
NORTHWESTERN UNIVERSITY

Score-Informed and Hierarchical Methods

for Computational Musical Scene Analysis

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science & Communication

By

Ethan Manilow

EVANSTON, ILLINOIS

June 2022



2

© Copyright by Ethan Manilow 2022

All Rights Reserved



3

ABSTRACT

Score-Informed and Hierarchical Methods

for Computational Musical Scene Analysis

Ethan Manilow

Imagine sitting in a room listening to some friends play a song. Perhaps one friend is playing guitar,

another playing bass, and a third is playing drums. The musical content in this scene is extraordinarily

complex, yet it contains many types of structure that is easy for us to comprehend. For instance, even

though we only hear the mixture of all the musicians playing together, we have a good idea of what each of

the instruments sounds like by itself. Furthermore, we are able to understand the notes that each instrument

is playing, giving us information about musical events are happening and when they occur. While it might

be trivial for our human brains to decipher this musical scene and extract all of these structures, it is a

difficult problem to make a machine do a similar analysis.

These are just some of the problems that fall under the umbrella of Musical Scene Analysis, a subset of

machine learning that specifically targets the analysis of music as raw audio data. The goal of this field is to

identify and locate the key elements of a musical scene that humans attend to when we listen to songs. As a

matter of fact, the structures I mentioned in the previous paragraph both have corresponding Musical Scene

Analysis tasks. Estimating what each of the instrument sources sounds like in isolation is a task called source

separation, and is a fundamental task in Musical Scene Analysis. Determining what notes musicians play

and when they occur is called Automatic Music Transcription (AMT) and is also a fundamental problem

in the field. Making progress in solving these two tasks can enable a wide array of applications, ranging

from search, retrieval, and analyses of large scale musical corpora (e.g., Spotify, Apple Music, YouTube) to

creative uses for helping musicians.
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In this dissertation, I extend the capabilities of Musical Scene Analysis systems by creating source

separation and AMT systems that are (a) able to support more instruments, and (b) are more controllable

than prior work. I do this by introducing Score-Informed (i.e., using musical score data as a conditioning

input or as a training target) and hierarchical methods to analyze musical scenes.

Making systems that are able to support more instruments is important because many musical scenes

contain multiple instruments simultaneously. Yet, most prior AMT systems are trained on isolated piano

recordings, and thus cannot transcribe multiple instruments in a mixture. Furthermore, many prior sep-

aration systems only support a small number of fixed source types, modeling each source independently.

Here, I extend the capabilities of existing separation and transcription systems. I do so, first, by producing

a combined separation and AMT system that is able to simultaneously separate and transcribe up to five

instruments in a mixture–many more instruments than most AMT systems typically consider. Additionally,

I reframe the source separation problem as hierarchical, showing how a system is able to learn relation-

ships between different source types to efficaciously separate much more fine-grained source types than most

previous systems.

To make systems controllable for a given input example, the goal is to create separation systems whose

output can be altered without costly process of retraining it from scratch. In other words, I want to make

source separation systems that are steerable at inference time. In this dissertation, I accomplish this in two

ways. The first way is through the hierarchical lens, where I introduce a Query-by-Example mechanism that

enables it to change which source it separates at inference time, giving an end-user control knob which source

gets separated. The second method of control emerges from the notion that the Musical Scene Analysis tools

we build will never be perfect, therefore it is important to have the ability to correct these systems if they

make mistakes. From this idea, I revive the paradigm of Score-Informed separation–or using musical score

data as a conditioning input to the separator–and rejuvenate it for the deep learning era. I show how a Deep

Score-Informed Separation system allows making note-level edits to the source estimates at inference time,

proving the ability to make fine-grained edits than previous deep learning-based separation systems.

For two of the three projects in this document, I provide mockups of user interfaces built atop of the

techniques proposed here, as a means of envisioning how these systems might work in the hands of musicians

and artists. I hope the work in this dissertation paves the way for a new generation of work that emphasizes

flexibility and controllability, for the sake of making systems that can impact the workflow of end-users.
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each level individually. The Multi-level systems (rows 2 & 4) handily outperform the Single-level

systems (rows 1 & 3) at Level 1, which represents the leaf node sources. 82

2.5 Mean SI-SDRi (dB) over the unprocessed mix for hierarchical Source-Specific Separation (SSS)

and Query-by-Example (QBE) models (separated by the thick broken line). Each model is trained
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while removing either just the leaf (“leaf”, just Level 1) or the whole example (“all”, all levels) for a

specified percentage of the data. Reducing just leaf nodes up to 90% shows only a 0.3 dB drop for

SSS and 0.8 dB drop for QBE compared to using all of the leaves. 85

3.1 Cerberus networks trained and tested on piano & guitar mixtures. Each row is a distinct network,

trained with a distinct combination of three loss functions: Deep Clustering (DC), Mask Inference

(MI) and Transcription (TR). The weight applied to a loss function is used as shown where empty

cells denote 0.0 weight applied to that loss. Evaluation measures for the transcription task are the

mean precision (P), recall (R) and F1 of note onsets & offsets over all examples in the test set. For

separation I report the mean of (scale-dependent) source to distortion ratio (SDR) over the test

set. Higher values are better. The value in each cell is on the testing data, averaged across both

instruments. Empty cells (i.e., cells with ‘–’) indicate the network was not trained for that task. 107

3.2 Piano/Guitar performance on MAPS and GuitarSet data using networks from Table 3.1 trained on

Slakh2100. M means MAPS recordings in isolation, GS means GuitarSet recordings in isolation,

and M+GS means incoherent mixtures of recordings from MAPS and GuitarSet. A check mark

under the “Mixes?” column also denotes that the evaluation datasets (i.e., MAPS & GuitarSet)

were mixed together. Empty cells (i.e., cells with “–”) indicate the network was not trained for that

task. Evaluation measures for the transcription task are the mean precision (P), recall (R) and

F1 of note onsets & offsets over all examples in the test set. For separation I report the mean of

scale-dependent source to distortion ratio (SDR) over the test set. Higher values are better. 108

3.3 Results for individual instruments from three Cerberus networks trained on different sets of

instrument combinations, separated by horizontal lines. Each model has its own training, validation,

and test set which depend on the instruments it is trained to separate and transcribe. Evaluation

measures for the transcription task are the mean precision (P), recall (R) and F1 over all examples

in the test set. Drum (*) transcription evaluation measures are note onset only, all other instruments

are note onset/offset precision/recall/f-score. For separation I report the mean of scale-dependent

source to distortion ratio (SDR) over the test set. 109

4.1 Separation performance in terms of mean SI-SDRi (dB) over the test set, comparing the baseline

MI+TR network (described in Chapter 3) to three Score-Informed variants. Higher values are

better, bolded values indicate the highest score for that instrument. A check mark means that
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the Module/Residual layer was used, whereas “–” indicates not applicable. The Score-Informed

networks are given the ground truth piano rolls as input in this test. The Score-Informed networks

outperform the baseline for all four sources, with the version that has some additional piano roll

processing layers with a residual connection performing best overall. This indicates that additional

score input data is useful when doing source separation. 131

4.2 Transcription performance in terms of mean note onset/offset F1 score over the test set, comparing

the baseline MI+TR network (described in Chapter 3) to three Source-Informed Transcription

networks. Higher values are better, bolded values indicate the highest score for that instrument.

“3” means that the Module/Residual layer was used, whereas “–” indicates not applicable. The

Source-Informed Transcription networks outperform the baseline in every single case across all four

sources. The best version had additional source processing layers without a residual connection.

This suggests that separating instruments is easier if the source data is available in addition to the

mixture data. 132

6.1 Transcription F1 scores for the 4-layer BLSTM multi-instrument Automatic Music Transcription

(AMT) system used as a pre-processing step for the Deep Score-Informed Separation (DSIS)

interpolation experiments in Chapter 4, Section 4.3.3. Here, I provide both the note onset/offset

score and the frame score (discussed in the Introduction Section 1.3.2) to show how even though

this system does not get many onsets & offsets correct, it does do a decent job at getting some

of the frames correct. An imperfect AMT system is actually desirable for the DSIS experiments

because it lets us better simulate how the DSIS system’s separation estimates will change when a

user makes edits; if the AMT system were perfect there would be less opportunities to simulate

potential changes to the piano roll. 150
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CHAPTER 1

Introduction

Music is a fundamental aspect of the human experience. Every human culture on Earth makes music [188]

and some researchers believe that musicality is embedded within us at a biological level [120], some going as

far as stating that music might be a crucial element in the evolution of abstract thought [40, 102, 187]. Our

relationship with music can be profoundly personal, emotional, spiritual, and autobiographical. In modern

life, music accompanies us in recreation and in work, in solitude and in company, in religious ceremonies and

on everyday trips to the grocery store.

Our history shows that music is deeply intertwined with our development of technology. In fact, some

of the key pieces of material evidence that our paleolithic ancestors were musical are flutes carved from

animal bones that date back tens of thousands of years [38]. While these flutes are perhaps among the

earliest instruments, we have since created a rich lineage of musical tools. We have stretched animal skins

to make drums, tensioned strings across wood to make lutes and violins, devised sophisticated mechanical

systems to make the pianoforte play loud and soft, invented intricate tubing for saxophones and trumpets,

experimented with electricity to record, amplify, and affect all of the noises we make, and coerced electrical

signals to synthesize nearly mathematically perfect waves starting with the Moog synthesizers of the 1960s.

The story of humans as musicians is enmeshed with the story of humans as technologists.

Our technological creations are more than the sum of their physical components, though. Each new

instrument concept brings with it new conceptualizations of music itself [122, 171, 172]. We are able to

create anew within the unique frameworks that each new musical instrument embodies. New instruments

enable entirely new modes of musical expression; many of the instruments listed above play an indispensable

role in forging the identity of musical genres. It is hard to imagine a symphony without a violin, a marching

band without horns, or heavy metal music without distorted guitars. These instruments are embedded into

these these genres at their core, and they provide the foundational color that gives the resulting music its

character.

The development of recorded sound fundamentally altered our relationship with music. While the initial

delight of recording was that it enabled a performance to be captured and then re-experienced by a listener,
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music producers discovered how to use the act of recording as a means of creativity its own right [18, 68,

238, 299, 309]. The recording studio itself had became an instrument that could be played and manipulated,

bringing with it a reconceptualization of music-making that was drastically more powerful than any of our

previous instruments.

Of the many hallmarks in the history of recording technology, one of the more significant advances is the

computerization of recording. Digital Audio Workstations (DAWs) have not only democratized the use of

sophisticated recording techniques, but they have also enabled completely new ways to manipulate recorded

sounds [6, 119, 189]. Early experimental recording techniques pioneered by Pierre Schaeffer [237] (and more

familiarly, The Beatles [310] and The Beach Boys [93]), morphed into new techniques centered around sam-

pling (i.e., reusing a portion of an old song to make a new song) [193, 227] and remixing [271]. Sampling

and remixing have become mainstay techniques used in many popular music genres, like hip hop [45, 245].

As more technologies for making music become available, we find more and more ways to exploit these

technologies to enable new modes of creative expression.

One way we can imagine music-making is as a conversation. Musicians often feel as though they are

communicating when they play with other musicians [235], but there is also a conversation happening with

their instrument [90, 132, 158, 171, 205]. With analogue instruments the musician-instrument conversation

is very one sided; a skilled musician has an intimate relationship with the instrument, knowing how it will

respond to every slight variation, however the instrument is never talking back of its own volition. The

instrument is static in the hands of a skilled performer, rarely diverging from a known path of interaction.

Recording can be seen as an extension to this conversation, whereby a performance is reflected back to the

musician. Just as a conversation occurs when they play with another person, recording enables the musician

to have a conversation with (a past version of) themself.1 The recording studio enables musicians to add

edits and effects, perhaps creating a ‘fun house mirror’ reflection of themselves, to extend the reflection

metaphor. The recording studio is still static in this sense; it reflects in whatever way you tell it to but it

does not understand the content you ask it to reflect. Just as recording creates a less static conversation

than a instrument alone, computing further enhances the dynamics of the conversation. Current DAWs

expand these fun house reflection capabilities of analogue recording, making many things easier and adding

1The great pianist Bill Evans noted as much on his album Conversations with Myself where he recorded three overdubbed
versions of himself playing jazz standards. Recommended listening while reading this dissertation!
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new levels of interactivity. However, this technology still cannot have an in-depth musical conversation in

the same way that another musician can.

To enable a new kind of music-making, machines are missing a key ingredient: the ability to listen.

Humans have a remarkable ability to listen to and understand music, being able to innately parse the

myriad structures in a musical scene. For instance, imagine listening to our friends play a song. Imagine

a guitar, a piano, and a drummer. Even though we cannot hear the guitar by itself, we have a good idea

about what the guitar sounds like by itself if the piano and drums were muted or silent. Similarly, it is

trivial for us to attend to the notes that each of the instrument plays; the notes are what make up the sound

of the instrument. Not to mention our ability to understand higher-level qualities about the song: things

like tempos, beats, song forms, genres, moods, etc, are all related to these lower-level characteristics like

the sounds of instrument and note events. Our brains are able to do all of this advanced processing even

when many overlapping things happen simultaneously! When listening to our friends, we do not just hear

the guitar, but all three instruments. Furthermore, we are able to adapt to whatever acoustic environment

that we are in; we still recognize the music as our friends’ song whether they perform in a concert hall or

in a drab basement, but the acoustics of these places are vastly different. Our ability to parse all these

things is second nature, and being able quickly understand them is part of what drives our ability to have

sophisticated musical conversations with other musicians.

These analogous listening processes are not so straightforward for machines. To do them, machines must

operate starting from a raw audio signal. Audio signals are extremely high dimensional (e.g., a 3 min song

has ≈8M samples), the relevant structures that span many orders of magnitude (i.e., note onsets occur at the

order of milliseconds and musical forms (e.g., AABA, sonata form, verses, chorus, etc) can unfold over a few

minutes), they often contain multiple relevant, overlapping sounds heard simultaneously (e.g., each of our

individual friends in the band), and are highly sensitive to the particularities of the recording environment

(e.g., room reverberation). Making machines that can emulate these listening processes is a foundational

step towards making machines that can contribute to a musical conversation in a worthwhile manner. To do

this, we need machines that can analyze musical scenes.

Fittingly, Musical Scene Analysis is the name for the field of artificial intelligence research that aims to

identify and locate some of these key musical structures that humans attend to when they listen to a musical

scene. Musical Scene Analysis can be viewed as a subfield of Machine Listening, an area that focuses on

developing machine learning systems that can solve a wide range of problems related to sound [13, 14, 229].
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Musical Scene Analysis, often overlapping with the area of Music Information Retrieval (MIR) [54], has

been the subject of many decades of research, with recent advances coming in the form of deep learning and

neural network research. Examples of the tasks that Musical Scene Analysis systems attempt to solve include

fundamental frequency estimation [10, 67, 140], beat tracking and estimation [42, 62], melody extraction [230,

231], query by humming [41, 88, 150], genre classification [236, 277], mood classification [152], cover song

identification [242], musical instrument identification [76], repairing damaged musical signals [37, 177], and

more. Successful Musical Scene Analysis systems are already beginning to power the next generation of

music production [2, 3, 125], education [258, 308], and recommendation tools [206, 281], and are enabling

new means of expression, learning, and discovery for musicians and music listeners.

Musical Scene Analysis has the potential to create musical tools that can listen to and understand the

music that we are making. Instead of being passive participants in the music-making conversation as before,

a new generation of Musical Scene Analysis-laden tools could act as engaged interlocutors, being an instru-

ment that acts more as another musician rather than just another tool. If handled with care, the machine’s

ability to listen could make these new systems a fun and powerful new addition in humankind’s ever growing

arsenal of musical tools, which in turn could be a new engine of musical expression.

In this dissertation, I will focus on two Musical Scene Analysis tasks in particular, specifically Musical

Source Separation [174, 181, 284], and Automatic Music Transcription [7, 8].

Briefly, Musical Source Separation is the task of isolating individual musical instruments (i.e., sources)

from a mixture, effectively muting unwanted sources (see Section 1.2). As I will discuss in the next section,

source separation has the potential to help many downstream tasks [80, 100, 101, 108, 121, 126, 191, 246,

262, 294], but also is a useful technology in its own right, helping artist and musicians remix and clean up

recordings [36, 60, 190, 199, 305]. The open problems with existing separation systems that I tackle in this

dissertation are the fact that (a) most systems only work for a limited, fixed set of predefined sources, and

(b) making alterations to the output of current systems is extremely tedious.

Automatic Music Transcription is concerned with converting a raw audio signal into a human-readable

symbolic music format (see Section 1.3). The resulting symbolic format is a much smaller, more distilled

representation of the musical content from the raw input audio data. Because of this, AMT systems have

a broad set of potential use cases [5, 6, 9, 73, 129, 143, 159, 173, 200, 210, 217, 226, 242–244, 276, 286,

290]. One issue with most existing AMT systems is that they are only able to transcribe audio recordings
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that contain one instrument (usually piano), and omit the case where a recording might have multiple

instruments playing simultaneously. In Chapter 3 of this dissertation, I approach this problem by drawing an

analogy between multi-instrument AMT and source separation. While all of the projects in this dissertation

make contributions to source separation, only Chapter 3 makes direct contributions to Automatic Music

Transcription, while Chapter 4 uses on the work of Chapter 3 to extend source separation systems.

Throughout the rest of this chapter I will devote many pages to explaining these tasks in greater detail,

but what is important to know now is that these two tasks are fundamental problems in the area of Musical

Scene Analysis. They are at the heart of Musical Scene Analysis because many recordings contain multiple

instruments sounding simultaneously (Musical Source Separation) and converting musical audio to symbolic

representation (Automatic Music Transcription) makes raw audio data more human-readable and parsimo-

nious. Both of these tasks together provide a route for creating a rich understanding of musical scenes.

Modern approaches to these tasks include a blend of techniques from the fields of audio signal processing

and machine learning. Because Musical Source Separation and Automatic Music Transcription are core

problems in Musical Scene understanding, solving them is a crucial step towards making machines that can

be more active participants in our music-making processes.

1.1. Contributions of this Dissertation

This dissertation will make three main contributions to the Musical Scene Analysis literature:

• In Chapter 2, I will demonstrate the first audio source separation system that exploits the hier-

archical taxonomic relationships between different classes of sound sources. The resulting system

is uses the hierarchy to separate many more source types than are typically considered, and can

maintain most of its performance when training on only 10% of available leaf data. The hierarchical

framing, in turn, enables a fundamentally new approach for end users to direct the system to focus

on separating a desired source at inference time via a query-by-example interaction paradigm.

