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ABSTRACT
Traditional search through collections of audio recordings com-
pares a text-based query to text metadata associated with each
audio file and does not address the actual content of the audio.
Text descriptions do not describe all aspects of the audio content
in detail. Query by vocal imitation (QBV) is a kind of query by
example that lets users imitate the content of the audio they seek,
providing an alternative search method to traditional text search.
Prior work proposed several neural networks, such as TL-IMINET,
for QBV, however, previous systems have not been deployed in
an actual search engine nor evaluated by real users. We have de-
veloped a state-of-the-art QBV system (Vroom!) and a baseline
query-by-text search engine (TextSearch). We deployed both sys-
tems in an experimental framework to perform user experiments
with Amazon Mechanical Turk (AMT) workers. Results showed
that Vroom! received significantly higher search satisfaction rat-
ings than TextSearch did for sound categories that were difficult for
subjects to describe by text. Results also showed a better overall
ease-of-use rating for Vroom! than TextSearch on the sound library
used in our experiments. These findings suggest that QBV, as a
complimentary search approach to existing text-based search, can
improve both search results and user experience.

CCS CONCEPTS
• Information systems → Search interfaces; Speech / audio
search; Similarity measures; Novelty in information retrieval.
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1 INTRODUCTION
Designing methods to access and manage multimedia documents
such as audio recordings is an important information retrieval task.
Traditional search engines for audio files use text labels as queries.
However this is not always effective. First, it requires users to be
familiar with the audio library taxonomy and text labels, which
is unrealistic for many users with no or little audio engineering
background. Second, text descriptions or metadata are abstract and
do not describe the audio content in detail. Third, many sounds,
such as those generated by computer synthesizers, lack commonly
accepted semantic meanings and text descriptions.

Vocal imitation is commonly known as using voice to mimic
sounds. It is widely used in our daily conversations, as it is an ef-
fective way to convey sound concepts that are difficult to describe
by language. For example, when referring to the “Christmas tree”
dog barking sound (i.e., a barking sound with overtones fading out
rapidly showing a Christmas-tree-shaped spectrogram) [32], vocal
imitation is more intuitive compared to text descriptions. Hence,
designing computational systems that allow users to search sounds
through vocal imitation [4] goes beyond the current text-based
search and enables novel human-computer interactions. It has nat-
ural advantages over text-based search as it does not require users
to be familiar with the labels of an audio taxonomy and it indexes
the detailed audio content instead of abstract text descriptions that
not all agree on. Regarding applications, sound search by vocal
imitation can be useful in many fields including movie and music
production, multimedia retrieval, and security and surveillance.

Recently, a deep learning based model called TL-IMINET [43]
was proposed for sound search by vocal imitation. It addresses two
main technical challenges: 1) feature learning: what feature rep-
resentations are appropriate for the vocal imitation and reference
sound, and 2) metric learning: how to design the similarity between
a vocal imitation and each sound candidate. Experiments on the Vo-
calSketch Data Set [5] have shown promising retrieval performance
for this model, however, no user studies have been conducted to
validate the model as part of a user-facing search engine and the
sound-search-by-vocal-imitation approach in general at the system
level. In this paper, we seek to answer the following questions: 1)
Is vocal-imitation-based search an acceptable approach to sound
search for ordinary users without an extensive audio engineering
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background? 2) How does vocal-imitation-based search compare
with the traditional text-based search for different kinds of sounds
in terms of search effectiveness, efficiency and user satisfaction?

To answer the above questions, in this work, we conduct a user
study to compare sound search by vocal imitation and by text de-
scription on Amazon Mechanical Turk. Specifically, we designed a
web-based search engine called Vroom!. The frontend GUI allows
a user to record a vocal imitation as a query to search sounds in
a sound library, and the backend uses a pre-trained deep learning
model as the search algorithm. We also designed a baseline system
called TextSearch for comparison. It allows a user to search a collec-
tion of sounds by comparing a user’s text query to the keywords for
each sound. We further developed a software experimental frame-
work to record user behaviors and ratings on a cloud database using
MongoDB Atlas.

In this study, each system was used by 100 workers, each of
which was asked to search for 10 sounds randomly selected from
a large sound library that contains 3,602 sounds from eight sound
categories with an average length of 4 seconds. Each search was
done within the sound’s category. Analyses of search results and
user behaviors show that subjects gave significantly higher overall
ease-of-use scores to Vroom! than TextSearch in this sound library.
Results also show significant advantages of Vroom! over TextSearch
on categories that were difficult to describe by text.

