in Figure 5. Conv1 has
24 filters with a receptive field of 5 × 5, and followed by a
ReLU activation function. They are then followed by a 2× 4
(both shape and stride) max-pooling layer with 2 in frequency
and 4 in time. For Conv2 and Conv3, each has 48 filters
with a 5 × 5 receptive field. Conv2 is followed by a 2 × 4
pooling layer Pool2, but no pooling layer follows Conv3. Then
the activations of Conv3 are followed by a 64-neuron fully
connected layer FC1 and the final output layer FC2 has 10
neurons, indicating probabilities of predicting to one of ten
classes: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, siren, and street
music.

We replicated the experiments in [36], by a 10-fold cross
validation without data augmentation. The system achieves
70.2% accuracy on average, which is close to the accuracy
reported in [36]. This gives us confidence that the network
likely learned structures useful for general audio classification.

C. Metric Learning

In both pre-training tasks the fully-connected layers are
removed while the convolutional layer weights are applied
as an initialization for the two towers of TL-IMINET, which
serve as feature extractors for imitation and original sounds.
After the features from the two towers are extracted, they are
flattened and concatenated. Then they are fed into a 2-layer
Fully Connected Network (FCN). There are 108 neurons in
FC1 and the ReLU activation function is adopted to avoid
vanishing gradient. The number of FCN layers and number
of FC1 neurons are chosen after trial and error to achieve
the highest retrieving performance (see Experiments section)
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on the validation set. In FC2 there is only 1 neuron with the
sigmoid activation function to squash the output value between
0 and 1. Similar to the symmetric model, this value is viewed
as the similarity between the imitation-recording input pair.

D. Training

Training for TL-IMINET is similar to that for IMINET
described in Section IV-D: We generate positive and nega-
tive imitation-original pairs and minimize the cross-entropy
loss between the probability prediction and the ground-truth
labels. The main difference is that for IMINET, all network
weights/biases are randomly initialized, while for TL-IMINET,
some CNN layers of the feature extraction towers are initial-
ized with the pre-trained weights in Sections V-A and V-B.

By varying the number of pre-trained layers, we can in-
vestigate the effect of pre-training on the sound retrieval task.
As there are 3 convolutional layers in both the recording and
imitation towers, and considering that early layers are more
appropriate to be pre-trained on other tasks, we apply three
different pre-training configurations for TL-IMINET:

1) No pre-training: All network weights are randomly
initialized. Transfer learning is not applied.

2) Pre-train Conv1: Only Conv1 weights of both towers
are initialized with pre-trained weights.

3) Pre-train Conv1/2: Only Conv1 and Conv2 of both
towers are initialized with pre-trained weights.

4) Pre-train Conv1/2/3: All three Conv layers of both
towers are initialized with pre-trained weights.

The other difference from IMINET is that, we employ
Stochastic Gradient Descent (SGD) optimization algorithm to
minimize the loss function of binary cross-entropy between
the probability (similarity) output and the ground-truth label,
where 1 and 0 denotes positive and negative pairs, respectively.
For TL-IMINET, we observe that SGD achieves better sound
retrieval performance compared with Adam. The learning rate
is 0.01, learning rate decay is 0.0001, and momentum is
0.9. The batch size is 128 and training is terminated after
30 epochs. The above hyper parameters as well as hidden
layer sizes, kernel sizes and pooling sizes are chosen through
extensive experimentation to achieve high performance on the
validation set. This is not an exhaustive grid search of the
parameter combinations, but rather a search among a number
of randomly selected combinations.

VI. EXPERIMENTS

In this section, we would like to answer the following
questions through experiments and analyses: 1) How do the
various versions of the proposed SS-CNN model compare with
the state-of-the-art baseline, IMISOUND? 2) Does transfer
learning from other relevant tasks improve SS-CNN’s sound
retrieval performance? 3) Can we further improve the per-
formance by fusing different configurations of SS-CNN and
perhaps with IMISOUND as well?