• In Chapter 3, I will demonstrate the first combined source separation and automatic music tran-

scription system, which simultaneously separates and transcribes multiple instruments in an input

mixture. The proposed jointly-trained multitask system produces better results than dedicated

single-task systems and analyzes a musical scene in a more holistic manner. It begins to solve a
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longstanding issue with AMT systems by transcribing multiple concurrent instruments in a sin-

gle recording. Importantly, it is a demonstration that these two tasks can be symbiotic and that

considering them jointly can be beneficial.

• In Chapter 4, I will demonstrate the first score-informed separation system of the deep learning

era. This system conditioned on musical score data when it makes source estimates. In doing so,

it yields better separation performance than a baseline system. More importantly, I will show how

the score-informed setup enables note-level editing of separation estimates at inference time, which

provides another avenue for end users to make adjustments to the system’s output post-hoc.

1.2. Musical Source Separation

In general, Source Separation is the task of decomposing an auditory scene that contains multiple sonic

elements into a set of isolated constituent elements, called sources, such that each item in the set only

contains sound for the desired source [174, 181, 284]. An example of source separation in a general auditory

scene might be to remove an errant car honk from a radio interview. Put succinctly, the goal of Source

Separation is to effectively “mute” everything except for the desired source(s).

Source Separation is a fundamental problem in Machine Listening, which, once solved, can enable more

robust downstream tasks. Within music, the goal of a source separation system is to isolate the audio of a

(set of) relevant musical instrument(s) from other instruments that might be heard in an auditory mixture.

An example of musical source separation would be isolating a bass guitar from the rest of a rock band or

isolating a violin soloist from the rest of the orchestra. It is extremely common that musical recordings have

more than one instrument source playing simultaneously, and, thus, musical source separation is crucial in

enabling a laundry list of downstream music information retrieval (MIR) tasks that are facilitated by listening

to sources in isolation. Specifically, music source separation has successfully been used in conjunction with:

lyric and music alignment [80], musical instrument identification [108], lyric recognition [191], automatic

singer identification [121, 246, 294], vocal activity detection [262], audio repair [177], fundamental frequency

estimation [126], and understanding the predictions of black-box audio models [100, 101]. Some recent

systems for remixing [305] and instrument manipulation [36] have used source separation implicitly as means

to adjust a single source in a mix, forgoing an explicit step that outputs sources directly. Source separation’s

usefulness makes sense intuitively; many of these tasks become easier if the musical scene is first split into
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constituent parts because by “muting” extraneous sound sources the downstream algorithm can better focus

on the specific audio most relevant for its task.

Additionally, creative uses in video and music are both important direct applications for source separa-

tion. Music source separation is used within creative settings to isolate individual instruments for remixing

music in the case that a user does not have access to isolated recordings of each instrument, which is in many

scenarios. In multimedia editing and post-processing, source separation is used for upmixing or remixing

vintage or imperfectly recorded movies or audio to higher quality [199]. Notably, source separation technol-

ogy was the invisible hero of Peter Jackson’s 2021 documentary The Beatles: Get Back. Built from scrapped

archival materials from their 1969 recording sessions, the Jackson documentary depicts a fly-on-the-wall view

of the The Beatles as they recorded Let It Be. Much of the audio recorded in the 1969 archives was recorded

with a single microphone, making it difficult to hear some instruments clearly, and begriming important con-

versations with the cacophony of errant guitar, bass, and drum noodling. As such, Jackson’s team turned to

source separation to isolate each source and remix the audio, proving to be a crucial part of the restoration

process of the old material [60, 190]. In the process, the documentary became a high-profile demonstration

of how source separation can directly enable a better listening experience.2 Given its many potential direct

and downstream applications, music source separation is a crucial aspect of Musical Scene Analysis and a

worthwhile endeavor in its own right.

1.2.1. A Primer on Audio Signal Processing and Source Separation

In this section, I will provide a more in-depth view of the mechanics of source separation. As I do so, I

will also introduce all of the audio signal processing basics required to understand current source separation

approaches and the rest of this dissertation.

In the digital domain, monophonic (i.e., single channel) audio can be thought of as a one dimensional

array of discrete-valued numbers x(t), where the value of x at time t is the amplitude of the signal at that

instant in time. When digital audio recordings are made, audio signals are sampled at a uniform rate,

meaning the absolute time difference between two neighboring indices t and t + 1 is constant for any value

of t. This is called the sample rate. Similarly, the values of x(t) are quantized to the nearest value within a

range of linearly uniform discrete steps. This is called the bit depth. A standard value for the sample rate are

44.1 kilohertz (kHz), or 44,100 times a second and a standard value for bit depth is 16 bits. Audio encoded

2See a short video of the results here: https://youtu.be/sBR5VNWJZmw

https://youtu.be/sBR5VNWJZmw
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Figure 1.1. Calculation of a Short-Time Fourier Spectrum. An input signal x(t) is split into
overlapping segments, called short-time windows, and a discrete Fourier transform (DFT)
is computed on each of these windows, and these DFTs are stacked to make a 2D complex-
valued array with frequency and phase information at for each window. Phase information
is omitted here for clarity. Image adapted from [208].

at 44.1 kHz in 16 bits is called “Compact Disc Quality.” There are many other ways to represent audio

digitally (including expanding this definition to include stereophonic audio), but this definition is suitable

for understanding source separation. Audio signals like this are sometimes called “time series” signals or

“waveforms” (shown in the top blue plot labeled “Input Signal” in Figure 1.1).

An audio mixture is a signal that is a composite of multiple individual signals. It may be a natural mix,

such as the result of using just one microphone to record multiple sound sources (e.g., a single-microphone

recording of The Beatles, described above). It may also be an artificial one, made in a studio where multiple

individually-recorded tracks are mixed together in digital audio software. A common way to formulate source

separation is to assume that an audio mixture signal x(t) ∈ R1×T , for a signal of duration T , contains N

sound sources s1(t), s2(t), ..., sN (t), such that:

x(t) =

N∑
i=1

si(t).(1.1)
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Addition here is element-wise and every source has is the same length as the mix, sn(t) ∈ R1×T∀n. The

goal of source separation is to make every source estimate, s̃n(t), as close as possible to the corresponding

ground truth source, sn(t).

A source separation system is called a “blind” system if it is expected to estimate the sources sn(t)

given no other information other than the mixture, x(t). On the other hand, source separation systems that

have access to additional information, such as a musical score or the spatial locations of the microphones,

are referred to as “informed” separation systems. Relevant to this work is a class of source separation

systems that use musical scores as additional input for separation, which are called score-informed separation

systems. Although score-informed separation systems have fallen out of fashion with the popularization of

deep learning-based methods3 for source separation, in this dissertation I will reintroduce the Score-Informed

concept with deep learning. I will situate the work in this dissertation within this historical context in

Introduction Section 1.4.2 and in Chapter 4.

Historically, many source separation approaches compute a complex-valued Short-Time Fourier Trans-

form (STFT) from the mixture, x(t), as a preprocessing step. An STFT is used to model the frequency and

phase content of the audio signal as they change over time. An STFT is calculated by computing a discrete

Fourier transform (DFT) of a short segment of the audio clip with length l (in samples), and then shifting

forward in time (“hopping”) by a fraction of the window length, before calculating the next DFT. These short

segments have length l and are referred to as “short-time” windows (these are the “Short-Time” in the name

“Short-Time Fourier Transform”). The DFT of each short-time window calculates the frequencies active in

the audio in that window. The process of segmenting, computing a DFT, and hopping is repeated for the

length of the time series audio signal. By collecting the set of resultant DFT parameters and keeping track

of when they occur in the audio signal, we can stack the DFT outputs sorted in time to make an STFT.

These steps are shown in Figure 1.1. The result, STFT(x) = X(f, t) ∈ CF×T , is a complex-valued, two

dimensional matrix with frequency bins f and time bins t. The “hops” that shift the short-time window

are usually fractions of the length of the window, usually 1
2 l or

1
4 l. The length of the short-time window,

l, is in samples, and typically has values of 512, 1024, or 2048 samples, which are on the order of tens of

milliseconds. Note that while t is still time, in the STFT, X(f, t), t is indexed in terms of hops (i.e., fractions

of l, called “frames”) rather than in samples when the signal is a time-series. STFTs can be converted back

3Whether supervised neural network source separation systems are considered “blind” or “informed” is a matter for discussion.
A purist might argue that the supervised training set disqualifies neural network systems from being truly “blind.”
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Figure 1.2. Applying a mask to a spectrogram. The top left figure shows a spectrogram
of an isolated source (e.g. a piano). When that same source is mixed in with many other
instruments (top right), it becomes extremely difficult to discern on a spectrogram. How-
ever, getting access to a high-quality mask of the desired source (bottom left) can produce
a high-quality source estimate when the mask is element-wise multiplied by the mixture
spectrogram (bottom right). The mask is a real-valued 2D array that has values in the
interval [0.0, 1.0] such that when element-wise multiplied by a mixture time-frequency rep-
resentation, the result is an estimation of a source. The louder a source is at a particular
(t, f) point, the closer that value is to 1.0 and vice versa. In this case, the mask of the piano
(bottom left) was known a priori from the ground truth piano spectrogram (top right), but
in the general case of mask-based source separation, the mask must be estimated.

to a time-series representation losslessly by taking an inverse STFT (iSTFT). STFTs are frequently referred

to as “time-frequency” representations, and individual elements of the 2D matrix are referred to as “time-

frequency“ bins or (t, f) bins for short. It is common to denote time-series signals with lower case letters

(e.g., x(t)) and time-frequency with capital letters (e.g., X(t, f)).

The STFT is commonly used because frequency is an important component of human hearing; the

STFT is a way to explicitly encode frequency information. Other time-frequency representations often used

are the magnitude spectrogram, ||X||, power-spectrogram, ||X||2, and log-spectrogram, log(||X||), where || · ||,

|| · ||2, log(|| · ||) refer to applying an absolute value, squaring, or logarithm to each element in the matrix,
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respectively. Most commonly used for processing and visualization is the log-spectrogram, shown at the

bottom right of Figure 1.1. The log spectrogram represents the signal magnitude at each time frequency

point on a logarithmic scale. This is because most sounds contain large differences in amplitude and human

volume perception is, itself, logarithmic. Another commonly used used variant is the log-mel spectrogram,

which applies an element-wise log, but the frequency axis is spaced semi-logarithmically, rather than linearly.

Having logarithmically spaced frequency bins mirrors human frequency perception, which is also logarithmic.

A note on terminology: the term “spectrogram” is used as a short-hand for the magnitude spectrogram,

power-spectrogram, log-spectrogram, or log-mel spectrogram depending on the context (usually only one of

the above is used in a given context).

Given these additional formulations, a common approach to source separation is to find a set of estimated

“masks”, M̃1, M̃2, ..., M̃N for M̃n ∈ [0.0, 1.0]F×T that can be applied to the mixture STFT to get source

estimates. Each mask corresponds with only one source, so in order to separate N sources, we need to

make N masks. These masks are real-valued 2D arrays that are the same shape as the STFT, where each

element is between 0.0 and 1.0. The elements in the mask distribute energy from the mixture at a given

time-frequency (t, f) bin to each source. A louder source at a given (t, f) bin is assigned a value closer to

1.0, and a softer source at the same bin is assigned a value closer to 0.0. There is one mask per source and

each mask corresponds to a desired source such that estimated source spectrogram |X̃i| is calculated like

|X̃i| = |X| � M̃i,(1.2)

where � means element-wise multiplication [288]. This process is shown in Figure 1.2, where the a mask

(bottom left) is calculated from the known ground truth source spectrogram (top left) and the mask is

applied to the mixture (top right) to get an estimate of the source (bottom right). In its most distilled

conceptualization, the task of source separation becomes the task of trying to estimate a mask for each

desired source.

One detail that I have omitted in the last paragraph is that while a spectrogram, |X| ∈ RF×T , is

real-valued, the STFT, X(f, t) ∈ CF×T , is complex-valued, i.e., each (t, f) bin has a magnitude and phase

component. Both magnitude and phase are required to convert an STFT back into a waveform (and a

waveform is needed to actually hear the signal). However, the masks discussed above, M̃i ∈ [0.0, 1.0]F×T

are real-valued, and thus are only applied to the magnitude components of an STFT, e.g. |X| ∈ RF×T .
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Phase is complicated4 for many reasons; when we listen to audio, some phase errors stick out (like phase

discontinuities) and some are imperceptible (like initial phase offsets) [66, 86]. In order to mitigate the issues

involved with phase when dealing with real-valued masks being applied to real-valued spectrograms, we can

employ a trick: use the phase from the mixture’s complex-valued STFT. In other words, the phase of each

source estimate is added as a post-processing step by copying it directly from the mixture STFT [86]. All

of the source separation models in this dissertation will produce masks on real-valued mixture spectrograms

and will use this trick of simply copying over the mixture phase for the model’s source estimates.

Although copying the phase from the mix can potentially lead to perceptual quality issues [138], in many

situations the performance of the systems are bottlenecked by producing high quality (magnitude) masks. In

other words, it might be more impactful on perceptual quality if the model produced a better mask than if it

estimated the phase perfectly (of course, doing both is most desirable). Regardless, this simple trick is usually

good enough to produce high quality estimates and is used by many state-of-the-art separation systems from

the past few years [111, 265, 268, 269]. A budding trend is to have a network predict the source’s phase

alongside the magnitude, which has lead to state-of-the-art performance in some recent systems [34, 35, 43,

148]. It is also possible, though not as popular, to approximate the phase as a post-processing step using

various signal processing algorithms [95, 96] or even incorporate these so-called phase estimation algorithms

into the network’s training and inference procedures [153, 293, 298].

It has also become popular for neural network systems to forego time-frequency representations alto-

gether, inputting and outputting waveforms directly. These systems are sometimes referred to as “end-to-end”

systems. Instead of explicitly calculating an STFT (or similar) as a preprocessing step, these systems use

the waveform x(t) ∈ R1×T directly as input to the network and output a set of estimated sources directly as

waveforms, s̃1(t), ..., s̃N (t) for s̃i(t) ∈ R1×T . The first layers of such systems implicitly learn a transformation

of the waveform data in a similar manner to the STFT, however the parameters of this transform are not

fixed before-hand as in the STFT, but learned from the data.5 Whereas mask-based spectrogram models

must employ special tricks to represent phase post-hoc, as in the previous paragraph, these end-to-end mod-

els learn how to represent phase implicitly such that no special post-processing phase tricks are required.

4See https://source-separation.github.io/tutorial/basics/phase.html.
5The DFT and inverse DFT (iDFT), part of the STFT/iSTFT as described above, define a particular filter bank used to
transform the signal to and from a time-frequency representation [256]. Filter banks encode an input signal as multiple frequency
components (usually 512, 1024, 2048, etc), with each centered around a single frequency of interest. These components make up
the frequency axis in an STFT (or spectrogram). The process of computing both the DFT and iDFT is differentiable, enabling
both processes to be incorporated into neural network training [32, 33, 35, 153, 298]. Recent work has thus generalized the
special DFT/iDFT filter banks either by learning a set of parameterized filter banks [48, 209], or by using a convolutional layer
learn the filter bank transformations directly from the waveform [169, 170, 278].

https://source-separation.github.io/tutorial/basics/phase.html
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Recent work in speech separation has shown that end-to-end systems are capable of surpassing the theoreti-

cal maximum performance of mask-based spectrogram techniques (evaluated on canonical speech separation

datasets according to objective measures of quality, discussed in Section 1.2.3) [29, 167, 169, 266]. However,

this impressive feat has yet to be replicated with end-to-end models trained on music, and, therefore, the

set of current state-of-the-art music separation networks contains both mask-based spectrogram models and

end-to-end waveform models.

1.2.2. Datasets for Source Separation

Data is an important component of any machine learning system. Thus, in order to use machine learning to

do source separation, we require audio data consisting of mixtures paired with the isolated recordings of the

sources that were combined to produce that mixture. For most recent systems, the de-facto standard dataset

for benchmarking is the MUSDB18 [224] dataset, which is composed of 150 full-length songs that contain

mixtures of live musicians playing their instruments, recorded and mixed together in a studio setting.

Despite being the most common dataset used for source separation over the last few years, MUSDB18

has some shortcomings that limit its usefulness for the goals of this dissertation. The first is that MUSDB18

defines four source categories: “Voice,” “Bass,”, “Drums,” and “Other.” The latter source, “Other” is a catch-

all category for any source that does not easily fall into the first three categories. This means that guitars,

pianos, saxophones, violins, synthesizers, didgeridoos, zithers, and any other non-bass/voice/drum source

type gets assigned to be a part of “Other.” Because these are all lumped into one source type, this also means

that you cannot train a system to separate any one “Other” instrument from a second “Other” instrument

by training a system using MUSDB18; it is impossible to use a system trained on MUSDB18 to separate

a mixture of a guitar and piano. As I will discuss in Chapter 2, using musical instrument hierarchies can

help neural networks produce better separation estimates, but an important part of using such a hierarchy is

having enough instrument types to meaningfully populate it. MUSDB18’s four source types are not sufficient

in this regard.

The second issue is that, because MUSDB18 contains recordings of live musicians, it does not come with

aligned transcription data. I will delve into Automatic Music Transcription further in Section 1.3, but, briefly,

transcription data gives the precise timing of note events (e.g., note onsets, note pitches, instrument ID, etc)

such that it can be aligned with the corresponding audio signal of that performance. Having transcription



33
data is important for training multi-task separation and transcription systems like Cerberus in Chapter 3,

as well as score-informed separation systems as I do in Chapter 4.

Therefore, to accomplish the goals set forth in this dissertation, I will use the Slakh2100 dataset [184].

In 2019, I created the Slakh2100 (or Slakh) dataset for use with musical source separation and/or automatic

music transcription systems. There are some key differences between Slakh and MUSDB18. The first is that,

rather than originating from recordings of live musicians, the audio in Slakh is all synthesized from symbolic

note data (specifically, MIDI data from the Lakh MIDI Dataset [221], a dataset of ≈180,000 MIDI files was

scraped from the web). This is beneficial in some aspects and detrimental in others.

The benefits of Slakh are that because the audio data is synthesized from such a diverse wellspring of

MIDI data, it is easy to generate an ample amount of data that can match a wide spectrum of needs. For

instance, has a lot more source types than MUSDB18; Slakh has 34 instrument sources (i.e., no “Other”

source) to MUSDB18’s 4. This diversity of source types will enable the hierarchical separation models

described in Chapter 2. Additionally, because Slakh was synthesized from note data, the audio data is

accompanied by perfectly aligned transcription data. Slakh’s aligned transcription data will be used in

Chapters 3 and 4 for multi-task separation and transcription and score-informed separation, respectively.