The rest of the paper is organized as the following. We first re-
view related work in Section 2. We then introduce the sound search
by vocal imitation system Vroom! in Section 3, and the baseline of
sound search by text description system TextSearch in Section 4.
In Section 5, we describe the FreeSoundIdeas dataset that we col-
lected for user evaluation. In section 6, we discuss the experimental
framework, subject recruitment, and analyze the results. Finally we
conclude the paper in Section 7.

2 RELATEDWORK
Using text descriptions to search the metadata (e.g. filenames, text
tags) in collections of audio files is already widely deployed. For
example, Freesound [13] is an online community generated sound
database with more than 420,000 sounds. Each audio file in the col-
lection is tagged with text descriptions for text-based search. Sound-
Cloud [34] is another community-based online audio distribution
platform that enables users to search sounds by text description.

On the other hand, sound query by vocal imitation (QBV) is
drawing increasing attention from the research community to ad-
dress limitations of text-based search. It is one kind of of Query by
Example (QBE) [44]. There are numerous QBE applications in the
audio domain, such as content based sound search and retrieval
[12, 37], audio fingerprinting of the exact match [36] or live versions
[28, 35], cover song detection [3] and spoken document retrieval [6].
Vocal imitation of a sound was first proposed for music retrieval,
such as finding songs by humming the melody as a query [9, 15] or
beat boxing the rhythm [16, 18]. Recently, it has been extended for
general sound retrieval, as summarized below.

Roma and Serra [29] designed a system that allows users to
search sounds on Freesound by recording audio with a microphone,
but no formal evaluation was reported. Blancas et al. [4] built a

supervised system using hand-crafted features by the Timbre Tool-
box [26] and an SVM classifier. Helén and Virtanen [17] designed a
query by example system for generic audio. Hand-crafted frame-
level features were extracted from both query and sound samples
and the query-sample pairwise similarity was measured by proba-
bility distribution of the features.

In our previous work, we first proposed a supervised system us-
ing a Stacked Auto-Encoder (SAE) for automatic feature learning fol-
lowed by an SVM for imitation classification [38].We then proposed
an unsupervised system called IMISOUND [39, 40] that uses SAE
to extract features for both imitation queries and sound candidates
and calculates their similarity using various measures [10, 22, 30].
IMISOUND learns feature representations independently of the
distance metric used to compare sounds in the representation space.
Later, we proposed an end-to-end Siamese style convolutional neu-
ral networks named IMINET [41] to integrate learning the distance
metric and the features. This model was improved by transfer learn-
ing from other relevant audio tasks, leading to the state-of-the-art
model TL-IMINET [43]. The benefits of applying positive and nega-
tive imitations to update the cosine similarity between the query
and sound candidate embedding was investigated in [21]. To under-
stand what such a neural network actually learns, visualization and
sonification of the input patterns in Siamese style convolutional
neural networks using activation maximization [11] was discussed
in [42, 43].

To date, research on sound search by vocal imitation has been
only conducted at the algorithm development level. No usable
search engines have been deployed based on these algorithms,
nor have any user studies been conducted to assess the effective-
ness of the new search approach in practice. This paper conducts a
large-scale user study along this line: evaluating the performance
of a vocal-imitation-based search engine built on a best-performing
deep learning algorithm, and comparing it with a traditional text-
based search engine.

3 PROPOSED SEARCH ENGINE: VROOM!
We designed a web-based sound search engine by vocal imitation,
called Vroom!, which can be accessed via https://vocalimitation.com.
It includes frontend design and backend implementation.

3.1 Frontend GUI Design
The frontend GUI is designed using Javascript, HTML, and CSS. It
allows a user to record a vocal imitation of sound that he/she is
looking for from one of the categories described in Subsection 5.2
using the recorder.js Javascript library [25]. It also allows the user
to listen to the recording, inspect the waveform, and re-record imi-
tations. By clicking on the “Go Search!” button, the user can initiate
the search request. The recording is then uploaded to the backend
server and compared with each sound within the specified category
using the CR-IMINET algorithm described later. Top five sound
candidates with the highest similarity scores are first returned to
the user, and more candidates up to 20 can be returned by clicking
on "Show more results". The user can play the returned sounds and
make a selection to complete the search. Only sounds that have
been played become available for the selection. If not satisfied with
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Figure 1: Frontend GUI of the vocal-imitation-based search
engine Vroom!.

any of the returned sounds, the user can re-record an imitation and
re-do the search. The frontend GUI is shown in Figure 1.