A. Dataset

We use the VocalSketch Data Set v1.0.4 [8] in our experi-
ments. This dataset contains hundreds of original sounds, each

representing a distinct concept, and 10 vocal imitations of
each sound obtained from different Amazon Mechanical Turk
users. The sounds and imitations are 3-second long on average.
The sounds fall into 4 broad categories, namely Acoustic
Instruments (AI), Commercial Synthesizers (CS), Everyday
(ED), and Single Synthesizer notes (SS). The number of
sounds in these categories is 40, 40, 120, and 40, respectively.
We choose half of the sounds of each category (i.e., 20, 20,
60, and 20 from AI, CS, ED, SS, respectively) and all of
their imitations to compose a dataset to train and validate our
models. We use the other half of sounds and their imitations
to test the models. Therefore, training and testing materials do
not share any sounds nor imitations.

For the 120 sounds used for training and validation, we
choose 7 imitations of each sound to form 120 × 7 = 840
positive pairs and 840 negative pairs to train both IMINET
and TL-IMINET. Positive pairs are pairs of an imitation and
its target sound. Negative pairs are created by randomly pairing
an imitation with an irrelevant sound. We use the remaining 3
imitations of each sound to compose 120× 3 = 360 positive
pairs and 360 negative pairs to validate the IMINET and TL-
IMINET. The total amount of training and validation pairs
are of 3.3 and 1.4 hours in time. We then evaluate the sound
retrieval performance (see Section VI-B) of different methods
within each category of the remaining 120 sounds and their
imitations, taking each imitation as the query and averaging
the retrieval performance.

B. Evaluation Measures

We employ Mean Reciprocal Rank (MRR) [42] to evaluate
the search performance in each category:

MRR =
1

Q

Q∑
i=1

1

ranki
, (1)

where ranki is the rank of the target sound among all sounds
in the same category for the i-th vocal imitation query; Q
is the number of imitations in each category. MRR ranges
from 0 to 1 with a higher value indicating a better sound
retrieval performance. For example, an MRR of 0.5 suggests
that, on average, the target sound is ranked the second among
all sounds in the category. For each method, we report the
average MRR and standard deviation across 10 models trained
with different initializations. We compare with our previous
IMISOUND system [10], which achieved the state-of-the-art
MRR performance for sound retrieval through vocal imitation
on the VocalSketch dataset.

C. Baseline Method

We choose the previous state-of-the-art system for sound
retrieval by vocal imitation, IMISOUND [9], [10], as the
baseline for comparison. In this system, vocal imitations
and sound recordings are processed in the same way as the
IMINET that they are first downsampled to 16 kHz and
then converted to 6-octave (50-3200 Hz) CQT spectrograms
using [37]. The spectrogram is segmented into overlapping
525 ms long patches. Then a two-hidden-layer Stacked Auto-
Encoder (SAE) [43] is employed as a feature extractor applied
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to the vectorized patches. The first and second hidden layer
have 1,000 and 600 neurons, respectively. Each patch is then
represented as a 600-d vector. We further include its first-
order derivative (delta) w.r.t. time, resulting in a 1,200-d vector
for each patch. Each vocal imitation and sound candidate is
thus represented by a sequence of 1,200-d vectors. In order
to get the recording-level feature representation, we calculate
maximum, minimum, mean, median, standard deviation, and
interquartile range within each dimension. Finally, each vocal
imitation and sound candidate is represented by a 7,200-d
vector. Cosine similarities between the vocal imitation query
and all sound candidates within a category are calculated using
the feature representation.

D. Fusion Strategies

Inspired by ensemble learning [44], we consider the idea of
fusing the retrieval results of the different configurations of SS-
CNN by multiplying their similarity outputs (i.e., probability
of being a positive pair). This is similar to what naive Bayes
does on fusing predictions made along different dimensions.
Fusion was first applied in IMINET [5] and it is now also used
for TL-IMINET.

1) Fusion for IMINET: We fuse the three different config-
urations of tied, partially tied, and untied weights of IMINET.
Specifically we have:

Lfusion1(i) = Ltied(i) ∗ Luntied(i) ∗ Lpartial(i), (2)

where Ltied(i), Luntied(i), and Lpartial(i) are the pairing
likelihood between the query and the i-th sound candidate,
by tied, untied, and partially tied models, respectively.