However, because Slakh data is synthesized it does not sound like live musicians. Even though when

creating Slakh we used professional-grade sample-base synthesizers (the current gold standard for realistic

sounding instrument synthesis), the audio still sounds very different than recordings of live musicians. For

instance, the synthesizers are never out of tune, whereas the tuning of live musicians is less precise. Slakh

data is still easily recognizable as music, though systems trained on it might have a hard time generalizing to

recordings of live musicians. For source separation, we investigated generalization in the paper introducing

Slakh [184], but further work is needed to bridge the gap between synthesized data and real data (i.e.,

sim2real).

Every chapter in this dissertation has experiments that use Slakh. Slakh is made up of audio signals

containing musical mixtures with accompanying audio for every source, and aligned transcription data in the

MIDI format. It contains 145 hours of mixture data with separate audio files and aligned transcription data

for each source. The audio is synthesized using 187 different synthesizer patches (i.e., instrument sounds)

arranged into 34 instrument source types (e.g., there are 9 different electric bass synthesizer patches that all

get mapped to the “Electric Bass” source type. See them all at http://www.slakh.com/). All of the audio

is CD Quality (i.e., 44.1 kHz, 16 bit). Slakh totals 1710 total mixtures, with 1289 used for training, 270

http://www.slakh.com/
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for validation, and 151 withheld as a test set. By default, each Slakh mixture is guaranteed to contain at

least one guitar, one piano, one bass, and one drum source; they might contain other sources as well (e.g.,

strings), but they all have at least those four sources. In Chapter 2, I will use the mixes as they come in

Slakh (i.e., using all of the 4+ sources), but in Chapters 3 and 4 I will create mixes from just 4-5 of the

sources in each Slakh mix instead of using the mixes with the additional instrument sources. Further details

about how Slakh is used for experiments will be provided in their respective chapters.

1.2.3. Evaluating Source Separation Systems

The evaluation of source separation systems is a difficult problem that has been debated for many years.

The goal of source separation is to produce the audio for an isolated source from a mixture, and, as such,

determining if a system did well naturally leads to considering whether the resulting output sounds like

the desired isolated source (e.g., “Does this guitar estimate sound like it would if the rest of the band were

muted?”). In general, determining how something sounds introduces numerous complexities, many of which

stem from the nuanced and multifaceted nature of human auditory perception [12, 98]. The other subtext

here is that, of course, perception is highly subjective, so what we really want to know is “Do most people

think that the source estimate sounds like what the desired source should sound like in isolation?” Given the

myriad intricacies of human perception, the conceptually simplest answer to evaluate source separation is to

just have people listen to the output and rate how good it sounds [65, 124]. In fact, the gold standard method

of evaluation involves doing listener studies with highly-trained participants in an acoustically treated room.

However, this is expensive and time consuming, leading to small sample sizes. It is, thus, rarely done.

As an alternative, researchers have proposed ways of crowdsourcing similar types of evaluations over the

web, substituting a small number of ratings from highly-trained experts with a large number of ratings by

lightly-trained non-experts [23, 24, 130, 151, 239]. The hope of this strategy is that the law of large numbers

will wash away any variation caused by the diverse listening experiences of participants. Still, crowdsourcing

costs money, takes time and it is non-trivial to ensure trustworthy results. Perhaps most importantly, listener

studies are difficult to fully automate, and are very inefficient when trying to evaluate hundreds or thousands

of hours of source separation output. Evaluating hundreds or thousands of hours audio is common when

designing separation systems, so a scalable evaluation method is oftentimes the most desirable.

With that in mind, the most common way to do source separation evaluation is via automated processes.

When doing automated evaluations of source separation systems, we need to shift the evaluation question
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from asking how good the output separation sounds (as might happen in a listener study), to instead trying

to quantify how similar an estimated source signal is to a known reference source signal. This tactic has the

benefit of being cheap to run, easy to scale, and has a smaller, more well-defined scope than determining if a

source estimate “sounds good.” However, the trade-off is that automated similarity measures can be sensitive

to things that people are insensitive to (e.g., phase offsets) and vice versa. Despite this, the practical benefits

of automated similarity measures has made them the de-facto yardstick that researchers reach for to measure

their separation systems. Typically this similarity is measured using signal processing techniques. Quite a

few of these have been proposed that are specifically targeted to evaluate the quality of speech signals [117,

185, 186, 212, 225, 267, 273], but for music separation the most common of these are a trio of measures

called Source-to-Distortion Ratio (SDR), Source-to-Artifacts Ratio (SAR), and Source-to-Interference Ratio

(SIR) [283].6 As is standard, I will only report SDR in this dissertation, which is generally thought of as

a measure of the “overall quality” of a separation estimate. There are multiple implementations of SDR

described in the literature [154, 222, 264], however in this dissertation I will use the following definition:

SDR(ŝ, s) := 10 log10

(
‖s‖2

‖s− ŝ‖2

)
(1.3)

given some reference source signal s and an estimate source signal ŝ. When the absolute difference between

the reference and estimated source signals, ‖s − ŝ‖ is small, the denominator is much bigger than the the

numerator, yielding a large SDR value and indicating that the source estimate is more similar to the reference

signal. In other words, higher values indicate source estimates closer to the reference, i.e., better separation

performance.

There are two additional variations on this SDR equation that I will use in this dissertation. The first

is the so-called Scale-Invariant Source-to-Distortion Ratio (SI-SDR), which introduces the idea that the

loudness of the signal should not effect the SDR score (“scale” here refers to a signal’s amplitude). The

SI-SDR [154] adds a scaling factor, α, to the target signal to add match the amplitude of the estimated

signal (this is the “scale-invariance”). SI-SDR is defined as

SI-SDR(ŝ, s) := 10 log10

(
‖αs‖2

‖αs− ŝ‖2

)
= 10 log10

 ‖ ŝT s
‖s‖2 s‖

2

‖ ŝT s
‖s‖2 s− ŝ‖2

(1.4)

6These also go by the name BSSEval measures, due their the name of one of the early widely-circulated MATLAB implemen-
tations, named Blind Source Separation Evaluation.
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where α := ŝT s

‖s‖2 is the scaling factor that ensures that the estimated signal ŝ and the reference s have the

same scale, with ŝT s indicating the vector dot product between ŝ and s.

The second variation on SDR is measuring the improvement in SDR over the mixture. The idea here is

to measure the SDR before doing any kind of processing (i.e., using the mixture as the “source estimate”)

and compare that number to the SDR using a source estimate from the separation algorithm in question.

Applying this variation to the Scale-Invariant SDR yields the following:

SI-SDRi(ŝ,m, s) := SI-SDR(ŝ, s)− SI-SDR(m, s),(1.5)

which is called the SI-SDR Improvement, or SI-SDRi.

In this dissertation, I will report separation results using SDR and SI-SDRi. This is due to the fact

that SDR was the standard up until SI-SDRi had become standardized, which occurred between the work

in Chapters 3 (Cerberus) and 2 (Hierarchical Separation). (Note that the chapters do not appear in chrono-

logical order, so the work in Chapter 3 predates the work in Chapter 2.) In each chapter, I will be explicit

about which version of SDR I am using.

While it is true that objective measures (including SDR and its variants) are no substitute for human

listener studies,7 they are the standard for measuring separation performance and it can act as a (noisy)

proxy for true separation quality as judged by a human. As I touched on briefly above, its real appeal is the

ability to easily measure separation performance on thousands of hours of audio, as I do in this dissertation

and which would be prohibitively expensive if doing listener studies. A fruitful direction for future work

would be the development of a method that can cheaply evaluate audio quality in a way that is strongly

correlated to human perception. However, this idea is beyond the scope of this document.

1.3. Automatic Music Transcription

The goal of an Automatic Music Transcription (AMT) system is to convert an auditory musical signal

into some form of a musical score, such as a piano roll or Western European notation [7, 8, 143–145] (this will

be discussed further in Section 1.3.1). The generated musical score, also called a transcription, is a symbolic

representation of the content of a musical piece. A transcription can be thought of as a set of instructions

to produce the audio content of the music; these instructions come in the form of note events, which can

7They also require ground truth sources [180], which can be hard to come by.
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determine the start, stop, loudness, and pitch of a note, as well as any other characteristics relevant for

representing the performance (e.g., in some cases it might be important to notate vibrato or dynamics). The

process of music transcription is the musical equivalent to transcribing a recording of a person’s speech into

a text document. The process of transcribing a musical piece can be thought of as the opposite process of

playing a musical piece; playing a piece turns notation into sound, whereas transcription turns sound into

notation.

In general, transcription data is much more parsimonious than an audio recording; instead of the millions

of data points that make up the samples of a digital audio recording, a transcription of the same piece might

consist of a few hundred or a few thousand note events that specify the musically-relevant structural aspects

of the musical audio.

An effective AMT system could have broad applications, enabling interactions for music education [9,

73, 290] (e.g., analyzing and providing feedback on a student’s performance from a recording), and music cre-

ation [6] (e.g., indexing musical ideas by rhythm, or melodic or harmonic structure). Manual transcription is

a notoriously labor-intensive process [143] and, so, automating transcription could enable the transcription of

large music corpora (e.g., Spotify, YouTube, Apple Music, etc), which could possibly power recommendation

engines that have knowledge of the structural components of the music. It could also facilitate large-scale mu-

sicological analyses, revealing insights about how musical compositions vary across time periods, geographic

locations, genres, etc [5, 129, 200, 210, 217, 243, 244, 286]. Additionally, an important problem for rights

holders is the ability to determine when a new rendition of an existing song (i.e., a “cover” song) appears

so that they can provide royalties to the original authors. This task is called cover song ID, and is made

difficult because new versions often have different tempos, key signatures, and instrumentation compared to

the original [242]. A system that can transcribe musical mixtures could power cover song ID applications

that are invariant to these confounding factors [159, 173, 226, 276].

Although the majority of work in this dissertation is centered on source separation, AMT plays a crucial,

albeit smaller, role in the latter two projects, Chapters 3 and 4. As such, it is important to discuss so that

I can contextualize the impact of the contributions of Chapters 3, and understand how AMT fits into the

work of Chapter 4.
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Figure 1.3. A transcription can be quite sparse. This one has only lyrics and chords (the
letters C, G, D, A, E above the lyrics), but omits other pertinent info that is expected to be
interpreted by a musician, like the melody or the timing of the chords. Song: “Hey Joe”
recorded by various artists, & famously Jimi Hendrix.

1.3.1. Representing Data for Automatic Transcription

The level of detail and structure of a musical score or transcription is dependent on its use case. For instance,

in searching for how to play a popular song on the internet, you might find a website containing the lyrics and

chords of the song (like in Figure 1.3), but no information on the melody, timing of notes, instrumentation,

loudness, articulation, tempo, rhythm, chord voicings (i.e., what specific notes to play for each chord), and

so on.

Contrast this to Western European music notation (Figure 1.4b), which might have markings for some

of the things that the lyrics and chords website lacked, but might contain relative or vague information on

loudness and exact timing of notes. In either case, such information might be left out intentionally, with

the details expected to be filled in according to the interpretation of a musician. As is visible by comparing

three different incarnations of the same musical score in Figure 1.4, the amount of detail captured in the

transcription is related to how it is represented.

The input to an automatic music transcription system is an audio signal and the output is a transcription.

More precisely, almost all modern systems use a spectrogram or one of the aforementioned spectrogram

variants (i.e., log-mel spectrogram) as input to the network so that frequency information is represented

explicitly. Typically, the desired output is a transcription containing data on every single note such as the

pitch, loudness, absolute timing information (i.e., precise start and end), and instrument type. To this end,

most AMT systems create transcriptions in the piano roll format (shown in Figure 1.4c), which can be

represented as a 2D matrix with pitch represented along one axis, time represented along the other, and

values corresponding to volume of the notes. The name “piano roll” derives from the 1800’s, when player

pianos read and played music from paper rolls that had score information inscribed as perforations. Today,

piano rolls are commonly found in modern audio software, such as digital audio workstations (DAWs), where,

despite their name, piano rolls can represent music from any type of instrument. A piano roll usually only
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(a) Jazz “lead” sheet.

(b) Western European music notation.

(c) Piano roll.

Figure 1.4. Three types of musical scores representing the same piece of music, any of which
could be the output of a Automatic Music Transcription (AMT) system. Song: “Ruby, My
Dear” by Thelonious Monk.

represents one instrument at a time; to represent multiple instruments at once, multiple piano rolls are

required, one for each instrument. Typically, the pitch resolution corresponds with the notes of the twelve-

tone equal temperament chromatic scale, as is visually represented by a piano along the y-axis in the figure

above, and the time resolution is typically on the order of a few milliseconds. The limitations of the piano roll

revolve around the fact both that time and pitch are quantized, meaning that some occasionally-occurring

musical expressions like glissando (i.e., smoothly gliding from one pitch to another) are hard or impossible

to represent. Regardless, piano rolls have been the output format of choice for almost all AMT systems.
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1.3.2. Datasets and Evaluation Measures for Automatic Music Transcription

As I will discuss in more detail in Section 1.4.2.1, most of the effort in building AMT systems been centered

around transcribing recordings of solo piano [11, 53, 63, 103, 135, 136, 139, 204, 219, 247, 307]. Because of

this, the standard datasets for AMT, like MAPS [64] and MAESTRO [106], exclusively contain recordings

of solo piano performances. Relatively less attention has been given to automatically transcribing other in-

struments individually; nonetheless a few datasets exist which support transcription of solo guitar recordings

(GuitarSet [303]) or solo drum recordings (E-Groove MIDI Dataset [19, 89]).

One of the goals of this dissertation is to develop systems that can transcribe multiple instruments

simultaneously (i.e., multi-track transcription). I am aware of only two datasets that support such a goal:

MusicNet [272], and Slakh2100 [184]. MusicNet is a dataset of 330 freely-licensed classical recordings with

post-hoc transcription annotations. These annotations were created through an error-prone automated

alignment process. MusicNet does not provide recordings of each isolated instrument, precluding doing any

type of simultaneous separation and transcription (as done in Chapters 3). Slakh2100 (or Slakh), as discussed

above in Section 1.2.2, is a dataset containing many audio tracks synthesized from MIDI data (MIDI is a

standard format for transmitting and storing symbolic note data, and a MIDI file is often the actual output

artifact of an AMT system that an end user sees). Because the audio is synthesized, we can use the MIDI

that the audio was synthesized from as our transcription annotations, with the huge benefit that we are

guaranteed that the audio and transcription data are well aligned. Just as before, a potential drawback to

using Slakh is that a transcription system trained on synthesized data might have a harder time generalizing

to data that comes from recordings of live musicians. However, this distribution shift seems to be less of a

worry in AMT than it is in source separation, as hinted at by the MT3 transcription model [84], which leans

on Slakh data to achieve state-of-the-art AMT performance across a wide range of datasets. Therefore, for

transcription tasks in this dissertation, I will use the Slakh dataset.

Slakh has 145 hours of mixture audio data, where the mixes are composed of a set of single-instrument

audio clips that each have aligned transcription data. Further details are in Section 1.2.2. When using

Slakh for automatic transcription in this dissertation, a system will input a mixture and output a separate

transcription for each individual instrument track (up to 5, shown in Chapter 3).
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The evaluation of AMT systems is more straightforward than evaluating source separation systems. The

common measures that researchers use are precision, recall, and F1-score estimated between the estimated

transcription and the ground truth transcription. There are two common ways to calculate these scores:

Frame Scores The ground truth and estimated transcriptions are converted to a (binarized) piano roll

representation (See Figure 1.4c) with a certain frame rate (e.g., 32.5 Hz) and precision, recall, and F1-scores

are calculated, matching corresponding entries in the piano rolls, element-wise. In other words, for every pitch

and every time frame in the piano we determine if the estimated transcription value at that entry is a True

positive, False positive, or False negative with respect to the ground truth transcription value at the same

entry. We then aggregate these into Precision, Recall, and F1-scores as per usual. Practically, this is done by

flattening both piano rolls to 1D arrays, and calling scikit-learn’s [214] sklearn.metrics.f1_score().8

This is perhaps a naïve way of evaluating transcription because it treats every time-pitch entry in the

piano roll with equal weight. However, not every time-pitch bin should carry the same magnitude. For

example, imagine that the ground truth transcription contains a sustained note over 1 second, whereas the

estimated transcription turns on an off that note ten times in that second. The Frame Score will count the

gaps when the note is off in the piano roll as False negatives of that singular note, but otherwise the frames

where the piano roll is active count as True positives. However, when the note is turned on and of ten times

in the estimate piano roll, that transcription says there are ten notes! Those additional notes should be

considered not as missing notes as the Frame Score would say (i.e., False negatives), but as extraneous notes

(i.e., False positives). This leads to the second way to evaluate transcription systems.

Note Onset Score & Note Onset/Offset Scores Here, instead of calculating a score directly from the piano

roll frames, we extract information about the note onsets for the estimated and reference transcriptions. We

then count how many estimated notes match the ground truth notes and use those counts to calculate

precision, recall, and F1-scores [55, 56, 222]. An estimated note onset is deemed a True positive if the

estimated onset is within 50ms of the ground truth onset and it has the same pitch value. Estimated and

ground truth notes are matched together using bipartite graph matching [222]. For the Note Onset Score,

only the start of the note is considered in this matching process, and in the Note Onset/Offset Score, both

the start and end of the note are considered in the matching process. The Note Onset and Note Onset/Offset

scores are in general much stricter than the Frame Score, and mitigates the problem of incorrectly weighing

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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every frame in a piano roll. In this dissertation all of the transcription scores will be Note Onset/Offset

Scores.

1.4. Open Problems with Recent Approaches to Source Separation and AMT

Recently, researchers have demonstrated impressive results on the tasks of Source Separation and AMT

by introducing deep learning methods. Within music source separation, the 2021 Music Demixing Challenge

(MDX)9 was a recent competition that saw teams vie to be crowned the “best separation system.” Every

single entry in the 2021 MDX Challenge was a deep network [198]. The story is similar with AMT; all

state-of-the-art results are due to novel uses of neural networks [84, 103, 105]. Although deep networks are

the current state-of-the-art solutions to both tasks, these solutions still have major shortcomings. In this

section, I will describe open issues in existing work with regard to both of these tasks that I will address in

this dissertation.

1.4.1. Open Problems with Music Source Separation

There are two major issues with existing source separation systems. The first has to do with the problem

definition itself: in almost all modern music separation systems, a fixed set of sources are defined in a rigid,

closed-world setting. This is extremely burdensome if the source you want to separate is left out of the

problem definition, which is the case if your source is not one of Vocals, Bass, or Drums (see Section 1.2.2.