3.2 Backend Search Algorithm: CR-IMINET
Hosted on a Ubuntu system, the backend server is designed using
Node.js express framework, with Keras v2.2.4 [7] and GPU accel-
eration supported. It receives the user’s vocal imitation from the
frontend, pre-processes the audio, then implements a Siamese style
convolutional recurrent neural networkmodel called CR-IMINET to
calculate the similarity between the vocal imitation and candidate
sounds in the sound library. It responds to each frontend search
request and retrieves the most similar sounds to each imitation
query, within the specified sound category of the sound library.

3.2.1 Architecture. As shown in Figure 2, CR-IMINET contains two
identical Convolutional Recurrent Deep Neural Network (CRDNN)
towers for feature extraction: One tower receives a vocal imitation
(the query) as input. The other receives a sound from the library
(the candidate) as input. Each tower outputs a feature embedding.
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Figure 2: Architecture of the CR-IMINET. The two input
spectrograms are of the same size. The two towers for
feature extraction are of the same structure with shared
weights. In each tower a convolutional layer is followed by
a bi-directional GRU layer.

These embeddings are then concatenated and fed into a Fully Con-
nected Network (FCN) for similarity calculation. The final single
neuron output from FC2 is the similarity between the query and
the candidate. The feature learning and metric learning modules
are trained jointly on positive (i.e., related) and negative (i.e., non-
related) query-candidate pairs. Through joint optimization, feature
embeddings learned by the CRDNNs are better tuned for the FCN’s
metric learning, compared with isolated feature and metric learning
in [40].

The Siamese (two-tower) and integrated feature and metric learn-
ing architecture in the proposed CR-IMINET is inspired by the
previous state-of-the-art architecture, TL-IMINET [43]. Differently,
TL-IMINET only uses convolutional layers in the feature extraction
towers, while CR-IMINET uses both a convolutional layer and a
bi-directional GRU (Gated Recurrent Unit) [8] layer. This configura-
tion can better model temporal dependencies in the input log-mel
spectrograms. Another difference is that TL-IMINET pre-trains the
imitation and recording towers on environmental sound classifica-
tion [31] and spoken language recognition [24] tasks, respectively,
while CR-IMINET does not adopt this pre-training for simplicity
thanks to its much smaller model size (shown in Table 1).

3.2.2 Training. We use the VimSketch dataset [19] to train the
proposed CR-IMINET model. It is a combination of VocalSketch
Data Set v1.0.4 [5] and Vocal Imitation Set [20]. The VocalSketch
Data Set v1.0.4 contains 240 sounds with distinct concepts and 10
vocal imitations for each sound collected from different Amazon
Mechanical Turkers. These sounds are from four categories: Acous-
tic Instruments (AI), Everyday (ED), Single Synthesizer (SS) and
Commercial Synthesizers (CS). The number of sounds in these cat-
egories is 40, 120, 40 and 40, respectively. The Vocal Imitation Set is
curated based on Google’s AudioSet ontology [14], containing six
categories of sounds in the first layer of the AudioSet ontology tree:
Animal, Channel, Human Sounds, Music, Natural Sounds, Sounds
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Table 1: Model size (# trainable parameters) and retrieval
performance (MRR) comparisons between the proposed CR-
IMINET and the previous state of the art, TL-IMINET.

Config. Model Size MRR (mean ± std)

TL-IMINET [43] 799.9k 0.325 ± 0.03
CR-IMINET 55.1k 0.348 ± 0.03

of Things, and Source Ambiguous Sounds. The number of sounds
in these categories is 31, 4, 38, 65, 10, 134, and 20, respectively.
Considering the relatively small number of sound recordings in
the Channel and Natural Sounds categories (i.e., 4 and 10, respec-
tively) and non-obvious association between the recording and
corresponding imitations after listening to them, we remove these
two categories in training.

We used in total 528 sounds from the remaining categories in
VimSketch dataset for training. These sounds are of distinct con-
cepts, and each has 10 to 20 vocal imitations from different people.
All sounds and imitations are trimmed to about 4-second long
each. We used 10-fold cross validation to train and validate the
CR-IMINET model. In each fold, the number of sound concepts for
training and validation is 476 and 52, respectively. Sounds from
each concept are paired with imitations from the same concept as
positive pairs, and paired with imitations from other concepts as
negative pairs.

The ground-truth similarity labels are 1 for positive pairs and
0 for negative pairs. The loss function to minimize is the binary
cross-entropy between the network output and the binary labels.
Adam is used as the optimizer. The batch size is 128. Model training
terminates after 20 epochs as the validation loss begins to increase
afterwards.