We also consider to fuse the retrieval results of IMINET
with those of IMISOUND [10]. As described before,
IMISOUND uses a two-hidden-layer SAE to extract features
for a vocal imitation and a sound candidate. It then calculates
the cosine distance between their feature representations. To
fuse this result with that of IMINET, we convert the distance
to a likelihood through a softmax function:

Lsae(i) =
e−D(i)∑N

n=1 e
−D(n)

, (3)

where D(i) is the cosine distance between the vocal imitation
and the i-th sound candidate; N is the total number of sound
candidates in the library. Then the fusion between IMINET
and IMISOUND can be done by multiplying their likelihood
values:

Lfusion2(i) = Liminet(i) ∗ Lsae(i). (4)

2) Fusion for TL-IMINET: We fuse each pre-training con-
figuration with IMISOUND, similar as Equation (4):

Lfusion3(i) = Ltl−iminet(i) ∗ Lsae(i). (5)

Siamese style networks from our current work (IMINET and
TL-IMINET) and previous work (IMISOUND) have different
structures and training objectives. In particular, the SS-CNN
networks feature representations in a supervised way with the
goal of helping discriminate positive and negative pairs, while
IMISOUND learns features in an unsupervised way which

Fig. 6: Sound retrieval performance comparisons among
IMISOUND, IMINET with tied weights, TL-IMINET with
pre-training Conv1/2/3, IMINET with tied weights fused with
IMISOUND, and TL-IMINET with pre-training Conv1/2/3
fused with IMISOUND.

aims at a good reconstruction of the input. In addition, Siamese
style networks learn the similarity between vocal imitations
and sound recordings from training data, while IMISOUND
uses a pre-defined distance measure. Therefore, it is expected
that they perform differently on the same imitation-sound pair
and fusing their results may improve the retrieval performance.

E. Experimental Results

Table 1 shows comprehensive performance comparisons
of the IMISOUND baseline [10], different configurations of
the proposed IMINET, TL-IMINET, and their different fus-
ing strategies in five groups (blocks). Considering the large
amount of configurations of the proposed methods, we will
first analyze the configurations of IMINET and TL-IMINET
separately. We will then choose the best configurations of
IMINET and TL-IMINET and compare them to demonstrate
the advantages of transfer learning. Finally, we will analyze
the benefits of fusing IMINET/TL-IMINET and IMISOUND.

1) Configuration Comparison for IMINET: We compare
the three weight sharing strategies (untied, partially tied, and
tied) for IMINET and the fusion of the three systems. Several
interesting observations can be made from Table I.

First, from untied to partially tied to tied configurations
of IMINET, the MRR increasing trend is observed in all
categories. This is unexpected, as we thought that partially
tied or untied configuration could better account for the
differences between vocal imitations and sound recordings and
result in better retrieval performance. A possible explanation
could be that the number of parameters is reduced in the
tied configuration, which makes the network easier to train
considering the small amount of training data. This suggests
that data scarcity might be a bottleneck hindering the potential
exploitation of more complicated models.
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TABLE I: MRR (mean ± std) comparisons of the baseline system (IMISOUND), various configurations of the proposed
IMINET and TL-IMINET, and different fusion systems of IMINET and IMISOUND. Higher values are better and the best
results for each category in each block are in bold. Some results of IMINET are from [5].

Configuration Acoustic Instr. Comm. Synthesizers Everyday Single Synthesizer

Baseline IMISOUND 0.425 ± 0.015 0.311 ± 0.007 0.126 ± 0.003 0.373 ± 0.012

IMINET

Untied 0.377 ± 0.019 0.318 ± 0.020 0.154 ± 0.014 0.325 ± 0.020
Partial 0.384 ± 0.027 0.304 ± 0.015 0.154 ± 0.015 0.340 ± 0.031
Tied 0.401 ± 0.028 0.327 ± 0.019 0.158 ± 0.012 0.380 ± 0.018

Untied + Partial + Tied 0.438 ± 0.015 0.343 ± 0.020 0.175 ± 0.012 0.382 ± 0.013

TL-IMINET

No Pre-train 0.397 ± 0.027 0.309 ± 0.021 0.225 ± 0.023 0.377 ± 0.025
Pre-train Conv1 0.412 ± 0.033 0.328 ± 0.027 0.227 ± 0.020 0.399 ± 0.036

Pre-train Conv1/2 0.432 ± 0.024 0.325 ± 0.023 0.225 ± 0.016 0.404 ± 0.036
Pre-train Conv1/2/3 0.462 ± 0.017 0.349 ± 0.015 0.246 ± 0.016 0.390 ± 0.027