The second is that the output of current source separation systems is not easily modifiable. In other words,

once a model is trained, there is no way to alter its output if there are any mistakes, posing a usability issue

for end-users.

1.4.1.1. Fixed Source Types. As just mentioned, the first issue with music source separation is with how

sources in music separation systems are all defined in a closed-world setting, with a limited set of fixed

source types. For example, the vast majority of recent music source separation systems [33, 35, 43, 44, 111,

141, 148, 161, 198, 233, 265, 268, 269] are trained using the source types defined by the popular MUSDB18

dataset [223]: “Voice,” “Bass,” “Drums,” and “Other.” The first three source types have relatively well-defined

scopes, but the “Other” However, part of the beauty of music is in its diverse array of musical instruments,

ranging from Tuvan throat singers to church choirs, grand pianos to thumb pianos, and so on. The vast

diversity of musical instrument sources is a clear example of an open-world setting. There is a clear mismatch

9MDX was a continuation of the biennial music source separation competition, formerly named SiSEC [163, 264]. The most
recent SiSECs all had deep network-based winners as well.
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between musical sources as they exist in the world (i.e., open-world), and how they are defined for the task

of music source separation (i.e., closed-world).

Given that most systems are only able to separate a fixed set of source types, it is extremely hard for an

end-user to separate a source omitted by the system’s training data. This can be a common situation when

considering the small number of sources included in the MUSDB18 dataset described above. Most systems

have no way to add source types other than retraining the whole model from scratch with new data that

matches the source type. However, because deep learning models are exceedingly data-hungry, gathering

enough clean data is so out of reach for most end-users that this option is infeasible, not to mention the

exorbitant computational costs. It would thus be desirable to ameliorate the established requirement for a

large amount of training data for every possible source type.

1.4.1.2. Changing a Model’s Output Post-hoc. Making adjustments to the output of a source separation

model is extremely important for making this technology accessible to end-users, and, yet, making adjust-

ments to current systems is extraordinarily difficult. Source separation is a way to edit and manipulate

audio, and the vast majority of other tools for editing audio enable users to make adjustments as they are

working. However, modern source separation systems do not allow for these types of interactions, which

an end-user might expect. With existing systems the user’s only means of editing its output is editing the

resultant audio signal itself. Yet, audio signals are notoriously high-dimensional; a 30-second audio clip can

have millions of data points and many thousands must be altered to make a realistic-sounding change. So

edits like this are not really a feasible option for an end-user. Altering the output of a source separation

model after it has been trained is a near-impossible process for end-users.

For instance, one common issue a user might have is that they might want to separate a new instrument

sound. If an end-user wants a completely different source separated, the options they have are to edit the

thousands of data points or to train a whole new system from scratch.

In Chapter 2, I will propose a solution to this problem. By leveraging the long-established musicological

ideas of classifying musical instruments based on sonic qualities [287], I will show that is possible to explicitly

model the relationships between source types in a hierarchical fashion. This enables systems to take advantage

of their experience with similar-sounding sources when encountering new source types, which opens up source

separation systems to separate more types of sources, enables users to control the type of source the system

outputs, and eases the substantial data requirements of current systems.
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Instead of switching which instrument source gets separated, what if a user wants to make a more minor

edit like changing a few incorrect notes? In other words, what if the sound of a piano note is heard in

the guitar source estimate? In this case, it is even more burdensome for a user to edit note-level errors

with current systems, i.e., issues where the audio of a single note is put into the incorrect source estimate.

There are no existing deep learning systems that support this interaction, so a user would have to use an

older technology (e.g., NMF [156]) that does allow this interaction but might introduce other artifacts in

the separated audio. Other than that, the user’s only recourse is to edit tens of thousands or hundreds of

thousands of data points of the output audio to fix the sound of the stray note. What would be best is

if the user had a way to affect the separation output by making changes in a representation that was less

information dense that a raw source output.

In Chapter 4, I will propose a solution to this problem a modelling approach to source separation that

will support an interface to let an end-user to make note-level changes to the separation output by editing

transcription data (i.e., note data).

1.4.2. Problems with Considering Source Separation and Automatic Music Transcription as Distinct Tasks

Transcribing multiple musical instruments in a mixture has some similarities to the problem that source

separation systems are designed for–namely, in both tasks, the systems must analyze multiple overlapping

sounds in a musical mixture. The link between these two tasks has long been noted; early overview papers

describing a plethora of AMT systems speculated about its usefulness in source separation [8, 144, 145,

218]. Contemporaneously, Non-Negative Matrix Factorization (NMF) [156] was proposed as a solution for

AMT [253], but ultimately ended up becoming the workhorse algorithm for source separation for many

years [75, 252, 285]. Right up until the popularization of deep learning, there was a small, but thriving

community of researchers that coalesced around score-informed source separation, which investigated the

usefulness of steering source separation algorithms using transcription data [59, 71].

However, considering both of these tasks simultaneously has fallen somewhat out of favor in the era of

deep learning. Nine of the top ten most cited deep learning transcription papers only consider instruments

in isolation [11, 53, 103, 106, 135, 136, 139, 247, 261]. Similarly, none of the 5̃0 music source separation

systems in the Music Demixing Challenge [198] and none of the 16 separation systems on Papers With

Code [203] addresses transcription in any form (either as input conditioning or as an output). Given the
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similarity of source separation and multi-instrument AMT, considering these problems independently is a

missed opportunity.

For the rest this section, I will outline the open problems in the recent literature that arise from treating

Automatic Music Transcription and Source Separation as separate tasks. The first major problem is simple:

modern AMT systems are not designed to transcribe more than one instrument simultaneously, which

means that they will not work in for most musical recordings (because most recordings contain more than

one source at a time). Second, as a means to analyze a given musical scene, only separating the sources or

only transcribing the instruments therein produces a less complete analysis of the scene than if both tasks

are performed. Finally, I will make the argument that a transcription, as provided by a multi-instrument

AMT system, can a be a useful way to guide a separation system post-hoc, as I discussed above.

1.4.2.1. Existing Automatic Music Transcription Systems Only Work for Isolated Instruments. Recent Au-

tomatic Music Transcription (AMT) systems have shown great advancements with the introduction of deep

learning, with results on benchmark datasets steadily improving year after year. However, most contempo-

rary AMT systems are limited by a huge practical issue: they assume that only one instrument is present

in an input recording. Historically, most systems have been specifically designed to transcribe solo piano

recordings [11, 53, 63, 64, 103, 105, 106, 135, 136, 139, 149, 204, 219, 247, 307], and a small amount are

designed to transcribe drum recordings [19, 213, 261, 301]. In other words, these systems are not Automatic

Music Transcription systems, they’re really Automatic Piano Transcription systems; they are not expected

to work if the input audio contains a full rock band or a horn section. Few systems assume that anything

other than a piano is present in the audio. In spite of the fact that solo piano recordings are a tiny subset

of all recorded music, piano transcription has dominated the AMT space.

The sonic qualities of the piano make it an easy instrument to focus on: piano notes have a clearly defined

onset, each note decays similarly, and the fundamental frequency of each note is fixed for its duration (i.e., no

vibrato or glissando). The piano’s sonic qualities also make authentic-sounding recordings easy to produce

using high quality synthesizers based solely on signal processing methods. This means that large, realistic

datasets with ground truth transcription labels for training machine learning models are relatively easy to

produce [64, 106]. Those same sonic qualities make it easier for machine learning methods to model piano

notes, so much so that some systems are designed around the specific acoustic properties of piano notes [103,

135, 149]. A similar story holds for drum set transcription; the drum set’s “easy-to-produce” sonic qualities

make it well suited for synthesizing realistic-sounding audio using traditional signal processing methods, and,
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again, this property of the instrument has been exploited to produce high-quality training data for drum

transcription models [21]. However, many musical instruments do not have these “easy-to-produce” sonic

qualities that make it convincingly real audio relatively simple to produce. For example, a violin note might

have none of the qualities that make piano and drum notes easy to transcribe: the violinist has complete

control over the volume of the note for its duration. This means that the onset could be unclear (i.e., starting

very quiet) and each note’s decay could be different. The fundamental frequency of a violin note could also

change over the duration of the note either from vibrato or glissando. Given that violins and other musical

instruments might not have all of the nice sonic qualities that drums or pianos might have, it is natural to

ask if synthesized audio is suitable to use to train AMT systems. Prior work has left it unclear as to whether

we can still use synthesized audio data for transcription when its realism cannot be taken for granted.

Furthermore, individual instruments often do not occur in isolation, but rather they are heard with other

instruments in a mixture. A main issue with the current state of Automatic Music Transcription research

is its myopic focus on the individual transcription of isolated single-instrument recordings. Many musical

recordings have multiple instruments simultaneously and therefore most Automatic Music Transcription

systems will fail on these recordings.

Although a few counterexamples existed [272, 274], the world of AMT systems only working for solo

piano recordings was largely the story for the years that led up to my work in Chapter 3 of this dissertation.

That work was originally published in late 2019, and, in the time since, a handful of multi-instrument AMT

systems have appeared [57, 84, 112, 160, 270, 306]. Chapter 3 outlines my strategy for multi-instrument

transcription, which is one of the first deep learning systems that is able overcome the issues that prior

single-instrument transcription systems had.

1.4.2.2. A More Complete Musical Scene Analysis. This dissertation is focused on the tasks of musical source

separation and automatic music transcription. Both of these tasks provide a different, yet complementary

mode of analyzing a musical scene–source separation estimates the audio data of each instrument source

in isolation from the others, and music transcription estimates the symbolic note data for each instrument

source. The audio data and note data are different means of viewing of the same underlying musical data

in the auditory scene. Audio source data and symbolic note data exist at different levels of abstraction; the

source data is a waveform, containing millions of data samples that precisely specify the source audio, while

transcription data is a score, which compresses a waveform into a few hundred relevant data points, but it is

not readily able to be heard without an external synthesizer. For example, representing the guitar part for a
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30 second excerpt for the The Beatles’ song “Oh, Darling!" as a waveform consists of 1.3 million samples,10

whereas the guitar only plays a few dozen notes. The source audio provides low-level information which

requires effectively no extra effort to listen to, but from which higher level structure must be inferred (e.g.,

harmony, melody, rhythm, tempo, or a transcription, etc). Whereas the transcription data readily provides

information about high-level structures, but offers little information about how to realize the low-level details

crucial for complete reconstruction of the artifact that is being represented. Each type of data provides its

own perspective of the scene, and obtaining both enables a more holistic understanding of the musical scene

at different levels of abstraction. Thus, a system that only produces source audio or transcription data

provides a less complete description of a musical scene–either omitting high-level structures or low-level

details–than a system which produces both.

In Chapter 3, I will describe a system that produces both separation and transcription estimates si-

multaneously, delivering high-level structures and low-level details about the musical content in the musical

scene. Additionally, I will show how we can leverage high-level note data to make edits to low-level source

estimates in Chapter 4.

1.4.2.3. Multi-Instrument AMT can be used to Guide Separation. As I discussed a few pages ago in Sec-

tion 1.4.1.2, changing the output of a separation system after it has been trained can be a daunting task.

In that section, I made the argument that editing the transcribed notes in the musical scene is a way to

alleviate the tedium of changing the source data directly. Well, a prerequisite to enabling that interaction is

actually having those transcribed notes. Of course, a user could transcribe the notes themselves, but manual

transcription is also a notoriously laborious process and is really only an option for trained musicians, as

music transcription is not an everyday skill.

Therefore, to enable a score-informed separation system as I propose in Chapter 4, having a multi-

instrument AMT system as a pre-processor goes a long way towards making it readily usable for most

people. In Chapter 4, I use a simpler variant of the multi-instrument system I describe in Chapter 3.

However, without any multi-instrument transcription data, the note-editing interaction becomes impossible

to those who are unable or unwilling to manually transcribe a musical scene. Multi-instrument AMT is an

important piece of the puzzle that makes the score-informed separation system in Chapter 4 work.

10A typical sample rate is 44.1 kHz: 44100 samples/second × 30 seconds = 1,323,000 samples.
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1.5. Broader Impacts

As is the case in many areas, modern machine learning systems have the potential to make a big impact

on how we make and consume music. For instance, in 2020, OpenAI released Jukebox [47], generative audio

model trained on 1.2 million songs and is able to synthesize uncannily realistic-sounding songs based on

input conditioning from lyrics and metadata such as artist names, genre, year of release, and additional

tags like “mood” or playlist keywords associated with songs from their dataset (e.g., it generates a country

song, given the prompt: “Country, in the style of Alan Jackson”). One of the many predicaments about

music machine learning systems that Jukebox embodies is one of controlling the system. Without a certain

level of control over a system’s output, how can a user feel like they are still a part of the songwriting

process? Furthermore, without control is it even possible for a user to use it to write their own songs, or

will the system make whatever it fancies without any regard for the user’s desires? Hearkening back to the

beginning of this chapter, I think it is helpful to frame these music machine learning systems as instruments

being in conversation with a musicians. We know that humans are innately able to analyze the many

complex structures (e.g., overlapping sources, note events) in musical scenes. So when thinking about how a

machine learning can fit into conversation with a musician, the machine learning system that cannot analyze

these structures in music is at a disadvantage when to “speaking” to the human musician. While there is

some evidence that Jukebox has learned useful representations for analysis tasks [25] (including for source

separation [175]), having explicit avenues for control that align with the important structures in musical

scenes (e.g., sources, notes) will be paramount to making future systems that users want to interact with.

The work in this dissertation demonstrates ways to control musical scene analysis systems; for example,

Chapter 2 and Chapter 4 both describe different ways of making controllable separation systems, where the

majority of prior separation work rarely dealt with the problem of controlling a system’s output. Furthermore,

the analysis systems described here are much more capable than prior systems in important ways (i.e., scaling

separation to many more source types like in Chapter 2 or being able to transcribe multiple overlapping

instruments as in Chapter 3). The expanded output of the analysis systems I describe here could be used

as conditioning to control the next generation of music machine learning models. For instance, if a future

Jukebox-style large scale generative audio model were conditioned on transcription data–produced by a

multi-instrument AMT system–then the system would not just generate any country song, but could instead

generate my country song by being given a transcription of my playing.
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CHAPTER 2

Hierarchical Source Separation

In this chapter, I introduce the concept of hierarchical source separation. Typical source separation

systems make very few–if any–assumptions about the structure of the acoustic scenes that they attempt to

analyze. In contrast, here I develop a set of strategies for source separation based on the notion that source

types in an acoustic scene can be decomposed hierarchically. As a prerequisite, this involves formulating an

understanding of how acoustic scenes can naturally be seen as being constructed hierarchically. It is from

this perspective that we can understand not only how an acoustic scene is assembled hierarchically, but how

that same scene can be disassembled hierarchically using a hierarchical source separation system.

In Section 2.2 I will identify how acoustic scenes can naturally be thought of as hierarchical, and I will

outline principles for grouping sources according to a hierarchy. These grouping principles will guide us as

I define a set of four hierarchical source separation strategies, developed in Section 2.3 and evaluated in

Sections 2.4 and 2.5. Finally, in Section 2.6 I will propose ideas for designing interactive separation systems

built on a back-end hierarchical separation system, and show how hierarchical separation can lead to more

flexible systems that are able to separate many more source types than most other separation systems. In

this work, I restrict the discussion to musical scenes. As such, I am able exploit existing work that establishes

taxonomic relationships between different types of sources via hierarchical classification systems [287]. The

resulting separation systems explicitly model sources in a hierarchical manner as a means to analyze a musical

scene hierarchically.

Viewing a musical scene hierarchically is a potential solution to a widespread and unspoken problem

with modern source separation systems: most systems presume a single fixed segmentation of the auditory

scene, which means that dividing the scene in any new way requires retraining a system from scratch. As

a whole, the field of source separation has seen notable performance improvements with the introduction

of deep learning techniques, most notably in the areas of speech enhancement [69, 289, 295, 304], speech

separation [115, 147, 168, 278, 279, 292, 297], and music separation [33, 35, 43, 44, 111, 127, 141, 148, 161,

166, 198, 233, 265, 268, 269]. These techniques succeed in cases where the notion of a source is well-defined

and limited in scope. In the case of speech enhancement or separation, the target source never changes: it
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Figure 2.1. A common auditory scene (left): people are having a conversation with the radio
on in the background, and the radio has a band playing. There are many sensible ways to
determine what groupings of interest are in this scene, e.g., the radio vs. the talkers, or the
woman’s voice vs. the man’s voice vs the radio, etc. However, one flexible way to understand
this scene is by splitting it up hierarchically (right). This chapter discusses strategies for
hierarchical source separation.

is always defined as the speech of a single speaker. However, in real-world scenarios we might have a more

complicated understanding of a source. Consider the case where a band is playing on the radio while two

people are having a conversation, shown in Figure 2.1. What are the “sources” in this scene? Is the radio one

source and the overlapped speech a second source? Or are each of the interlocutors considered a separate

source? Are each of the instruments in the band on the radio their own source as well? Clearly, there are

many correct answers to this question, but one flexible way to understand this auditory scene is to apply a

hierarchical structure to its parts.

In this chapter, I do just that. I reframe the source separation problem as hierarchical, based on the

premise that sound sources can be organized in a hierarchical structure. These hierarchies are assumed to be

constructed such that they capture taxonomic relationships between different sources, a la the Hornbostel-

Sachs taxonomy of musical instruments [287]. Here, I investigate musical scenes although this work can be

extended to any type of auditory scene (e.g. environmental sounds).

2.1. Contributions of this Chapter

The contributions of this chapter are the following:

• I provide a theoretical framework for analyzing the sources in a musical scene in a hierarchi-

cal fashion. I propose four general strategies for realizing hierarchical source separation systems.

These strategies vary along two axes: the first axis describes whether the system is designed to

separate just one instrument (i.e., Single-instrument), or multiple instruments at once (i.e., Multi-

instrument); the second axis describes whether the system is designed to separate at just one
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hierarchical level (i.e., Single-level), or multiple hierarchical levels at once (i.e., Multi-level). As

I develop these strategies, I will highlight how certain design decisions (e.g., Multi-level Multi-

instrument designs) can lead to neural networks that are able to scale to separating larger numbers

of sources than naïve separation techniques. I will show that a hierarchical Multi-level Query-by-

Example is able to separate many more fine-grained sources than typical separation systems usually

consider.

• I implement these strategies by modifying a common source separation architecture and conduct

a set of experiments to test the effectiveness of all four strategies. I find that Multi-level systems

always outperform Single-level systems, with the largest performance boost coming at the most

specific (i.e., finest-grained) source types, which are more difficult to separate. I also find that

Multi-level systems are able to retain up to 90% of these performance benefits when trained on

only 10% of this finest-grained data.