3.2.3 Performance. We use Mean Reciprocal Rank (MRR) [27] to
evaluate the retrieval performance.

MRR =
1
Q

Q∑
i=1

1
ranki

, (1)

where ranki is the rank of the target sound among all sounds in
the library available for retrieval for the i-th imitation query; Q is
the number of imitation queries. MRR ranges from 0 to 1 with a
higher value indicating a better sound retrieval performance. We
report the average MRR across 10 folds with 52 sound recordings
in each fold to search from. The results are shown in Table 1.

It can be seen that CR-IMINET outperforms TL-IMINET in terms
of MRR. An unpaired t-test shows that this improvement is statisti-
cally significant, at the significance level of 0.05 (p = 4.45e-2). An
MRR of 0.348 suggests that within the 52 sound candidates in each
fold, on average, the target sound is ranked as the top 3 candidate
in the returned list. This suggests that CR-IMINET becomes the
new state-of-the-art algorithm for sound search by vocal imitation.

4 BASELINE SEARCH ENGINE: TEXTSEARCH
To evaluate the performance of the proposed Vroom! search en-
gine, we also designed a web-based sound search engine by text
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Figure 3: Frontend GUI of the text-description-based search
engine TextSearch.

description as the baseline system, called TextSearch. It also in-
cludes frontend design and backend implementation described as
the following.

4.1 Frontend GUI Design
Similar to Vroom!, the frontend GUI of TextSearch is designed using
Javascript, HTML, and CSS languages as well. As shown in Figure 3,
the GUI provides the user with a text box to enter one or multiple
keywords as the query for a sound. The user can then click on the
“Go Search!” button to search.

The query string is uploaded to the backend server, and then
compared with the keyword list associated to each sound candidate
to find matches in the Solr database described in Subsection 4.2.
Returned sound candidates are ranked in an order based on the
internal matching mechanism of Solr. In order to have a comparable
experimental setup with Vroom!, only the file names but not the
keyword lists associated with the returned sounds are presented
to the user. By clicking on the “Show more results” button, up
to 20 sound candidates can be returned. The user can play the
returned sounds and make a selection to complete the search, and
only sounds that have been played can be selected. If not satisfied
with any of the returned sounds, the user can re-type the query
keywords and re-do the search.

4.2 Backend Search Algorithm
The backend is realized by designing a main server that receives
and responds to requests from the frontend, and utilizing a separate
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search engine service called Solr [1] specialized in text search and
matching. The entire backend is hosted on a Ubuntu system. The
overall process is as the following. The query request from the
frontend users is first received by the main server. Then the main
server resends query requests to Solr for text search and ranking.
The ranked list is then returned to the main server from Solr, and
finally returned to the frontend user.

Specifically, Solr is an open-source enterprise search platform
built upon Apache Lucene. Each sound in FreeSoundIdeas has the
following information, namely, sound filename, descriptive tags
provided by the original Freesound.org uploader (i.e., keywords),
and the unique sound ID.We organize this information of all sounds
within each category into a separate JSON format file. Solr reads
in the JSON file for each sound category and organizes the sound
keywords into a tree structure for fast indexing given a query
input. The retrieval similarity is calculated by Lucene’s Practical
Scoring Function [2]. Query parsing and partial word matching
functions are also supported by Solr for a more user-friendly search
experience.

4.3 Baseline Validity
Our designed baseline search engine TextSearch is comparable to
other text-based search engines such as Freesound.org in the fol-
lowing two aspects. First, the workflow of TextSearch is the same
as Freesound.org. Both search engines provide the user with a text
box to type in the query strings, and return the user with a list of
sounds ranked by relevance that are available for playback over
multiple pages. Second, the backend Solr-based search algorithm
used in TextSearch is also used in Freesound.org. It guarantees the
search effectiveness and efficiency of the baseline.

TextSearch still has its limitations, for example, the searchable
space is within each category of sounds in FreeSoundIdeas. This may
prevent the user from finding sounds that are keyword-relevant to
the query string but belong to other categories, while Freesound.org
does not have this constraint. In addition, Freesound.org displays
the associated keywords, the user quality rating, and the uploader
information of the returned sounds, while TextSearch does not.
Such metadata may aid the user in searching the target high quality
sound more efficiently. Nevertheless, we believe that TextSearch
implements the key features of a text-based search engine of sounds,
and serves as a sufficient baseline for assessing the feasibility of
vocal-imitation-based search.