Untied + IMISOUND 0.470 ± 0.025 0.356 ± 0.011 0.168 ± 0.010 0.402 ± 0.022
IMINET Partial + IMISOUND 0.496 ± 0.018 0.346 ± 0.025 0.173 ± 0.014 0.417 ± 0.025

+ IMISOUND Tied + IMISOUND 0.504 ± 0.014 0.355 ± 0.016 0.171 ± 0.009 0.452 ± 0.020
Untied + Partial + Tied + IMISOUND 0.520 ± 0.020 0.371 ± 0.013 0.188 ± 0.007 0.447 ± 0.012

No Pre-train + IMISOUND 0.490 ± 0.017 0.339 ± 0.017 0.199 ± 0.013 0.429 ± 0.025
TL-IMINET Pre-train Conv1 + IMISOUND 0.513 ± 0.029 0.352 ± 0.026 0.198 ± 0.014 0.441 ± 0.023

+ IMISOUND Pre-train Conv1/2 + IMISOUND 0.519 ± 0.014 0.353 ± 0.016 0.209 ± 0.008 0.429 ± 0.028
Pre-train Conv1/2/3 + IMISOUND 0.534 ± 0.015 0.367 ± 0.014 0.218 ± 0.007 0.413 ± 0.021

(a) Imi Conv1: w/ pretraining

(c) Imi Conv2: w/ pretraining

(e) Imi Conv3: w/ pretraining

(b) Imi Conv1: w/o pretraining

(d) Imi Conv2: w/o pretraining

(f) Imi Conv3: w/o pretraining

(a) Rec Conv1: w/ pretraining

(c) Rec Conv2: w/ pretraining

(e) Rec Conv3: w/ pretraining

(b) Rec Conv1: w/o pretraining

(d) Rec Conv2: w/o pretraining

(f) Rec Conv3: w/o pretraining
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Fig. 7: Visualization of input patterns that maximally activate four randomly selected neurons from each of the three
convolutional layers (Conv1, Conv2, and Conv3) in the imitation tower of TL-IMINET, without pre-training (left column)
and with pre-training using the Vox Forge data set (right column). Whiter color indicates higher energy.

Second, the best performing IMINET configuration, tied,
outperforms the IMISOUND baseline on two categories (Com-
mercial Synthesizers and Everyday), underperforms on the
Acoustic Instrument category, and achieves comparable per-
formance on the Single Synthesizer category. Unpaired t-tests
show that the MRR improvement is statistically significant
for Commercial Synthesizers (p = 1.17e-2) and Everyday (p
= 6.15e-6) at the significance level of 0.05.

Third, by fusing different configurations of IMINET, the
MRR is better than each configuration itself. The MRR
improvements for all categories except Signal Synthesizer
are statistically significant (Acoustic Instruments p = 3.08e-
2, Commercial Synthesizers p = 2.70e-4, and Everyday p =
8.30e-8), at the significance level of 0.05, under unpaired t-
tests. This is because under different weight constraints, each
configuration tends to learn its unique features. We believe that

these features are complementary to some extent, explaining
why the fused model outperforms every single configuration.

2) Configuration Comparison for TL-IMINET: For the
proposed TL-IMINET, we compare its different pre-training
strategies with the IMISOUND baseline.

First, we see that TL-IMINET without pre-training outper-
forms IMINET untied in all categories except the Commercial
Synthesizers category. It is noted that the main difference
between these two models is on the network structure of the
convolutional towers: IMINET uses the same structure for both
the imitation and original sound towers, while TL-IMINET
uses different structures that are originally designed for the
spoken language classification and environmental sound classi-
fication tasks, respectively. This suggests that using structures
that are carefully designed for the different types of sounds
(voices vs. general sounds) achieves better sound retrieval
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Fig. 8: Visualization of input patterns that maximally activate
four randomly selected neurons from each of the three con-
volutional layers (Conv1, Conv2, and Conv3) in the recording
tower of TL-IMINET, without pre-training (left column) and
with pre-training using UrbanSound8k data set (right column).
Whiter color indicates higher energy.

performance than using non-informative structures that do not
consider the differences between the types of sounds. The
reason that the Everyday category receives the most prominent
improvement may be due to the fact that the original tower
structure is used to train environmental sounds [36], which is
expected to work well in Everyday category that share many
characteristics with the UrbanSound8K dataset.