• I propose an imagined user interface for hierarchical separation systems, built around the fact that

such systems are much more flexible than existing systems, with respect to the number of sources

they are able to separate.

2.2. Auditory Hierarchies

2.2.1. Background

Framing a musical scene as hierarchical has precedent in fields that study human audition. Evidence shows

that human auditory perception has many hierarchical characteristics [74, 211, 215, 296]. In his seminal text

on human auditory perception, Auditory Scene Analysis [12], Albert S. Bregman notes how auditory scenes

are organized hierarchically. In analyzing an auditory scene containing two musicians playing a duet, he

concludes: “It makes sense, therefore, to think of the auditory perceptual organization of [a musical] duet as

having a hierarchical structure [...]. This argument implies that there are levels of perceptual belongingness

intermediate between ‘the same thing’ and ‘unrelated things.” ’ While human perceptual auditory hierarchies

come in many forms (e.g., timing hierarchies, timbre hierarchies, rhythmic hierarchies, etc), in this chapter

I focus on how sound sources can be organized hierarchically. Specifically, I focus on the task of building

hierarchical source separation systems using a musical instrument hierarchy.

The study of the classification of musical instruments falls within the field of musicology, specifically a

subfield called organology [92, 275], which itself overlaps with ethnomusicology and musical acoustics. Many
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traditions within organology taxonomize musical instruments hierarchically. Almost all human cultures

throughout history have created musical instrument classification systems [134], many of which are inherently

hierarchical. Some of the earliest systems appear over 4000 years ago in ancient China [99], which group

together musical instruments by the physical materials that they are made of. One prominent Western

example is the Hornbostel-Sachs system [287], which classifies musical instruments by their sound production

mechanisms in a hierarchical manner similar to the Dewey Decimal System [46]. Another system widely used

in Western music classifies instruments by their musical pitch range, with terms named after singing voice

classifications: e.g., soprano, alto, tenor, baritone, and bass (from highest pitched register to lowest). Each

of these systems captures some notion of a taxonomic relationship between musical instruments. Prior work

has shown that machine listening systems have been able to successfully leverage hierarchical taxonomic

relationships for the task of musical instrument recognition (i.e., determining the identity of an instrument

from a recording) [83].

Of particular note is the fact that there is an element of a musical instrument hierarchy inherent in the

process of creating modern-day musical recordings. In the recording studio, each track is assumed to be an

isolated recording of a single instrument (e.g., a full drum set), or part of one instrument (e.g., just the kick

drum from a full drum set). At the mixing board, a sound engineer can mix together multiple tracks into a

submix (called a “send” or “bus” track), which acts as a single unit in the recording session, having effects and

other signal routing configurations be specific to the submix rather than the individual tracks therein [207].

The submixes are then manipulated alongside other tracks, which may contain only a single instrument. For

example, a standard practice is to record every separate piece of a drum kit with a single microphone (e.g.

the snare, the kick drum, the toms, and each of the cymbals has its own dedicated microphone) and then

combine all of them into a drum submix. An example of this is shown in Figure 2.2. This configuration is

hierarchical ; the engineer can choose to manipulate all of the drum sounds (the drum submix) or manipulate

individual drum tracks within it.

The work in this chapter takes inspiration from hierarchical musicological taxonomies and the hierarchies

found in modern recording practices. Here, I leverage the hierarchical relationships between instruments as

a useful cue for source separation systems.
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Figure 2.2. An annotated screenshot of Logic Pro, a popular Digital Audio Workstation
(DAW), showing how to create a “mix bus” that combines multiple individually recorded
tracks into one editable unit, called a “bus.” Use of this technique is very common. The
individually recorded tracks are visualized as vertical strips, named and color coded along
the bottom (e.g., “Kick”, “Bass”, “Piano”, etc). Each track has their own set of controls to
manipulate the sound of that instrument track. The audio from all of the individual drum
tracks (labeled with orange: “Kick”, “Snare”, “Hi-Hat”, “Toms”, “Percussion”), is routed to a
super-track (i.e., the bus track), which is the leftmost track, annotated in green and titled
“Drums.” The Drums bus has its own set of controls that can manipulate all of its constituent
tracks. The DAW enables an end user is able to manipulate all of the drum tracks as a unit,
or they can edit each track individually. This indicates that there can be a clear hierarchical
structure between musical instruments when music is created. This chapter investigates how
we can leverage hierarchical structures for deconstructing and analyzing musical signals via
source separation. Image from iZotope [52].

2.2.2. The Structure of Auditory Hierarchies

As a general formulation, we can define an auditory hierarchy such that sources at higher levels in the

hierarchy are composed of mixtures of sources at lower levels of the hierarchy. At the top of the hierarchy is

the root node, which is sole source type that contains all source types, and at the bottom of the hierarchy is

a set of leaf sources that cannot be further decomposed. Other than the root node and the leaf nodes, every

other source1 node can be further separated into child sources and combined with its siblings to create parent

sources. Note that a child node can only be mixed to create exactly one parent node; in other words, multiple

inheritance is precluded in this definition. This setup is shown in Figure 2.3, and although Figure 2.3 shows

1A quick note on terminology: here, I will only use the term “source” to mean a sound source, and I will use the terms “root
node” to mean the node that has no parents and “leaf node” to mean a node that has no children. To avoid a collision, I will
not be using “source” and “sink” terminology to refer to nodes in a hierarchy.
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Figure 2.3. Sources can be mixed together to make parent sources and separated to make
child sources (left). As such, a set of sources makes a hierarchical tree, with specific source
types (like acoustic guitars) at the leaf nodes and broad source types (“All Source Types”) at
the root. We assume that a given audio mixture has sources that lie within this hierarchical
structure.

Figure 2.4. Sources in a mixture are assumed to exist within some hierarchical tree. The
hierarchy at the bottom left is based on a musical instrument taxonomic scheme [287] that
puts pairs of similar-sounding sources (e.g., an acoustic and electric guitar) closer together
than pairs of sources that sound dissimilar (e.g., an acoustic guitar and a drum set). A
hierarchical source separation is able to produce a set of hierarchical sources, which are
assumed to correspond to multiple levels of the modeled hierarchy (right).

musical instruments, an auditory hierarchy can be populated by any arbitrary source types. Notice that the

source types at higher levels of the hierarchy are more broadly defined (e.g., “stringed instruments”) than the

source types represented by lower levels (e.g., “electric guitar”). In this work, I focus on musical instrument

hierarchies because of the strong precedent in both organological research and in the studio practices of

recording engineers.

Importantly, I define a hierarchical path down a hierarchy as a sequence of source types from a source

node to a child node at a lower level. The hierarchical path includes all sources from the higher node to the
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lower node, e.g. [strings/keys] → [guitars] → [acoustic guitars]. In this project, I focus on source types that

are explicitly chosen to correspond with established hierarchical musical instrument taxonomies (i.e., the

Hornbostel-Sachs system [287]), although this hierarchical formulation can be applied to auditory mixtures

with any type of source content (e.g., environmental sounds).

For a given auditory scene, I assume that the sources therein correspond to parts of this hierarchy; the

root node is the mixture, which can be viewed as hierarchically composed of all sources, with each source

component corresponding to its specific place in the hierarchical tree. I also define a “submix”, which is the

result of mixing together a set of child sources of the same parent. Given an audio mixture, we can say a

separation is hierarchical if it contains a set of sources and submixes along a hierarchical path. For instance,

separating out all guitars (acoustic and electric) from a mixture that includes electric guitar, acoustic guitar,

piano, and drums.

An important observation about the structure of auditory hierarchies is that we can say that the amount

of acoustic energy in a parent node must be greater than or equal to the amount of energy in a child node. 2

Recall that each parent node is defined as a mixture of the collection of all its child nodes. Because acoustic

signals are additive3, we can say that a parent node is a superset of any child node. Concretely, if we look

at signals corresponding to two nodes, a parent node nl and one of its child nodes nl−1 that exist along the

same hierarchical path, then

E(nl) ≥ E(nl−1),(2.1)

for some measure of overall acoustic energy, E(·). This is because as we travel up along a hierarchical path

(i.e., closer to the root), each node will be composed of more ancestor nodes. In other words, the parent

node nl contains not just the child node nl−1, but the parent also contains all of the signals corresponding

to the siblings of the child node (i.e., children of nl from different paths). Each non-silent child of the

parent contributes its own acoustic energy to the parent node. Therefore, we expect that as we travel up a

hierarchical path that the nodes contain more acoustic energy overall. I will leverage this fact about auditory

hierarchies when I design hierarchical separation systems in the next section (Section 2.3.4.2).

2I use the term “acoustic energy” here as a bit of shorthand for our common understanding of the “loudness” or “softness” of a
sound. The loudness of a sound–a description of our perception–is related to but not equivalent to acoustic energy.
3Ignoring destructive interference, which is negligible for current purposes.
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2.3. Hierarchical Source Separation

Recall that a standard source separation model should produce a set of desired source estimates given

an input mixture. The input mixture and output sources can be represented as waveforms or spectrograms.

If spectrograms are output, this typically means that the model will directly output a mask that is applied

to the mix to get an estimate for each source. In this chapter, all of the models I consider use spectrograms

when inputting the mixture, and directly output masks that get applied to the mixture spectrogram to

produce source estimates.

Most existing source separation neural networks are not expected to be able to estimate more than one

type of source at a time (i.e., a network for each source is trained independently, specializing in separating a

particular source [110, 128, 148, 184, 194, 220, 232, 257, 265, 268, 269, 280]). This specialization negates the

possibility that a network could learn hierarchical relationships between sources. In the cases that separation

systems do make estimates for more than one source [44, 157, 250], the sources are not expected to have

relationship to each other, especially relationships that might leverage known musical instrument hierarchies.

In this chapter, I will present a set of general strategies for hierarchical source separation. These

strategies assume that sources in an auditory scene can be mapped onto a hierarchical tree according to

the principles of auditory hierarchies outlined in the previous section (Section 2.2). Furthermore, assuming

that the hierarchies meet the definition of a rooted tree, these strategies are agnostic to structure of the

hierarchical tree that a separation system is modeling. All hierarchies in this chapter satisfy the definition

of an m-ary tree [39, 146], i.e., a rooted tree where each leaf node has the same depth and where each

non-leaf node has a maximum of m children, for some arbitrarily settable value, m (see Figure 2.13 for

the full hierarchy used for the experiments in this chapter). I define a separation as hierarchical if a set of

source estimates are related to each other such that each source in the set corresponds to one node along a

hierarchical path.

There is one overarching limitation that the hierarchical strategies that I present will all have, and that is

separating instances of sources which belong to the same node. For example, if someone wanted to separate

a recording of two acoustic guitars (i.e., both instances of the same node) then a hierarchical separation

system would be the wrong tool. In this instance, a user is better off using a separation system that is

designed for multi-instance separation of the same source type, of which there are a plethora of options: this

ends up being the same problem solved by speech separation systems [115, 147].
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Hierarchical separation, however, solves an orthogonal problem: how do we create separation systems

that can pragmatically scale to many more source types with a minimal burden on computing resources

and additional data? As I will outline in this chapter, scaling source separation systems such that they can

support large numbers of sources is a non-trivial task. Naïve solutions might scale linearly with respect

to the number of sources, however each new source requires its own independently trained network, which

comes at a substantial cost. The promise of hierarchy is that, when a system encounters a new source, it can

leverage knowledge about similar sources it has seen in the past, bypassing the need to retrain a new network

for every new source and massively improving the potential for scaling to support more source types.

One thing to notice about the structure of hierarchies that is important for hierarchical source separation:

nodes closer to the root have more available data than nodes closer to the leaf nodes. That is to say, nodes

higher in the tree are defined more broadly, and therefore more sources fit into that broader source definition.

The opposite is true, as well: nodes closer to the leaves have narrower source definitions, and thus less

sources fit their more limited criteria. For instance, many instrument sources (e.g., Guitars, Violins, Violas,

Mandolins, etc) might be eligible to belong within a broadly-defined “Stringed Instruments” source node

that resides high up in the hierarchy. However, a lower node might have a tighter definition like “Electric

Guitars,” and thus only a subset of the “Stringed Instrument” sources meet this stricter definition. This is

important because these narrower definitions at lower hierarchical levels mean that, practically, there is less

data to draw from at these lower levels. In spite of this, the hierarchy also tells us that any given leaf node

is related to its parent and sibling nodes, the hope being that a network can leverage these relationships at

the leaf nodes where data is sparse.

Here, I will demonstrate hierarchical source separation strategies through the domain of music, which has

a long-established history of hierarchical taxonomies of musical instruments (e.g., Hornbostel-Sachs [287]),

although other taxonomies exist for more general domains of sound [85]. I will instantiate these strategies

by adding a series of modifications to a Mask Inference source separation network [69], all of which I will

experimentally validate in Section 2.4.

2.3.1. Strategies for Hierarchical Source Separation

With an understanding of the structure of auditory hierarchies in mind, I will demonstrate four different

strategies for hierarchical source separation in this dissertation. These strategies vary along two axes, namely:
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Figure 2.5. For hierarchical source separation, systems can be Single-level or Multi-level.

2.3.1.1. Single-level or Multi-level. Single-level Separation Systems have one model per each level in the

hierarchy, trained on each level independently, leading to a set of independently trained models. I refer to

these as “Single-level” because each model is only responsible for outputting source estimates for one level

at a time. While collection of Single-level models is able to separate multiple levels of the hierarchy, I refer

to the collection as a “Single-level Separation System” because each model only operates for one level.

In contrast, Multi-level Separation Systems only contain one model for all levels in the hierarchy, trained

on all levels at once. In this case, just one model can cover all levels of the hierarchy, thus I refer to the system

as Multi-level. See the Figure 2.5 for an example of Single-level (top) and Multi-level (bottom) hierarchical

separation systems with a hierarchy containing three levels.

2.3.1.2. Single-instrument or Multi-instrument. Single-instrument Separation Systems are systems where

the constituent models are specialized for separating just one source or down one hierarchical path. In this

case, the hierarchical path that the system can separate must be decided upon prior to training. Recall that

a path from the root to the leaf node can be uniquely defined if given only the leaf node. Therefore, in

this case a Single-instrument Separation System is specialized to separating just one type of instrument, as

defined by the leaf node, and it produces separation estimates at many levels of the hierarchical path. As

such, in this chapter I refer to such models as Source-Specific Separation (SSS) models.

On the other hand, Multi-instrument Separation Systems are where models are able to separate multiple

paths in a hierarchy. They are not specialized to any particular hierarchical path, and are able to flexibly

switch which hierarchical path is returned by the system at inference time. One naïve strategy to switch
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Figure 2.6. For hierarchical source separation, systems can be Single-instrument or Multi-
instrument.

which source is returned is to separate every leaf node (and therefore every path) and let the user choose their

source, post-hoc. In the upcoming sections, I will describe why this strategy is suboptimal. Instead, it is more

practical to have a control mechanism for what the system separates. With this in mind, I instantiate the

Multi-instrument strategy using Query-by-Example (QBE) networks, which use an audio query to determine

which hierarchical path to separate along. See Figure 2.6 for examples of Single-instrument (top) and Multi-

instrument (bottom) systems with respect to a hierarchy.

In total, these two axes yield the following four strategies: Single-instrument Single-level, Single-

instrument Multi-level, Multi-instrument Single-level, and Multi-instrument Multi-level. These strategies

are shown in Figure 2.7. The four strategies I will outline in this chapter are a hierarchical generalization of

existing non-hierarchical separation strategies that the research community has been developing for years.

Researchers have primarily focused on solutions for the Single-instrument Single-level strategy [35, 127, 169,

263, 265, 268, 269]. However, as I will discuss, solutions for this strategy do not scale to large numbers of

source types, and I will argue that hierarchical extensions to the Single-instrument Single-level (i.e., the other

three strategies I develop here) are a viable option for achieving this desired scalability. In Section 2.4.0.2 I

will experimentally verify these claims.

These four strategies are intentionally broad; they are flexible by design, omitting many implementation

details such that there could be many possible solutions. Here I will provide but one set of solutions by

modifying a standard source separation network architecture [69] (i.e., my “backbone” separation system,

which is technically a Single-instrument Single-level system for a hierarchy that has only one node; in
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Figure 2.7. The four strategies for Hierarchical Source Separation vary along two axes:
whether the system can separate multiple instrument (Multi-Instrument) or only one instru-
ment (Single-Instrument), and whether the system can separate at multiple levels (Multi-
Level) or just one level (Single-Level).

other words, a system designed to separate only one node), and discuss how to avoid naïve pitfalls towards

the ultimate goal of a hierarchical system that can scale to separating dozens of sources. None of the

hierarchical strategies in this chapter are specific to my choice of neural network architecture; here I reframe

the problem while making a minimal set of choices about the neural network architecture as possible. Thus,

the proposed hierarchical separation strategies are compatible with any separation architecture that is able

to produce multiple source estimates at once (e.g., U-Nets [34, 35, 111, 127, 133, 148], other spectrogram-

based separation systems [265, 268, 269], or even waveform-based separation systems [44, 232]). While

I believe that the lessons sketched out here are widely applicable to other neural network architectures,

the demonstration of these techniques in that context is left for future work. In the rest of this section I

will demonstrate four ways that this standard architecture can be modified to adhere to each of the four

hierarchical strategies respectively.
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2.3.2. Backbone Separation System

Before detailing these four strategies, I will cover the separation system that serves as a backbone separation

system for the rest of this chapter. Throughout the next few sections, I will build upon this backbone system,

tailoring it to the hierarchical problem through the different strategies outlined above.

The backbone separation system is based off a now-standard source separation neural network archi-

tecture [69], which works as follows: a mixture spectrogram is input into the network and it is trained to

produce a mask that is element-wise multiplied to the spectrogram of the input mixture (see the section on

Masking, Section 1.2.1). The network itself is a stack of Bidrectional Long Short-Term Memory (BLSTM)

layers [94, 118] (see Appendix Section 6.1 for more details about BLSTMs), with a final Fully Connected

layer with a sigmoid activation function that produces the mask (a sigmoid compresses input values into the

range [0.0, 1.0], which is the same range that we need to make a mask). Implementation and hyperparameter

specifics will be provided when I discuss the experimental design in Section 2.4.2.