5 SUBJECTIVE EVALUATION
5.1 Research Questions
By designing the proposed search engine Vroom! and the baseline
TextSearch, we would like to understand and answer the following
questions. 1) Is vocal-imitation-based search an acceptable approach
to sound search for ordinary users without an extensive audio
engineering background? 2) How does vocal-imitation-based search
compare with the traditional text-based search for different kinds
of sounds in terms of search effectiveness and efficiency? In this
section, we present a large-scale user study on Amazon Mechanical
Turk to answer these questions.

FreeSoundIdeas (3,602)

Animal 
(230)

Human 
(300)

Music 
(521)

Natural 
Sounds (86)

Office and 
Home (819)

Synthesizers 
(762)

Tools and 
Miscellaneous (660)

Transportation 
(224)

Auto Other Ground 
Vehicles

Airplanes WatercraftsMotorcycles

General Car Sounds Formula Drag RaceCar Brands

“Car wash.wav” “Car Horns.wav” “Car Breaking Skid 01.wav” “Start car and drive.wav” …

Figure 4: FreeSoundIdeas dataset ontology. Numbers in
parentheses indicate the number of sound concepts in the
category at the first level of the ontology tree.

5.2 Evaluation Dataset Collection
To carry out the subjective evaluation, we create a new dataset
called FreeSoundIdeas as our sound library. The sounds of this
dataset are from Freesound.org [13], while we reference sound
descriptions and the structure of how sounds are organized in
Sound Ideas [33] to form the FreeSoundIdeas ontology. Specifically,
the ontology has a multi-level tree structure and is derived from
two libraries of Sound Ideas: “General Series 6000 - Sound Effect
Library” and “Series 8000 Science Fiction Sound Effects Library”,
where the former has more than 7,500 sound effects covering a large
scope, and the latter has 534 sound effects created by Hollywood’s
best science fiction sound designers. We copied the indexing key-
words from 837 relatively distinct sounds in these two libraries and
formed eight categories of sound concepts, namely, Animal (ANI),
Human (HUM), Music (MSC), Natural Sounds (NTR), Office and
Home (OFF), Synthesizers (SYN), Tools and Miscellaneous (TOL),
and Transportation (TRA).

We do not use sounds from Sound Ideas because of copyright
issues, instead, we use keywords of each sound track from the
abovementioned ontology as queries to search similar sound from
Freesound.org. For each query, the first 5 to 30 returned sounds
from Freesound.org are downloaded and stored as elements for our
FreeSoundIdeas dataset. Keywords of these sounds from Freesound.org
instead of the queried keywords to find these sounds are stored
together with these sounds for a more accurate description. It is
noted that this FreeSoundIdeas dataset has no overlap with the
VimSketch dataset which is used to train the search algorithm for
Vroom!.

In total the FreeSoundIdeas dataset includes 3,602 sounds. There
are 230, 300, 521, 86, 819, 762, and 660 sound concepts in the category
of ANI, HUM, MSC, NTR, OFF, SYN, TOL, and TRA, respectively.
Its ontology is shown in Figure 4, with the Transportation category
being expanded to leaf nodes to illustrate the granularity.

5.3 Experimental Framework
To quantify search behaviors and user experiences and to make
quantitative comparisons between Vroom! and TextSearch, we de-
signed an experimental framework that wraps around each search
engine. The experimental framework is another web application.
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The framework guides each subject to make 10 searches, rate
their satisfaction score about each search, and rate the ease-of-use
score for the search engine after completing all 10 searches. For
each search, it guides the subject through three steps. In Step 1,
the subject listens to a reference sound randomly chosen from a
category of the sound library. The category name is visible while
the keywords of the sound is not provided. This sound will be the
target sound to search in following steps. In Step 2, the reference
sound is hidden from the subject, and the subject uses the search
engine (Vroom! or TextSearch) to search for the reference sound in
the specified category of the sound library. In Step 3, the reference
sound appears again. The user compares it with their retrieved
sound to rate their satisfaction about the search. These three steps,
for the Vroom! search engine, are shown in Figure 5 for illustration.

The experimental framework tries to mimic the search processes
in practice as much as possible. For example, searches are conducted
in each of the eight root categories instead of over the entire library
to reduce complexity, as the root-level categories show clear distinc-
tions on their semantics. However, certain modifications still have
to be made to allow quantitative analysis. In practice, a user rarely
listens to the exact target sound before a search; they usually only
have a rough idea about the target sound in their mind to cast their
query (imitation or text). In our experimental framework, however,
before each search, the subject listens to the target sound to cast
their query. While this may positively bias the quality of the query
(especially for the imitation query), this is necessary to control
what sound to search by the subjects. For example, the library may
simply not contain the target sound if we allowed subjects to search
freely. To reduce this positive bias, we hide the target sound during
the search (Step 2).