Second, comparing different pre-training strategies of TL-
IMINET, we see a relatively clear trend of MRR increase from
no pre-training to pre-training more layers. We observe that in
the third block, the mean MRR increases from no pre-training
to pre-training more convolutional layers, and pre-training all
convolutional layers achieves the highest MRR scores in all
categories except Single Synthesizer. This finding supports our
assumption that transfer learning from relevant tasks is helpful
to our sound retrieval task.

Third, the best performing TL-IMINET configuration, pre-
training all 3 convolutional layers on both towers, significantly
outperforms the baseline IMISOUND in all categories, Acous-
tic Instruments (p = 2.57e-9), Commercial Synthesizers (p =

7.49e-4), Everyday (p = 5.21e-11), and Single Synthesizer (p
= 8.35e-6), according to a set of unpaired t-tests at the sig-
nificance level of 0.01. Even the no pre-training TL-IMINET
outperforms IMISOUND at the significance level of 0.05, for
Acoustic Instruments (p = 3.65e-2), Everyday (p = 3.57e-7),
and Single Synthesizer (p = 4.81e-5).

3) Fusing IMINET with IMISOUND: As described in Sec-
tion IV, the proposed IMINET framework has a very different
design from the baseline IMISOUND system: IMISOUND
uses unsupervised learning (stacked auto-encoders) to learn
feature representations from training imitations and then uses
pre-defined similarity measures to match imitations and orig-
inal sounds, while IMINET learns feature representations and
similarity measures simultaneously from positive and negative
training pairs in a supervised fashion. It is thus possible that
IMISOUND and IMINET behave complimentarily and fusing
them may improve the performance.

This hypothesis is validated by comparing the second and
third blocks against the fourth and fifth blocks of Table I.
All configurations of IMINET show a significant improvement
of MRR after they are fused with IMISOUND. Similarly, all
configurations of TL-IMINET except Everyday category also
show a significant improvement of MRR after they are fused
with IMISOUND. The above improvements are all statistically
significant under a set of unpaired t-tests at the significance
level of 0.05.

To make this observation clearer, we choose the best
configuration of IMINET (tied) and TL-IMINET (Pre-train
Conv1/2/3), respectively, and compare them with IMISOUND
as well as their fusion with IMISOUND. This comparison is
shown in Figure 6. We can observe that, 1) there is a clear trend
that Siamese style neural networks outperform IMISOUND, 2)
Fusion with IMISOUND helps to improve both IMINET and
TL-IMINET performance in almost every category but TL-
IMINET in Everyday category, and 3) overall, TL-IMINET
fused with IMISOUND works the best across all categories.

VII. VISUALIZATION AND SONIFICATION

In order to obtain more insights on how SS-CNN works,
in this section we visualize and sonify the input patterns that
maximize the activation of certain neurons in each layer, using
the activation maximization approach [32]. We choose TL-
IMINET for this analysis.

Activation maximization [32] can be done by gradient
ascent of the neuron’s activation w.r.t. the input from a random
initialization, while keeping the trained weights unchanged.
After convergence, the updated input spectrogram can be
interpreted as what the neuron learns. For better visualization
purposes, ReLU activations in TL-IMINET are replaced by
leaky ReLU with a slope of 0.3 for negative inputs. This is
to prevent the zero gradient issue when the input value to the
ReLU activation is negative, which will trap the optimization.
We further sonify the generated input magnitude spectrograms
by recovering the phase information using the Griffin-Lim
algorithm [45]. The visualization for all input patterns and
their corresponding sonified waveforms can be accessed via:
https://goo.gl/Y5ytv6.
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(a) Visualization of imitation-sound pattern pairs that maximize 
neuron activations in FC1, w/o pretraining

(b) Visualization of imitation-sound pattern pairs that maximize 
neuron activations in FC1, w/ pretraining
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Fig. 9: Imitation-recording input pair pattern visualization in FC1 of TL-IMINET. Whiter color represents higher energy. Note
that they are not positive or negative pairs but input patterns activating a certain FC1 neuron the most.