Specifically, source separation networks based on mask inference typically attempt to estimate a real-

valued mask M̂c ∈ RF×T for a single target source type c by minimizing an objective function between a

ground truth, real-valued magnitude source spectrogram, |Sc|, and the source estimate obtained by applying

the estimated mask to the mixture spectrogram, |X̂c| = M̂c�|X|. Here, X ∈ CF×T represents the complex-

valued STFT of the input mixture, and the operators |Y | and ∠Y denote getting the magnitude and phase

components of a complex-valued STFT, Y ∈ CF×T , respectively. For an overview of mask-based source

separation, see Section 1.2.1. A simple loss function we can use is either L1 (LL1), or MSE (LMSE) loss

between an estimated spectrogram, |X̂c| = M̂c� |X|, and ground truth spectrogram, |Xc| for some source c:

LL1 =
∥∥∥M̂c � |X| − |Sc|

∥∥∥
1
, LMSE =

∥∥∥M̂c � |X| − |Sc|
∥∥∥2
2
,(2.2)

where the network’s spectrogram estimate for source c is given by S̃c = M̂c�|X|, and � denotes element-wise

product.

Another commonly used objective function, used in this work, is the truncated phase sensitive approx-

imation (tPSA) objective [69], which is a variant of the basic L1 loss between the estimated spectrogram,

|X̂c| = M̂c�|X|, and ground truth spectrogram, |Xc| for some source c. This loss function, LtPSA, is defined
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like:

LtPSA =
∥∥∥M̂c � |X| − clamp (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
,(2.3)

where clamp(a) = min(max(a, 0.0), |X|) is a truncation function ensuring that some input value, a, falls

within the range [0.0, 1.0], which is the same range as the sigmoid activation function, the non-linearity

applied to the last layer of the network. The terms inside the clamp function work as follows: ∠Sc − ∠X is

the phase difference between the ground truth source Sc and the input mixture X at every time frequency

bin. This phase difference is wrapped in a cosine before being element-wise multiplied by the ground truth

spectrogram. This means that if the phase of the ground truth source and the mixture are perfectly aligned

for a given (t, f) bin (i.e., exactly 0◦ phase difference) the loss for that bin is given a weight of exactly 1.0.

The opposite is also true, if the phases are 180◦ offset, then the loss is scaled by −1.0, however the truncation

function converts negative values to 0.0. So in the case that the phases are 180◦ offset, then that (t, f) bin

contributes 0.0 to the loss. This is why this loss is called phase sensitive: it accounts of phase offsets that

occur between the ground truth source and mixture.

At inference time, the estimated mask M̂c is element-wise multiplied with the original mixture spec-

trogram X to obtain an estimate for the target source Sc. As is common, the phase from the mixture

spectrogram ∠X is then combined with the estimated source spectrogram X̂c = Sc�ej·∠X to get a complex-

valued Short-time Fourier Transform (STFT), which can in turn be converted to a waveform via an inverse

STFT. The resulting waveform can then be played back through speakers for human listeners.

With a minimal modifications, the backbone Mask Inference system will cover the requirements needed

to create Single-instrument separation systems, in both the Single-level and Multi-level cases. With further

modifications of this backbone system, I will also develop a Query-by-Example (QBE) system for the Multi-

Instrument strategies. As mentioned previously, many neural network-based source separation systems could

be used as a backbone system for this work. I specifically chose the Mask Inference architecture as a means

to demonstrate the hierarchical separation strategies because of its relative simplicity as compared to more

modern source separation systems.
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2.3.3. Single-instrument Single-level: Source-Specific Separation (SSS) systems

Figure 2.8. Single-instrument Single-level separation
designates one model per node in a hierarchy. Source-
Specific Separation (SSS) systems are an instantiation
of this strategy.

Up until a few years ago, almost all neural network-

based source separation systems were specialized for

separating only a single type of musical instrument

source. In practical terms, this could mean that

a network might output just one real-valued mask

M̂c ∈ RF×T in an effort to estimate just one single

target source type c. From a hierarchical perspec-

tive, one might say that these systems are respon-

sible for a single node (i.e., one node at one level)

in a hierarchy. Because such systems are typically

specialized for a specific source type, I call them

Source-Specific Separation (SSS) system.

However, I aim to investigate how we might reap the benefits that a hierarchical perspective affords us.

In this section, I set out to answer how we can imbue existing SSS system with a sense of hierarchy.

As a first naïve strategy for building hierarchical SSS networks, it is possible to train a set of single

networks, each of which output a single node at a given level of the hierarchy. Each such single-level

network can be trained to minimize the tPSA objective above (Equation 2.3), where the target source is the

component corresponding to the targeted source type in the hierarchy within the mixture. Each of these

networks outputs a single mask for its targeted source type, and they are trained independently of each

other. In order to cover all nodes in the hierarchy, this system would require the same number of networks

as there are nodes.

This naïve strategy has a number of serious drawbacks, which all stem from the fact that the networks

are all independent. The huge impracticality of training each network independently notwithstanding, this

strategy does not actual benefit from hierarchy. Because each node is the responsibility of one independent

network, the networks cannot leverage shared knowledge of related source types. In other words, the resulting

networks would have no awareness of parent or child nodes along the same hierarchical path of a given node

(i.e., moving vertically in the tree like moving from the “acoustic guitars” node to the “stringed instruments”

node) nor do they have any knowledge of siblings in other hierarchical paths (i.e., moving horizontally in the
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tree like moving from the “acoustic guitars“ node to the “electric guitars“ node). To implement this strategy

using a system like our Mask Inference backbone system, we would need to train dozens of networks to cover

just the leaf nodes of the Hornbastel-Sachs taxonomy, and furthermore, adding a new source type requires

training a new network.4 Of the benefits that we expect a hierarchical separation to provide–namely, the

ability to scale to many source types and being able to flexibly separate new source types–this naïve strategy

has none.

Regardless of its issues, this strategy makes up the first of the proposed source separation strategies: the

Single-instrument Single-level strategy. So named because each network is responsible for separating at just

one level, for just one instrument. Situating this chapter in the broader source separation literature, this

Single-instrument Single-level strategy is far and wide the prevailing strategy for training source separation

systems [110, 128, 148, 184, 194, 220, 232, 257, 265, 268, 269, 280].

While the Single-instrument Single-level strategy does have downsides, it might be reasonable to expect

that, because each network is specialized to separate exactly one node, its separation performance is better

compared to a system that is designed to separate multiple nodes. However, later in this chapter, I will

show results that counter this intuition; providing hierarchical cues to a network can actually improve its

separation performance over the Single-instrument Single-level strategy.

2.3.3.1. Modifying the Backbone System for Single-instrument Single-level. Because this strategy is con-

ceptually the simplest, it therefore requires minimal changes to the backbone system. The only practical

difference is that instead of training one system, we train multiple systems as described in Section 2.3.2.

As we develop more sophisticated ways of taking advantage of the hierarchy, the changes to the backbone

system will become more substantial.

4Certain speech separation network architectures may not have the same rigidity; see, for example, embedding space separation
architectures like Deep Clustering [113] (discussed in Chapter 3) or Deep Attractor Networks (DANs) [31]. Though these
networks are designed to separate two instances of the same source, e.g., two speakers, there has been some work applying Deep
Clustering to music [17, 164, 179, 241]. However, once you train these nets to separate multiple instruments at once, they cease
to be Source-Specific Separation systems, which is the topic of this section.
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2.3.4. Single-instrument Multi-level: Hierarchical Source-Specific Separation

Figure 2.9. Single-instrument Multi-level separation
designates one model that is charged with separating
at multiple nodes down a single hierarchical path. Hi-
erarchical Source-Specific Separation systems are an
instantiation of this strategy.

As just discussed, the Single-instrument Single-level

strategy involves independently training a set of net-

works to cover all nodes in a hierarchy, each network

only responsible for a single node. This strategy

does not leverage any knowledge about how audi-

tory hierarchies are defined. A trivial way to rem-

edy this would be to jointly train a set of models for

all of the leaf nodes. Such a system could recom-

pose or “re-mix” the leaf sources according to the

hierarchy, training the networks by combining loss

functions for all nodes in the hierarchy. However,

any sufficiently realistic hierarchy likely contains dozens or hundreds of leaf nodes, leading to memory and

computation issues, as before, as well as difficulties balancing the contributions of all the losses.

In order to develop more feasible strategies for hierarchical separation, in this section I will restrict the

conversation to Hierarchical Source-Specific separation strategies before discussing how to scale the lessons

from these strategies to all paths in a hierarchy in the next section. In other words, in this section the

discussion is limited to the hierarchical separation of a single path down a hierarchy.

As a means to slightly mitigate our scaling issues, consider instead a single network that outputs L

source estimates, one estimate for each of the L levels along a single path down the hierarchy. This reduces

the number of networks we have to train to cover the whole hierarchy from one per node to one per leaf node.

This strategy enables us to train a single network for a whole path down the hierarchy (e.g., [strings/keys]

→ [guitars] → [acoustic guitars]), instead of one per each node. Here, our system now makes estimates for

all of the sources in the hierarchical path in one fell swoop, from the broadest to narrowest source types.

While at first glance this may seem like a negligible reduction in the number of networks we must train

to cover a whole hierarchy, the actual reduction is dependent on the branching factor of the hierarchy we

wish to separate. In fact, many musical instrument hierarchies that we care about have a branching factor

that produces a material reduction in the amount of networks that we must train when actualizing a Single-

instrument Multi-level strategy to cover the whole hierarchy. For example, the musical instrument hierarchy
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used in this chapter covers most Western instruments (See Figure 2.13) and it has 28 nodes, but only 17

leaf nodes, leading to a 39% reduction in the number of networks we need to train (and therefore computing

resources needed, e.g., training time, memory, # parameters, etc) by following a Single-instrument Multi-

level strategy. Even with these reductions, training one network per leaf node is a considerable undertaking

if we want to cover the whole hierarchy.

However, when we again restrict the conversation to only considering a single path in a hierarchy the

reduction between the Single-instrument Single-level strategy and Single-instrument Multi-level strategy is

even more substantial: because we now only require one model for a whole path, this leads to
1

L
the number

of networks (compute/training time/parameters), for a hierarchy with L levels. In my experiments L = 3,

which leads to only using a third of the resources for hierarchical separation.

Most importantly though, is that the Single-instrument Multi-level strategy is the first time that a system

can take advantage of hierarchy during training. By having it output multiple levels along a hierarchical

path, the system is given a notion of auditory hierarchies. Whereas the independently trained networks have

no incentive to learn anything about any other nodes in a hierarchy, this joint training fundamentally enables

it to “see” more than one node in its learning process. While this benefit may seem more theoretical than the

reduction in resources described above, it is actually a key step in our goal to make flexible, scalable source

separation systems. In fact, these benefits are more than theoretical; I will experimentally demonstrate that

inducing hierarchical training like this leads to a considerable gain in separation performance, especially

if we wish to separate very fine grained sources where we might have a limited amount of training data.

Leveraging our understanding of auditory hierarchies during training is a foundational step in our narrative

as we build up to being able to separate more source types.

2.3.4.1. Modifying the Backbone System for Single-instrument Multi-level Separation. Practically, the back-

bone Mask Inference system now outputs L real-valued masks M̂l ∈ RF×T for levels l = 1 . . . L of a hierar-

chical path. With this simple change, the network is in charge of separating a source along with its parents

and/or children. The network can now potentially leverage its learned knowledge for mask M̂a when pre-

dicting M̂b (for a 6= b), all for the negligible5 cost of a larger output size (assuming that the number of levels

L is relatively small, e.g., L = 3 in this chapter).

The resulting network is still considered a Single-instrument system because its specialized to separating

along just one hierarchical path, however it is now responsible for multiple levels of a hierarchical path

5In general, size(mask_output_layer) << size(rest_of_network).
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instead of just one at a time as with the previous strategy. As such, I refer to this strategy as a Single-

instrument Multi-level strategy. Systems set up in this way are still specialist systems to an extent–that is,

yes, they are designed to separate exactly one source type as before, but now the definition of that source

type changes as one moves along the hierarchical path. Instead of just separating an acoustic guitar, this

system makes estimates at all levels of the hierarchical path: [strings/keys] → [guitars] → [acoustic guitars].

Still, we would need many of these systems to get complete coverage of any sophisticated musical instrument

hierarchy. Prior to addressing the hierarchy coverage problem, though, I will first discuss one additional

technique for biasing source separation systems toward hierarchical sources.

2.3.4.2. Constraints on Hierarchical Masks. Assuming the components of a mixture exist in some hierarchy,

it is possible leverage knowledge about the hierarchical structures of auditory scenes to impart constraints

on the network. For instance, we can use the relationships defined in Section 2.2 on auditory hierarchies to

require the set of masks produced by a multi-level hierarchical network to follow the same structure as the

hierarchy, namely that masks at higher levels be composed of masks at lower levels. As before, this would

require us to output masks for every node in the hierarchy, which, again, is infeasible for any sufficiently

realistic hierarchy.

Instead, we consider imposing a hierarchical constraint that does not depend on knowledge of the whole

hierarchy and instead hinges on another aspect of auditory hierarchies. The proposed hierarchical constraint

leverages the fact that there should be more acoustic energy in broader source types (Equation 2.1) and

requires that masks at higher levels in the hierarchy must apportion at least the same amount of energy as

masks at lower levels. More precisely, the mask at level l is set as

M̂l = max
TF

(M̂ ′l , M̂l−1),(2.4)

where max
TF

is applied element-wise to every time-frequency bin, and M̂ ′l is the mask estimate output by the

network for level l for l > 1. Intuitively, this constraint ensures that there is the same or more acoustic

energy 6 in mask estimates at more coarse levels of the hierarchy than there is at more specific levels. This

reflects our knowledge of the structure of auditory hierarchies discussed in Section 2.2.2 that nodes closer to

the root of the hierarchy correspond to more broadly defined source types (e.g., stringed instruments) and

6A note on this: it is very common in studio recordings to apply an audio effect known as Dynamic Range Compression to
either individual instruments or the whole mix or both. This effect typically makes the quiet parts of a recording much louder,
essentially reducing the volume between the quietest and loudest parts of a signal. Although the experiments presented in this
section do not account for the usage of Dynamic Range Compression (i.e., it is not used in any recordings I study), how this
effect will interact with the proposed Hierarchical Constraint is a question for future work.
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therefore must have more or exactly the same amount of acoustic energy than children of that node (e.g.,

Acoustic Guitars).

2.3.5. Multi-instrument Single-level: Query-by-Example Networks

Figure 2.10. Multi-instrument Single-level separation
can separate any node in the hierarchy with requiring
multiple models, each responsible for only one level.
Query-by-Example networks (without any hierarchical
extensions) are an instantiation of this strategy.

The approaches described above are problematic if

one wants to separate many different instrument

families in an instrument hierarchy: the trivial solu-

tions in the previous section involve many networks

and do not scale feasibly, so in order to obtain work-

able solutions we restricted our discussion to single-

family instrument sources, or Source Specific Sepa-

ration. In other words, Source Specific Separation

strategies can only learn a single path down an in-

strument hierarchy at a time, but how do we de-

velop strategies that learn multiple paths at once?

Whereas the previous Source-Specific Separation systems embodied the Single-instrument strategy for learn-

ing hierarchy, in this section I explore ways actualize the Multi-instrument strategy for learning hierarchy.

I posit that capturing multiple paths with one system (i.e., Multi-instrument) is crucial for enabling the

system to learn relationships between different instrument families (e.g., the relationship between bowed

strings (a violin) and plucked strings (a ukulele)).

So, how can a Multi-instrument separation system work? To simplify, let us restrict this current dis-

cussion to just single-level systems. As before, we begin by imagining a naïve solution to this problem: a

system that outputs a source estimate for every source node at the current level. For a small number (e.g.,

4) of source types this is completely feasible; of the handful of multi-instrument source separation systems

that do exist [44, 178, 234], this is the solution they employ. Yet, as we scale this system to dozens of source

types, we are bound to encounter pragmatic issues with respect to memory and computational resources.

Even if we are able to palliate those problems, trying to find the correct way to balance the losses for dozens

of sources during training poses a formidable challenge: in practice, few recordings have dozens of taxonom-

ically distinct instruments playing simultaneously which leads to many training examples with silence for
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most of the output sources. A trivial solution with the lowest loss that a network might find would be to

always output silence, thus not separating anything. This naïve solution poses dilemma after dilemma.

Another viable option is to not expand the output dimensionality of our network for all possible sources,

but instead repurpose a single output such that it can flexibly output any source. In other words, instead

of having a dedicated output slot for each source type, only have one output slot and have a way to control

which source that output slot separates. To accomplish this, we can use a conditioning signal to control

the separation model. This input conditioning effectively acts as a control knob, allowing us to change the

output of a network even if the other inputs do not change. Resulting networks usually make adaptations

to their architecture to accommodate the additional conditioning information, e.g., a conditioning signal is

fed to FiLM layers [216] that learns how to alter the neural net’s layers according to the conditioning. In

previous source separation work, researchers have explored making this conditioning input an n-way switch

(represented as a 1-hot vector) determining a choice between a fixed number of source types (typically 4 in

the literature) [34, 192, 232, 241, 251].

In the interest of flexibility, it would be nice if the control that a conditioning knob offered us was not

fixed to a predetermined number of sources. Rather, in pursuit of our goals, it would be preferable if such

a system could incorporate new source types (after it has been trained). Perhaps the most flexible control

knob possible would be one that is in the same parameter space that the mixture is in, that is to say, the

audio space. To that end, I propose a Query-by-Example (QBE) network architecture. QBE networks ingest

a mixture and an audio example (i.e., the query) of the desired source to separate from the mixture [87, 157,

160, 183]. The query is an additional audio input to the system that used to determine which source will

be separated from the mixture. Therefore, it is expected that the content of the query be from the same

instrument family as the source we desire to separate, and that the query has only content from the desired

source and no content from any other source; in other words, the query should be a recording of an isolated

instrument source. The audio content in the query does not have to come from the mixture; in fact, for ease

of use, it most likely comes from a completely different recording of the instrument targeted for separation

(because if we already had access to an isolated recording from within the mixture, we would not need source

separation at all!).

For example, given a recording of a mixture that contained an acoustic guitar, a bass guitar, and a drum

set, if a QBE separation system were given a different recording of a different acoustic guitar as a query, the

QBE system would be expected to produce a separation of the acoustic guitar as heard within the mixture.
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Similarly, if the QBE system were given the same mix, but instead given a different recording of a drumset

as a query, we would expect a separation of the drums from the original mixture. The query input guides

the system and tells it which source it must separate from the mixture.