The backend of this experimental framework records statistics of
important search behaviors listed as the following. These statistics
are then sent to MongoDB Atlas cloud database for storage and
analysis.

• User satisfaction rating for each search
• Ease-of-use rating for the search engine
• Number of “Go Search!” button clicked
• Number of returned candidate sounds played
• Total time spent for each search
• Rank of the target sound in the returned list for each search

5.4 Subject Recruitment
We recruited a total of 200 workers (i.e., 100 for each search engine)
from the crowdsourcing platform Amazon Mechanical Turk (AMT)
as our subjects. Our sound search tasks were released through
cloudresearch.com [23] as it provides several more advanced and
convenient features compared with the task releasing mechanism
in AMT. Our recruiting criteria are summarized as the following.

(1) AMT worker’s historical HIT performance. We required that
each worker had a HIT approval rate higher than 97% and the
number of HITs higher than 50, and the worker was located in the
United States.

(2) Duplicate submission prevention. We blocked multiple sub-
missions from the same IP address, and verified that worker’s IP
was consistent with the United States region setting. Finally, we
strictly controlled that there was no overlap between workers in the

two groups. This was to prevent a worker from becoming familiar
with the sound library, which might cause a positive bias to the
second search engine that the user tested.

(3) Equipment requirement. We asked workers to use Chrome
or Firefox to complete the task, as a comprehensive internal test
was conducted on these two browsers. Those finished with other
browsers (i.e., IE, Safari, etc.) were rejected to rule out any unex-
pected issues. Also, we asked workers to sit in a quiet environment
and make sure their speaker and microphone were on.

The demographic information of the recruited subjects is sum-
marized in Figure 6. We can see that the gender distribution is quite
even, and a large portion of subjects were born in the 1980s and
1990s. For race distribution, most subjects are White/Caucasian,
followed by Black/African American and Asian.

Before the worker starts, he/she is welcomed with the task portal
including instructions, an external link directed to our web based
experimental framework hosting Vroom! and TextSearch, and a text
box for entering the completion code, which will be available to
copy and paste on the last page of the experimental framework,
after the user finishes his/her sound search task.

The two groups of subjects were asked to perform 10 sound
searches using Vroom! and TextSearch, respectively. Subjects were
informed about the collection of their search behaviors and ratings
before the experiments. After the user finished 10 sound searches
and provided ease-of-use score and general feedback, then the
completion code would be available for the user to paste into the
text box from the task portal. Finally, we verified the submitted
completion code from each subject to approve his/her job.

Our internal pilot trials show that each experiment took about
25 and 15 minutes for Vroom! and TextSearch, respectively. There-
fore, we paid each subject 1.5 US dollars for Vroom! and 1 US dollar
for TextSearch. To encourage the subjects to treat the experiments
more seriously, we made an extra 50% bonus payment based on the
worker’s performance. Subjects were informed about this compen-
sation policy including the bonus payment before they started the
experiments.

5.5 Experimental Results
5.5.1 User Feedback. Figure 7 compares two types of user ratings
between Vroom! and TextSearch: 1) User’s satisfaction rating (SAT)
indicates how satisfied a user is with each search by comparing the
finally retrieved sound to the reference sound (collected in Step 3 in
Figure 5); 2) ease-of-use rating evaluates a user’s overall experience
of each search engine upon the completion of all 10 searches.

It can be seen that Vroom! shows a statistically significantly
higher ease-of-use rating than TextSearch at the significance level
of 0.05 (p=0.0324, unpaired t-test). This suggests a positive answer to
the first research question raised in Section 5.1, i.e., vocal-imitation-
based search can be accepted by ordinary users without an extensive
audio engineering background. The average satisfaction rating of
all categories shows slightly better performance of Vroom! than
TextSearch. However, a further inspection reveals that the average
satisfaction rating varies much from one category to another. For
MSC, NTR, SYN, and TOL categories, Vroom! receives a statistically
significantly higher satisfaction rating than TextSearch does, at the
significance level of 0.1 (MSC p = 9.8e-2), 0.1 (NTR p = 6.1e-2), 0.001
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Step 1: Listen Step 2: Search Step 3: Rate

Figure 5: Experimental framework hosting the proposed vocal imitation based search engine Vroom!. The framework hosting
the text description based search engine TextSearch is exactly the same except that Step 2 is replaced with the TextSearch
engine.