1) Imitation Tower: The left and right column of Figure 7
shows the filter visualization of the imitation tower with
and without pre-training, respectively. First, taking the top
left corner pattern in the left column as an example, the
horizontal and vertical dimension represents the number of
time frames and frequency bins in mel scale, respectively.
Whiter color represents higher energy. Note that first layer
(Conv1) neurons learn local features like edges, intermediate
layer (Conv2) neurons capture more complicated information
such as texture with various directions, while the deepest
layer (Conv3) neurons recognize spectrogram-like patterns,
with a concentration on different frequency ranges. Second,
input patterns visualized with pre-training are generally shaper
and contain more finer patterns compared with those without
pre-training. This suggests that pre-training on the VoxForge
dataset helps the feature extraction tower to pay more attention
to spectral details. The sonifications in Conv1 sound like
low frequency humming, in Conv2 we hear more spectral
components, and in Conv3 delicate birding chirping and water
flowing like sounds can be heard.

2) Recording Tower: Figure 8 shows input patterns that
maximally activate several neurons in the original sound
recording tower, with and without pre-training. Interesting
findings are also observed: First, we discover the same trend
of pattern complexity from shallow layers to deep layers,
with input patterns from simple and oriented edges to various
texture-like patterns, eventually to spectrogram-like complex
and hierarchical structures. Second, dissimilar with what we
observed earlier in Conv3 of the imitation tower, Conv3
input patterns of the recording tower tend to learn vertical
strips besides horizontal patterns. We note that such input
patterns resemble feature maps used by mammals in their
auditory systems [46], [47]. When more complex stimuli
are provided, early auditory responses progressively show

simple-to-structural periodic patterns along time and frequency
directions in auditory spectrograms similar to our visualization
results in different neural network layers. For the recording
tower sonification, in Conv1 we can hear simple sound patterns
like constant pitch and spike, in Conv2 we can hear fast
changing patterns in time, and in Conv3 modulated sound
effects can be heard.

3) Dense Layers: Dense layer filters can be visualized
using activation maximization as well. A neuron in a fully
connected layer receives a pair of inputs, and the receptive
field of each neuron covers the entire input ranges of both the
vocal imitation and original recording. Therefore, the neuron
is maximally activated by an imitation-original pair instead
of an imitation or a original recording alone. This is different
from the Single-Input-Single-Output (SISO) network structure
where activation maximization was originally applied in [32].
In Figure 9, we show the maximal activation patterns for
2 representative neurons in layer FC1. The corresponding
imitation-original input pattern pairs are shown without and
with pre-training TL-IMINET respectively. By pre-training
TL-IMINET, more detailed structures from the pairs can be
observed compared with the configuration of without pre-
training. In both Figure 9(a) and (b), imitation and recording
show somewhat similar textures to form a pair. By sonifying
the imitation-recording input pattern pairs, we hear that the
recovered imitation and original sounds are similar from the
aspect of temporal evolution but with timbre being different.
The recovered imitation sound is more like natural sound (e.g.,
generated by certain animals) while the recovered recording
sound is similar to a robot voice.

VIII. CONCLUSIONS

In this paper, we proposed a general Siamese Style Con-
volutional Neural Network (SS-CNN) model for sound search
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by vocal imitation. It contains two similar encoders whose
structures can be suited to the respective input, which are
a vocal imitation query and an original sound from the
database to be searched. The two encoders use CNN for feature
extraction from input spectrograms, and then learned features
are concatenated and fed into a FCN for similarity measure
between the two inputs.

By introducing different levels of symmetry, we present
two versions of the proposed SS-CNN system: 1) Training-
from-scratch IMINET where the two encoders share exactly
the same structure, although the encoder weights may be
different. 2) Transfer learning based TL-IMINET, where the
two encoders use different and domain-specific structures. The
encoders are also pre-trained separately on the original tasks
before being fine-tuned on the VocalSketch data set.

Experiments show that the proposed Siamese style networks
outperform state-of-the-art system IMISOUND where feature
learning and matching algorithms are optimized separately. It
shows that transfer learning, as well as fusion of the proposed
models with IMISOUND significantly improves the system
performance. To provide insights to the proposed networks,
we visualize and sonify input patterns that maximally excite
certain neurons and filters.

For future work, we would like to employ Recurrent Neural
Networks (RNN) under the Siamese Network architecture to
better model the temporal evolution of both vocal imitations
and original sound recordings. To improve the practical us-
ability in large-scale databases, we plan to integrate vocal
imitation-based and text-based search together. Finally, we
plan to conduct subjective studies on the system usability.
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