Recall that despite attempting to scale to multiple instruments, this examination so far has been re-

stricted to Single-level separation, i.e., Multi-instrument Single-level (this discussion will widen to Multi-level

separation in the following section). This means that the output level for every Multi-instrument Single-

level system must be predetermined when training it, and therefore to cover multiple levels of a hierarchy

we would need to train multiple Single-level QBE separation systems. All previously proposed conditioned

separation systems (1-hot [34, 192, 232, 251] or QBE [87, 157, 160]) operate at a single level, even if not

explicitly declared as so. It is also worth mentioning that when we do view the target source and queries

as part of a hierarchy (even in Single-level systems), it is possible that the query input could come from

a different hierarchical level than the expected source output. This could lead to ambiguities if the query

audio comes from a broader level of the hierarchy than the desired target source. For example, consider the

case where the query audio is from the [all guitars] node but the expected source output is [acoustic guitars],

which is a more specific source type than the query. In this case, the target is not well defined given the

query (the target source could be any guitar sound corresponding to a child node of [all guitars], not just

[acoustic guitars]). Perhaps there are cases where this ambiguity is desired, but for the current work I ensure

that all queries come from nodes that are at or below target source nodes in the hierarchy. In this chapter,

I set all queries such that they originate from the the leaf nodes of the hierarchy (the leaf nodes I use are

labeled “Level 1 - Child” in Figure 2.13) regardless of the expected output level of the target source. The

leaf nodes implicitly define a unique path from the root to the leaf, clearing up any ambiguities with queries.

This marks an important step in the journey so far: we have further reduced the number of networks

we need to train to separate sources from every node in a hierarchy compared to our first naïve Single-

instrument Single-level strategy of training a network for each node, and even compared to the previous

Single-instrument Multi-level strategy where we would need to train a network for each leaf node. Following

the current Multi-instrument Single-level strategy, we now only require one QBE network for each level.

Because it is safe to assume that the number of levels is considerably smaller than the total number of nodes,

this leads to a much more lightweight system. At this point many of the high-level considerations about

constructing a Multi-instrument Single-level system have been laid out. The rest of this section will be
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devoted to implementation details about how to modify the backbone separation system such as to make it

a QBE separation system.

2.3.5.1. Modifying the Backbone System for Multi-instrument Single-level Separation. As mentioned, a

QBE system should be designed such that the query input produces a conditioning vector to the rest of the

network that communicates which source to separate. The query audio could be either in the time domain

(i.e., a waveform) or in the time-frequency domain (i.e., a spectrogram), however, given that the backbone

network used here–a Mask Inference system–operates in the time-frequency domain, I therefore design a

proposed QBE system such that the query input is also in the time-frequency domain.

The proposed QBE separation system builds on the backbone separation system by adding a query

network to the backbone Mask Inference network. The job of the query net is to calculate a query vector,

called the “query anchor”, Aq ∈ Rk in a k-dimensional embedding space given a real-valued input query spec-

trogram Q ∈ RF×Tq , of shape F frequency bins and Tq time steps. The size of the dimension k is a settable

hyperparameter. The query anchor, Aq is a weighted sum of the query embeddings, Vq,i ∈ mathbbRk×F×Tq ,

produced by the query network at each time-frequency bin i = (f, t) of the query spectrogram space:

Aq =

∑
i Pq,iVq,i∑

i Pq,i
,(2.5)

where Pq ∈ RFTq is a query presence vector for query Q, defined such that Pq,i = 1 if the magnitude at

time-frequency bin i = (f, t) is above a loudness threshold (set to -60 dB from the maximum here), and

0 otherwise. The intuition behind the query presence vector Pq is to ensure that quiet parts of the query

spectrogram do not influence the query anchor; for a given isolated instrument recording there might be

many more quiet time-frequency bins than loud ones.

The calculated query anchor Aq is then combined with the mixture spectrogram and both are input

into the masking network, which produces a single mask, M̂ ∈ RF×Tm , that is applied to the mixture

spectrogram, X ∈ RF×Tm , to create an estimate for a single desired source, according to the procedure

described in Section 2.3.2. Specifically, the query anchor Aq is concatenated along the frequency dimension

of the mixture for each time frame t = 1 . . . Tm in the mixture spectrogram, X ∈ RF×Tm . This is shown

in Figure 2.15. It is this combined anchor/mixture spectrogram matrix that is input to the Mask Inference

network to produce a mask. The final loss function is the tPSA loss from Equation 2.3. Some prior work has

applied a loss function directly to a query embedding space (or “query anchors” in this work) [157], however

I will show that the proposed system learns a meaningful embedding space without a specific loss on the
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query anchors. Also, note that the length of the time dimension for the mixture spectrogram Tm does not

have to equal the length of the time dimension for the query spectrogram Tq, i.e., the mix and query can be

of different lengths. In this work, the network architecture for the query network mirrors the architecture

for the masking network: the query net is a smaller set of Bidirectional Long Short-term Memory (BLSTM)

layers followed by a Fully Connected layer with no activation function that produces the k-dimensional query

anchor Aq. The specifics of these networks will be provided in the Experiments section of this chapter.

2.3.6. Multi-instrument Multi-level: Hierarchical Query-by-Example

Figure 2.11. Multi-Instrument Multi-Level separation
contains only one model that can separate a node
at any level along any hierarchical path. Hierarchi-
cal Query-by-Example networks are an instantiation
of this strategy.

Despite the motivation for Query-by-Example

(QBE) networks being that we can learn the rela-

tionships between different families of sources (i.e.,

Multi-instrument systems), thus far the discussion

of QBE networks has precluded any talk of hierar-

chy. At this point, we have all of the puzzle pieces

ready to construct the a system that embodies a so-

lution for theMulti-instrument Multi-level strategy.

In this section, I will develop the previous discussion

of Single-level QBE networks to include the hierar-

chical case, following the same line of reasoning I

employed when moving from the Single-instrument Single-level to the Single-instrument Multi-level strate-

gies.

Just like how Single-instrument Multi-level systems extended a Single-instrument Single-level system

to leverage a hierarchy during training, so will the Multi-instrument Multi-level strategy extend the Multi-

instrument Single-level strategy. In practice, this involves extending the Single-level QBE system to output

multiple source estimates along a path hierarchy as determined by a query input. Because this system is a

Multi-level system, it outputs source estimates for all nodes down the path specified by the query input. To

get an estimate for just one of specific source node from a path defined by the query, one simply ignores the

extraneous estimates. Just as with the Multi-instrument Single-level QBE system, the queries are always
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Figure 2.12. A proposed Hierarchical Source Separation system, a Query-by-Example sys-
tem, is able to separate sources down any path of the modelled hierarchy based on an audio
query input. Sources in the input mixture (“Mixture” left, middle) are assumed to have a
hierarchical taxonomic relationship to each other (bottom left). If given audio of the green
electric guitar as a query (“Query”, top left), the system will produce a hierarchical set of
separation estimates (right) that includes the sources that are the closest match to the green
electric guitar according to the hierarchy. In this case, the separation includes the piano
and both guitars at the broadest level of separation (top right), and only the blue electric
guitar at the most granular level (bottom right).

expected to be from the leaf nodes to avoid any ambiguities. Finally, as discussed previously with the Single-

instrument Multi-level strategy, we can enforce a hierarchical constraint ensuring that there is at least the

same or more energy in source estimates that correspond to more coarse-grained nodes (as in Section 2.3.4.2).

This is the culmination of all of the hierarchical discussion so far. With this final piece we now have a

separation system consisting of just one neural network that can separate any node in a hierarchy. Whereas in

the first Single-instrument Single-level strategy, we required one network per node, now theMulti-instrument

Multi-level strategy enables us to use one network for every node in the hierarchy! Any source type can be

separated with one network by following the Multi-instrument Multi-level strategy. We have achieved peak

flexibility!

2.3.6.1. Modifying the Backbone System for Multi-instrument Multi-level Separation. As with Source-

Specific Separation using Mask Inference networks, extending QBE networks hierarchically boils down to two

essential strategies: Single-level and Multi-level. In the Single-level case the masking subnetwork of the QBE
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system produces just one mask, M̂ for one specific level of a hierarchy, l. As before, multiple Single-level

QBE networks are required to separate down a hierarchical path. In the Multi-level case, the masking subnet

of the QBE system produces multiple masks, M̂l, one for each level l = i . . . L of the hierarchy. Thus, only

one Multi-level QBE is needed to separate down a hierarchical path. As before, because the Multi-level QBE

system outputs multiple masks at once, we can apply the hierarchical constraint described in Section 2.3.4.2.

QBE networks also have an additional required input, namely the query. For hierarchical QBE in both

the Single-level and Multi-level case, we assert that the query input is always a leaf node in the hierarchy,

because a leaf node is the only node that unambiguously determines a path from the root node (i.e., the

mix). The full Multi-level Hierarchical QBE system is depicted in Figure 2.12.

2.4. Experimental Design

I designed and executed a set of experiments to determine the validity of the proceeding strategies

and respectively proposed systems for hierarchical source separation. The goal of these experiments is to

understand how well these systems work in a hierarchical scenario. As with all of the work in this chapter,

I specifically look at hierarchies of musical instruments.

Specifically, these experiments are intended to answer the following questions:

(1) Is the hierarchical constraint helpful or harmful when doing Multi-level separation?

(2) Which hierarchical strategy performs better: Single-level or Multi-level systems?

(3) Can hierarchical separation strategies ameliorate the increased need for data for the most-specific

source types?

For each of these three questions, I designed a corresponding experiment. In these experiments, I

present answers to these questions for both Single-instrument and Multi-instrument separation. For the

Single-instrument results, I pick one hierarchical path and fix it for all experiments (i.e., the leaf node is

unchanging and determined ahead of time for these results), whereas on the other hand the Multi-instrument

results cover all nodes of the hierarchy.

I want to take special care to emphasize that because all four hierarchical strategies in this chapter

represent a new framing of the source separation problem, there is no prior work against which I can directly

compare. As such, I will instead compare the Multi-level and Single-level strategies with each other in these

experiments.
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2.4.0.1. Does the Hierarchical Constraint help or hurt Multi-level separation systems? This question is

restricted to Multi-level systems specifically, and concerns whether the hierarchical constraint outlined in

Section 2.3.4.2 enables a model to learn to separate with better performance (according to SI-SDR). For this

experiment, I look specifically at Multi-level systems and fix every aspect about the model architectures and

training procedures except whether or not the hierarchical constraint is used. This experimental question

will produce pragmatic information about how to best design Multi-level separation systems. It also hints

at how we can best provide more types of inductive biases for hierarchical source separation.

2.4.0.2. Do Single-level or Multi-level systems separate better? To answer this question, I consider a stan-

dard source separation architecture and fix every aspect of training except whether the system was trained

via Single-level or Multi-level strategy. In practice, the Single-level systems are composed of multiple models

that each output sources at only one level, and the Multi-level systems consist of one model that outputs

source estimates for all levels considered. I conduct a set of parallel experiments for the Single-instrument

and Multi-instrument cases.

The overarching argument of this chapter is that Multi-level systems have a lot of benefits which stem

from designing them around our knowledge of auditory hierarchies. Furthermore, the implicit hypothesis is

that Multi-level systems will in fact separate better than their Single-level counterparts. If this hypothesis

is demonstrated to be correct, then that indicates that imbuing a system with an inductive bias toward our

knowledge of auditory hierarchies has benefit.

2.4.0.3. Can Hierarchical separation help with data sparsity at the most-specific source types? Neural

network-based separation systems require a lot of data to train effectively. The more sources we desire

to separate, the more data we need to train these systems. As discussed earlier, it becomes increasingly

difficult to acquire the requisite data when our desired source becomes more specifically defined (e.g., string

instruments vs. nylon-stringed acoustic guitars built in California from 1968-1971). This problem naturally

arises with our hierarchical setup: as we move further from the root node (i.e., the mix node), the source

types that the nodes represent are increasingly specific.

While this may initially seem at odds with the promises of flexibility that hierarchical separation provides,

hierarchical separation also promises to learn the taxonomic relationships between different source types,

especially those source types with a parent-child relationship. Therefore we might also paradoxically expect

that a system that is able to learn these types of relationships could use its learned knowledge to reduce

the required amount of training data for very specific source types (e.g., it could use some generalized
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knowledge of string instruments to separate the specialized California nylon-stringed acoustic guitars). This

experimental question seeks to answer whether which of these two effects is more dominant.

To answer it, I reduce the number of training examples that Multi-level models see in one of two ways:

either by fully removing the example from the training set (i.e., all levels removed), or by removing just the

leaf-level data from training set. Fully removing the example from the data means that there is less data

in the training set, but to remove just the leaf node data from the training set, the network is still able

to see nodes at higher levels of the hierarchy. Here, the leaf data is data from Level 1 of the hierarchy, or

sometimes referred to as the “Child.” I evaluate the resultant systems performance (according to SI-SDR)

on separating leaf nodes and compare these results to training on the full dataset (i.e., no data removed).

Fully removing the example provides a baseline for how a system would do with a fully reduced training

set, whereas only removing the leaf indicates how well the system is able to leverage what it learned by

separating the other levels. All training and architectural details are fixed except for the means of removing

data and what percentage of data is removed.

How well a Multi-level system is still able to separate in the leaf-only removal training setup will indicate

how well a system is able to learn about the structure of auditory hierarchies and how well the system is

able to leverage that learned knowledge.

Before I analyze the results from these experiments, I will first discuss the details about the data,

evaluation, and model configurations.

2.4.1. Dataset and Evaluation

To test the proposed hierarchical separation strategies, I required a large dataset with isolated sources of

many instruments that could be combined in a hierarchical way. Specifically, I required a dataset with a wide

variety of granular source labels, i.e., not only “guitars”, but “acoustic guitars”, “electric guitars”, “effected

guitars”, and so on for every instrument in the dataset. Because of this, I chose Slakh2100 [184], which

contains 2,100 musical mixtures along with isolated sources. More details about Slakh2100 are provided

in Section 1.2.2. This dataset has 145 hours of mixture data split into 34 instrument categories, which is

sufficient to answer the experimental questions

As part of the process for preparing the dataset for the experiments, I created a musical instrument

hierarchy from Slakh’s included instrument categories, as shown in its entirety in Figure 2.13. For the

hierarchical separation experiments, I used a hierarchy with three levels, as shown by the colored sections
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Figure 2.13. Musical instrument hierarchy used for these experiments. The instrument
labels for the leaf nodes are taken from the Slakh2100 [184] dataset and aggregated in a
manner inspired by the Hornbostel-Sachs system [287] taxonomy. The leftmost level is the
root node, or mixture, which is cannot be combined into additional sources, by definition.
The middle levels are used for separation in this work, and are highlighted in green, blue,
and red. The rightmost nodes are omitted for separation in this work, but included in this
image for context.

in Figure 2.13. The top level contained four categories: mid-range strings and keys (guitars, keyboards,

and orchestral strings), bass instruments (acoustic and electric basses), winds (flutes, reeds, and brass),

and percussion (drum sets and chromatic percussion). The middle level had seven categories (e.g., from

mid-range strings: orchestral strings, guitars, keyboards, and electric keyboards), and the lowest level had

eighteen categories (e.g., from guitars: clean guitars, and effected guitars). These three levels exclude the

“Mix” node (the leftmost node in Figure 2.13), which is the trivial level consisting of the mixtures of all

sources. Also omitted were the most fine-grained instrument classes at the rightmost of Figure 2.13, which

are shown here to contextualize the other levels. These nodes were intentionally left out due to the fact that

as the nodes get more specific, it is harder to get enough examples to effectively train a separation system.

I note that this is just one of many possible hierarchies I could have used. Also of note is that almost all of

the instruments described here (other than “bass” in Level 2 and “drums” in Level 1) would be categorized

into the “Other” in MUSDB18 [224] (see Section 1.2.2 for more on MUSDB18).

To create examples with this dataset, I select paired audio segments containing an input mix and target

sources. The target sources are in fact a set of instantaneous submixes of the sources, corresponding to
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Level Level Name SSS Hierarchical Path

3 Grandparent Keyboards, guitars, and orchestral strings
2 Parent All guitars (both clean and effected)
1 Child Only clean guitars (both electric and acoustic)

Table 2.1. Contents of each hierarchical level used for training and testing the hierarchical
Source-Specific Separation (SSS) networks. Hierarchical SSS is Single-Instrument strategy,
meaning it can only learn one path down the hierarchy at a time.

the different levels of the hierarchy. As an example illustrated in Table 2.1, at the highest level, all pianos,

guitars, and strings make up the source class, while at the next level all guitars are the next source class,

and at the lowest level only clean guitars are considered the final source class. The duration of the mixture

and source segments is 10 seconds. Each song in the training set is chopped into 10 second segments, with a

hop between adjacent segments of 2.5 seconds. For each segment, I compute the saliency of each hierarchical

target source in the mixture. If the desired source has energy above -30 dBFS in that segment, then the

segment is considered salient and included in the training set. Otherwise, the 10 second segment is discarded.

For the experiments involving multiple levels, I ensure that for a given example, its parent (or grandparent)

has energy from child nodes other than itself. In other words, I want to make sure that a parent is not

exactly the same as the child, meaning that some of the child node’s siblings or cousins are also salient.

For these experiments, I downsampled all audio to 16 kHz. I did the mixing on the fly and select

segments randomly from the pool of salient examples for the specific experiment. For training, the networks

saw 20,000 examples per epoch (≈55.5 h), and I used 3,000 examples (≈8.3 h) for the validation and test

sets. The training, validation, and test sets were composed of distinct songs, and therefore none of these

partitions have any audio examples in common. To demonstrate the Single-instrument strategies, I chose

only one path down the hierarchy (shown in Table 2.1); this path is taken from the larger hierarchy used for

the Multi-instrument experiments (Figure 2.13). For the QBE systems (i.e., both Multi-instrument Single-

level and Multi-instrument Multi-level QBE systems), I separated every instrument type in the hierarchy

shown in Figure 2.13. Query segments were selected from the set of salient segments such that they are

always leaf nodes along the same path as the target regardless of the target level, but originate from different

tracks.

For all experiments, I used the scale-invariant source-to-distortion ratio (SI-SDR) [155] to determine

the output quality of our models (see more about SI-SDR in Section 1.2.3). For reference, in some cases

I will also report the SI-SDR when doing no processing on the mixes. For all values in this chapter I will
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Strategy Model Name Sources # Networks # Output Levels/Net

Single-instrument Single-level SSS Guitar 3 1
Single-instrument Multi-level SSS Guitar 1 3
Multi-instrument Single-level QBE All 3 1
Multi-instrument Multi-level QBE All 1 3

Table 2.2. The models used in these experiments and which hierarchical strategy they follow.
SSS stands for Source-Specific Separation networks, which are Single-instrument systems
specialized to one path in the hierarchy. In this case, these networks learn a path for
Guitars shown in Table 2.1. The Query-by-Example (QBE) networks are able to separate
all sources in the dataset, depending on an input audio query. The Single-level systems
(rows 1 & 3) contain 3 networks, one for each level of the hierarchy. The Multi-level systems
(rows 2 & 4) contain only 1 network that is responsible for separating all 3 levels of the
hierarchy.

report the “SI-SDR improvement” or SI-SDRi (defined in Introduction Equation 1.5), which is the difference

between the SI-SDR of the estimated source signal and the SI-SDR of the unprocessed mixture signal. Higher

values indicate better separation performance, with values close to 0.0 dB indicating that the estimate is no

better than the unprocessed mixture and values below 0.0 dB indicating that the separation performance

is actually worse than if we had not done any separation in the first place and used the mixture as our

“separated source.”