Gender
Female 109
Male 118

Birth Decade
1940s 1
1950s 8
1960s 22
1970s 37
1980s 85
1990s 65
2000s 1

Race
White/Caucasian 172
Black/African American 25
Asian 12
Multiracial 6
Pacific Native 2
Native American or Alaska Native1

79%

11%

6%

3% 1% 0% White/Caucasian
Black/African American
Asian
Multiracial
Pacific Native
Native American or Alaska Native

< 1%
< 1%

< 1%0% 4%

10%

17%

39%
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1950s
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48%52%

Female
Male

79%

11%

6%

3% 1% 0% White/Caucasian
Black/African American
Asian
Multiracial
Pacific Native
Native American or Alaska Native

(a) Gender (b) Birth Decade (c) Race

< 1%

Figure 6: Pie charts showing the demographic information of the subjects. Charts are created based on the information col-
lected from cloudresearch.com. Please note that cloudresearch.com may not have every demographic for every subject.

(SYN p = 8.22e-10), and 0.1 (TOL p = 8.79e-2), respectively, under
unpaired t-tests. This is because many subjects could not recognize
sounds from these categories nor find appropriate keywords to
search in TextSearch. This is especially significant for the SYN cate-
gory, as many sounds simply do not have semantically meaningful
or commonly agreeable keywords, while imitating such sounds was
not too difficult for many subjects. Also please note that in conduct-
ing Vroom! experiments with AMT workers, TOL Category was
named as a much boarder concept called “Sound of Things”, while
in TextSearch this category was renamed to the current “Tools and
Miscellaneous” to provide more information and help the worker
better understand the sounds they heard. This may slightly bias the
experimental results to TextSearch in TOL category. Nevertheless,

in the figure we see that Vroom! still outperforms TextSearch in TOL
category in terms of user satisfaction rating.

On the other hand, for the ANI, HUM, andOFF category, however,
TextSearch outperforms Vroom! significantly in terms of satisfaction
rating, at the significance level of 0.005 (ANI p = 1.2e-3), 0.005 (HUM
p = 1.2e-3), 0.05 (OFF p = 2.1e-2), respectively, under unpaired t-tests.
Subjects were more familiar with these sounds that can be easily
identified in everyday environments and knew how to describe
themwith keywords, while some sounds could be difficult to imitate,
e.g., shuffling cards, toilet flushing, and cutting credit card.

For the remaining TRA category, the average satisfaction rating
of TextSearch is slightly better than our proposed Vroom!, however,
such outperformance is not statistically significant.
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Figure 7: Average user ratings of sound search by text description (TextSearch) and vocal imitation (Vroom!). Ratings include
the overall ease-of-use rating of the two search engines, and search satisfaction (SAT) within each sound category and across
all categories. Error bars show standard deviations

5.5.2 User Behaviors. Figure 8 further compares user behaviors
between Vroom! and TextSearch. First, for both search engines, it
is obvious to observe the trend of positive correlation among the
number of search trials, the number of sounds played, and the total
time spend in one sound search.

Second,Vroom! has significantly fewer search trials than TextSearch
in all categories except HUM as shown in Table 2. Note that in HUM
category the mean number of search trials in Vroom! is still lower
than TextSearch, although it is not statistically significant. Consider-
ing that user satisfaction ratings for Vroom! in MSC, NTR, SYN, and
TOL categories are significantly higher than those for TextSearch,
this suggests that fewer search trials may lead to better search expe-
rience. Higher search efficiency can be achieved by requesting less
queries from the user. This answers the second research question
in Subsection 5.1 in terms of search efficiency.

On the other hand, the average number of played sound can-
didates in each search using Vroom! is much larger than that of
using TextSearch. As file names of returned sound candidates often
contain semantic meanings, we believe that users can often skip
listening to sound candidates when their file names seem irrelevant
to the text query in TextSearch. For Vroom!, such “short cut” is not
available and listening is often the only way to assess the relevancy.

Finally, the overall time spent on each search in Vroom! is signif-
icantly longer than that in TextSearch. This can be explained by the
larger number of sounds played in Vroom! as well as the additional
time spent to record and playback vocal imitations compared to
typing in keywords.

5.5.3 Ranking of Target Sound. We visualize the target sound rank-
ing distribution for both the proposedVroom! and baseline TextSearch
across different categories. Complimentary to User Feedback in Sec-
tion 5.5.1, it is an objective evaluation measure to compare the two
search engine performance.

Please note that in Vroom! the target sound is always in the
returned candidate list. But in TextSearch, given the user’s query
keywords, the target sound may or may not be in the returned
candidate list. If the target sound is not in the candidate list, we
treat the target sound rank as 999, which is greater than the number
of sounds in each category. As shown in Figure 9, black and white
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Figure 8: User behavior statistics for Vroom! and TextSearch.
Each point in the plot is themean value with std omitted for
better visualization.

bars indicate rank counts for Vroom! and TextSearch, respectively.
The overlapping portion between the two systems is shown in grey.
Some interesting findings can be observed as the following.

First, target ranks in Vroom! are distributed more flattened within
the range of maximal number of sounds in that category. But
TextSearch shows a more polarized result that either the target
sound ranks very high or has no rank at all. It indicates that the
user may choose highly matched keywords of the target sound or
cannot come up with relevant descriptions for that sound entirely.
This is obvious in MSC, OFF, and SYN categories, by comparing
the leftmost and rightmost white bars in the figure. For example
in the SYN category, for users without music or audio engineering
background, describing a synthesizer sound effect by text is very
challenging (e.g., a sound effect named “eerie-metallic-noise.mp3”
annotated with keywords of “alien”, “eerie”, “glass”, and “metallic”).

Second, in HUM, MSC, OFF, and TOL categories, Vroom! shows a
smaller proportion of high ranks compared with TextSearch, while
in other categories like NTR, SYN, TRA, Vroom! it shows a higher
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Table 2: P-values of unpaired t-tests verifying if the hypotheses in the first column are statistically significant, at the signifi-
cance level of 0.05.

User behavior hypothesis Avg ANI HUM MSC NTR OFF SYN TOL TRA

No. search trials (TextSearch > Vroom!) 7.66e-24 2.78e-2 Not significant 3.79e-8 4.76e-2 1.60e-3 2.64e-8 6.74e-8 5.40e-3
No. sound played (Vroom! > TextSearch) 5.87e-27 6.86e-4 3.86e-5 7.14e-4 4.81e-2 9.86e-12 7.24e-7 6.79e-4 1.10e-2

Total time (Vroom! > TextSearch) 1.69e-33 6.03e-4 2.58e-6 3.80e-3 4.26e-2 2.55e-14 9.84e-7 2.22e-6 3.70e-3
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Figure 9: Comparisons of target sound rank in the returned sound list between Vroom! and TextSearch within each category.

proportion of high ranks. In both cases the target sound from Vroom!
can be low ranked around several hundreds out of the entire return-
ing candidate sound list. We argue that this is still different from
the out-of-scope situation if no matched keywords can be found in
TextSearch. In practice, Vroom! could return more than 20 sounds for
the user to choose from, and could work with text-based search to
reduce the candidate pool, target sounds in low ranks could still be
possible to discover. Furthermore, as the returned candidate sounds
are ranked based on the content similarity with the vocal imitation
query, even if the target sound is low ranked, other high ranked
candidate sounds may still align well with the user’s taste.

SAT rating and target sound ranking indicate the subjective
feeling and objective evaluation about sound search effectiveness
of Vroom! compared with TextSearch. It answers the second research
question in terms of search effectiveness.

6 CONCLUSIONS
This paper presented a search engine for sounds by vocal imitation
queries called Vroom!. It has a frontend GUI allowing the user to
record his/her vocal imitation of a sound concept and search for
the sound in a library. Its backend hosts a Siamese convolutional
recurrent neural network model called CR-IMINET to calculate the
similarity between the user’s vocal imitation with sound candidates

in the library. We conducted a comprehensive subjective study on
Amazon Mechanical Turk with 200 workers to evaluate the perfor-
mance of the vocal-imitation-based search engine and compare with
a text-based sound search engine TextSearch as the baseline. We
developed an experimental framework to wrap around Vroom! and
TextSearch to conduct this user study. User ratings and behavioral
data collected from the workers showed that vocal-imitation-based
search has significant advantages over text-based search for certain
categories (e.g., Synthesizers, Music, Natural Sounds, and Tools and
Miscellaneous) of sounds in our collected FreeSoundIdeas sound
effect library. Ease-of-use ratings of the vocal-imitation-based en-
gine is also significantly higher than that of the text-based engine.
Nonetheless, we can still benefit from text-based sound search en-
gines in categories that we are familiar with (e.g., Animal, Human,
and Office and Home). For future work, we would like to further
improve the performance of the Vroom! search algorithm by incor-
porating the attention mechanism and to design search paradigms
to combine vocal-imitation-based and text-based search together.
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