As I have mentioned previously, all current automated measures of separation quality–SI-SDRi included–

have a tenuous correlation with human perception [20, 23, 24, 77]. SI-SDRi does, however, measure how

close a system’s source estimate is to the ground truth source. It is also able to be quickly automated, which

enables collecting evaluations for hundreds of thousands of source estimates, as done in this chapter. Finally,

because the hierarchical reframing of the source separation problem is new, the separation quality numbers

that I will present are provided as an existence proof of the technology.

2.4.2. Model Configurations

Recall that all networks for experiments in this chapter are adaptations of the backbone Mask Inference [69]

system described in Section 2.3.2. This architecture is modified such that the resulting networks follow

the Single-instrument Single-level, Single-instrument Multi-level, Multi-instrument Single-level, and Multi-

instrument Multi-level strategies. The results of these modifications are shown in Table 2.2.

As discussed, the Single-instrument Single-level and Single-instrument Multi-level strategies require

minimal changes. I refer to these systems as Source-Specific Separation (SSS) systems. These SSS systems.

The SSS models were composed of 4 bidirectional long short-term memory (BLSTM) [118] layers with 600
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hidden units in each direction and dropout [260] of 0.3 applied to all but the last layer, followed by a

fully connected layer with sigmoid activation function that outputs a mask. This mask was applied to the

mixture magnitude spectrogram and combined with the mixture’s phase to create a source estimate. The

only difference between the Single-instrument Single-level SSS system and the Single-instrument Multi-level

SSS system was that the Single-level system consists of three networks that each output only one mask (for

each level), whereas the Multi-level system consisted of one network outputting three masks.

As described in Section 2.3.6, a Query-by-Example (QBE) model was used to embody the Multi-

instrument Single-level and Multi-instrument Multi-level strategies. These QBE models were composed

of two sub-networks, a query net and a masking net. The query net was composed of 2 BLSTM layers

with 600 nodes in each direction and dropout of 0.3 applied to the first layer, followed by a fully-connected

layer with linear activation that mapped each time-frequency bin to an embedding space with 20 dimensions

according to Equation 2.5. The masking net was the same as the SSS models above, with a larger input

feature vector to accommodate the concatenated query anchor. The masking network produced the mask,

which was applied to the mix spectrogram to get source estimates. Just as above, for Multi-instrument

Single-level the QBE setup consisted of three Single-level model outputting one source per model and the

Multi-instrument Multi-level QBE system is one model outputting sources for all three levels at once.

All models were trained with the Adam [142] optimizer at a learning rate of 1e-4 for 100 epochs and a

batch size of 25. All networks were trained to optimize the tPSA loss (Eq. 2.3) described in Section 2.3.2.

The learning rate was halved if the loss on the validation set did not decrease for 5 straight epochs. The

gradient was clipped to the 10th percentile of historical gradient norms if the norm of the minibatch was

above that value [240].

2.5. Results

In this section, I will discuss the results of the experiments I conducted in an effort to answer the three

questions I posed about hierarchical separation systems.

2.5.1. Does the Hierarchical Constraint help or hurt Multi-level separation systems?

The first results I will discuss are in regards to the experimental question about whether or not the hierarchical

constraint posed in Section 2.4.0.1 leads to better separation performance. I choose to discuss these results

first because they will inform the design of the Multi-level systems for the next two experiments. These
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results are shown in Table 2.3, where the values per level indicate the mean SI-SDRi over the whole test set

and the column marked “HC” determines whether the hierarchical constraint was applied during training or

not.

Model HC Level 3 Level 2 Level 1

SSS (Guitar) 3.5 4.0 4.0
SSS (Guitar) 3 3.2 3.6 3.8

QBE 3.2 2.4 0.2
QBE 3 3.3 2.1 1.6

Table 2.3. Mean SI-SDRi (dB) for hierarchical Source-Specific Separation (SSS) and Query-
by-Example (QBE) models. All models in this experiment are Multi-level models. Each
Multi-level model is trained either with the hierarchical constraint (HC) described in Sec-
tion 2.3.4.2 or with no constraints on the masks produced for sources at different levels of
granularity.

In Table 2.3, we can observe that, for the source-specific separation network (recall that this system

only separates guitars), the hierarchical constraint slightly diminishes performance at all levels according to

the mean SI-SDRi results in the table, which is an indication that Source-Specific Separation (SSS) models

are able to learn the specific hierarchical relationship for a single source (in this case, guitar) at different

levels without the additional help offered by the hierarchical constraint. That is, the SSS networks are so

specialized to the source they are designed to separate, that adding an additional inductive bias in the form

of the hierarchical constraint actually hinders the SSS network’s ability to produce the correct masks for its

target source.

For the Query-by-Example (QBE) networks, which separate all types of instruments, the hierarchical

constraint marginally hinders performance at Level 2, but helps considerably for the leaf node (Level 1). I

hypothesize that QBE networks benefit more because they are unable to learn the specific mask “shapes”

of any individual source, and thus need the additional help offered by the hierarchical constraint. The

results I report in Table 2.3 are the mean of SI-SDRi over the entire test set, so the small differences (< 0.5

dB) between different experimental conditions might not hold up to further scrutiny. Despite this, in all

subsequent experiments I will use the hierarchical constraint for QBE networks, and omit it for the SSS

networks.



82
Strategy Model All Levels Level 3 Level 2 Level 1

Single-instrument Single-level SSS (Guitar) 1.8 3.2 2.7 −0.7
Single-instrument Multi-level SSS (Guitar) 3.9 3.4 4.0 4.0

Multi-instrument Single-level QBE 1.0 3.3 1.4 −1.9
Multi-instrument Multi-level QBE 2.3 3.3 2.1 1.6

Table 2.4. Source-Specific Separation (SSS) and Query-by-Example (QBE) model results in
terms of mean SI-SDRi (dB), where higher values are better. SSS networks are only trained
to separate sources in the hierarchical path containing clean guitars (See Table 2.1), whereas
QBE networks separate any source in the hierarchy. Here I compare Single-level networks
to Multi-level networks. There is only one multi-level network for all three levels, but three
single-level networks, i.e., one for each level (see Table 2.2). The ‘All Levels’ column is the
aggregate of the latter three columns, which show each level individually. The Multi-level
systems (rows 2 & 4) handily outperform the Single-level systems (rows 1 & 3) at Level 1,
which represents the leaf node sources.

2.5.2. Do Single-level or Multi-level systems separate better?

Next, we turn toward understanding whether Single-level or Multi-level systems are more effective at sepa-

rating hierarchical sources. The results shown in Table 2.4 compare Single-level and Multi-level hierarchical

models for both Source-Specific Separation (SSS) (top two rows) and Query-by-Example (QBE) (bottom

two rows) separation systems. Again, the numbers represent mean SI-SDRi values over the entire test set,

so small improvements (i.e., < 0.5 dB) should be taken with a grain of salt. Nonetheless, in both cases the

Multi-level hierarchical networks (rows 2 and 4) improve over the Single-level models (rows 1 and 3) at every

level. Multi-level systems demonstrate the largest gains over Single-level systems at the lowest levels of the

hierarchy (i.e., Level 1). This implies that Multi-level networks can leverage their shared knowledge of the

hierarchy to aid themselves at the lower levels, where individual instruments are more difficult to discern in

the mix.

From the Level 1 results in Table 2.4, we see that separating sources at this fine level of detail (e.g.,

clean electric guitars vs. distorted electric guitars) is extremely difficult, especially with a MIDI-synthesized

dataset such as Slakh2100, where several different instrument types may sound similar. As a reminder, Level

3 sources can be considered similar to the “Other” source class in MUSDB18 [224]. Therefore, separating

sources at the more fine-grained Levels (1 and 2) is more difficult than what is typically attempted in musical

source separation.

The results from the QBE networks in Table 2.4 are expanded upon in Figure 2.14, which compares

both QBE setups, showing boxplots of the SI-SDRi distributions for the Child level (Level 1). Recall that
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Figure 2.14. Multi-instrument separation SI-SDRi (dB) results for the bottom level (“Level
1 – Child”) of the hierarchy comparing on of the Multi-instrument Single-level QBE sys-
tems (orange, labeled “Single-level”) to the Multi-instrument Multi-level QBE system (blue,
labeled “Multi-level”). The boxes extend from the first quartile to the third quartile of the
distribution and the lines in the boxes represent medians. All paired Single/Multi distri-
butions are statistically significant (p < 0.012) except for Plucked Strings, Electric Basses,
and Double Reeds according to a Mann-Whitney U rank test. The Multi-instrument Multi-
level QBE system outperforms the Multi-instrument Single-level QBE system in 16 of the
18 total source types.

the Single-level QBE setup has one QBE model for each level (i.e., each chart is one model), whereas the

Multi-level QBE setup is only one model for all levels (i.e., there is one model shown across all three charts).

This figure shows stark differences in the performance between Single-level and Multi-level models, with the

Multi-level models winning in the majority of settings. In fact, of the 18 total source types at the Child level,

in 16 of them the median is higher; in 16, the top quartile is higher; and in 9 of them, the bottom quartile is

higher for Multi-level systems. Furthermore, for each instrument in the Child level, all pairs of Single-level

and Multi-level distributions are statistically significant (p < 0.012) according to a Mann-Whitney U rank

test, with the exception of the Plucked Strings, Electric Basses, and Double Reeds source types. These facts

indicate that the Multi-level distributions as a whole have distinctly higher SI-SDRi values over more source

types.

Additionally, Figure 2.15 shows an annotated t-SNE [282] visualization of the embedding space made by

the query subnetwork of the Multi-level QBE model running on the test set. We can qualitatively see that

similar sources (e.g., different types of pianos, or various wind instruments) are put into similar locations

of the embedding space. While this is not definitive proof that the embedding space has any hierarchical
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Figure 2.15. Annotated t-SNE [282] plot of the embedding space produced by the Query
input of the Multi-level, Multi-instrument QBE separation architecture shown in Figure 2.12.
Similar sources are clustered together and dissimilar sources are far apart.

structure (recall that there was no restrictions put on the embedding space during training), this is a nice

indication that the proposed hierarchical setup does seem to result in an embedding space that clusters

similar sounding sources. Compare this to the pre-defined hierarchy shown in Figure 2.13.

All of this indicates that providing a source separation system with a set of inductive biases akin to our

knowledge of auditory hierarchies enables the Multi-level SSS and QBE systems to get substantially better

separation performance as compared to their Single-level counterparts. This is especially true for the finest-

grained source types. The Multi-level setup enables a QBE system to be more successful when separating

more types of sources. In total, the Multi-level QBE system is able to separate 28 different types of sources

over all levels and 18 source types at the most granular level. Either number is much more than typical

deep learning-based music source separation systems are able to separate. Another striking fact about these

results is that the Multi-level systems work better in spite of the fact that they contain just one model for

all three levels instead of three Single-level models, with each specialized to one of the three levels. The
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Data

Reduction Levels

% type All Level 3 Level 2 Level 1

SS
S
(G

ui
ta
r) 0 – 3.8 3.5 4.0 4.0

50 all 3.3 3.1 3.4 3.4
leaf 3.5 3.3 3.6 3.6

90 all 0.1 1.5 −0.7 −0.5
leaf 3.6 3.4 3.7 3.7

Q
B
E

0 – 2.3 3.3 2.1 1.6

50 all −1.5 −2.1 −1.4 −1.1
leaf 2.2 3.4 2.1 1.1

90 all −1.8 −2.1 −1.8 −1.5
leaf 1.9 3.1 1.7 0.8

Table 2.5. Mean SI-SDRi (dB) over the unprocessed mix for hierarchical Source-Specific
Separation (SSS) and Query-by-Example (QBE) models (separated by the thick broken
line). Each model is trained while removing either just the leaf (“leaf”, just Level 1) or the
whole example (“all”, all levels) for a specified percentage of the data. Reducing just leaf
nodes up to 90% shows only a 0.3 dB drop for SSS and 0.8 dB drop for QBE compared to
using all of the leaves.

Multi-level models have approximately
1

3
the number of trainable parameters as the Single-level systems,

which seems surprising in the world of deep learning where “more parameters =⇒ better performance” [15,

148]. This again, shows the power of having a hierarchy available during training: it can overcome a huge

parameter deficit to ultimately produce better separation estimates.

In short, inductive biases that reflect auditory hierarchies can enable Multi-level separation systems to

better separate more source types with a fraction of the computing cost.

2.5.3. Can Hierarchical separation help with data sparsity at the most-specific source types?

Recall that in this experiment I investigated specifically how well a hierarchical system can leverage infor-

mation about related nodes (i.e., parent nodes) when separating leaf nodes. By definition, the leaf nodes are

the most specific nodes in the hierarchy, and therefore leaf node data is most sparse. Here, the leaf data is

data from Level 1 of the hierarchy (also referred to as the “Child” level, earlier). Towards this goal, I tested

how well the two Multi-level hierarchical systems performed when trained with all data (as an upper bound),

by eliminating full examples from in the training set (as a lower bound), or by only eliminating only the leaf

data from the training set (but keeping the parents as training targets).

The full results from this experiment are shown in Table 2.5. The top section shows the Multi-level

Source-Specific Separation (SSS) networks and the bottom section shows the Multi-level Query-by-Example
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Figure 2.16. Separation performance, in terms of mean SI-SDRi (dB), of the Level 1 sources
(i.e., the leaf nodes) for the Source-Specific Separation (SSS) network, left, and the Query-
by-Example (QBE), right, as the number of training examples is reduced. Here, I reduce
the training data in one of two ways: either by eliminating examples at all levels (labeled
“All”) or by just eliminating the leaf data (labeled “Leaf”). This is the same data shown in
Table 2.5. Reducing the leaf data by up to 90% shows a minimal degradation in performance,
indicating that the network is able to leverage information about the hierarchy (i.e., parent
sources) when separating leaf sources with limited data.

(QBE) networks. The “Data Reduction” columns show how the data was reduced–“all” means the full example

was eliminated, “leaf” means only the leaf data was eliminated–and what percentage of data was eliminated.

The top row, marked “0”, is the upper bound where none of the data was eliminated from the training set.

Compared to reducing all of the data by 50% or 90%, the performance of reducing only the leaves degrades

very minimally. In fact, when removing 90% of leaf data (i.e, training on only 10% of the available leaves),

the SSS model only loses about 0.3 dB in SI-SDRi performance at the leaf nodes (Level 1) of a system that is

trained with all of the data. Similarly, the QBE model only loses roughly 0.8 dB compared to the peak leaf

node performance when training on 90% less leaf data. Compare these numbers to the situation in which

data is removed at all levels: these values are all below 0.0 for Levels 2 & 1, indicating that the separation

systems did worse than doing nothing! Specifically, the Level 1 results from Table 2.5 are also shown in

Figure 2.16, to make this trend clearer. For both SSS and QBE cases, the models that were able to leverage

information from other nodes in the hierarchy (the dashed lines), had a minimal performance degradation.

In cases where we have rich data at higher levels but sparse data at lower levels, hierarchical multi-level

networks can do a respectable job at separating lower levels. We see the same story for both SSS and QBE

networks: even a small amount of leaf data can help ward off a large drop in performance.
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2.6. Envisioned Interactions with Hierarchical Source Separation Systems

One of the major selling points of hierarchical source separation is that resulting systems are able

to separate a much wider array of source types compared to typical deep learning-based source separation

systems. Because of the existing landscape of deep learning-based source separation, there have been very few

opportunities to create interactive separation systems that support controllable source separation. Currently,

many websites exist where a user can upload a mixture and get back a set of pre-defined sources. These types

of non-interactive separation interfaces make sense when the set of pre-defined source types is small (e.g.,

N = 4). Yet, as I have argued, having a small number of supported source types also limits the usefulness

of source separation in general. The limitations of current deep learning systems limit the need to think

deeply about how a user might interact with them. In contrast, in this chapter I have demonstrated that

a hierarchical Query-by-Example source separation can support source types than is typically considered.

This provides a chance for us to rethink how a user might interact with a hierarchical separation system.

Specifically, the Multi-level Query-by-Example (QBE) system has a lot in common with steerable sepa-

ration systems developed before the deep learning era [162]. One interesting direction is so-called Separation

by Humming [254], which used an audio query of a user singing or humming their desired source to guide a

factorization-based separation system, e.g., Non-negative Matrix Factorization (NMF) [252] or Probabilistic

Latent Component Analysis (PLCA) [255]. Such systems are limited by the less performant backend sep-

aration algorithms of the day, but they are also limited by a user’s ability to vocally imitate their desired

source [22, 137]. In a similar thread, the so-called On-the-Fly separation interface [61] enables users to

upload a mixture and inform the system what source they want to separate using a set of keywords. The

user-selected keywords would then be used to retrieve a set of matching audio clips, where the user would

select the clip that most closely matched their desired source. These audio clips would be used to guide a

factorization-based separation process and produce separated sources.

Both of these systems embody novel methods for providing users with flexible ways to guide a separation

process built around the affordances of backend separation technology that is flexible enough to separate

many source types (i.e., NMF). Modern deep learning separation systems offer much better separation

performance in comparison to NMF, but, as mentioned, they have historically been limited in the types

of sources they can estimate. With more flexible hierarchical Multi-level QBE systems proposed in this

chapter, we now have access to backend separation technology that can provide a similar set of afforances
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as the Separation by Humming and On-the-Fly separation interfaces. I will draw inspiration from both of

these systems when I imagine how a hierarchical separation interface would look like.

Figure 2.17. An imagined interface for hierarchical source separation. The backend system
is a Multi-level Query-by-Example system as outlined in Section 2.3.6. Recall that the query
guides the behavior of the separation system. For the query input, a user can either upload a
sound of their choosing or select one of the predetermined options from a drop down menu.
The predetermined options will load a corresponding audio clip in the background. The
output is then displayed to the user, where they can hear their results. A “Hierarchy Level”
slider lets the user hear the outputs of each level, and will interpolate between different
levels by proportionally adjusting the audio.

The intended user for this system is one that has prior experience with digital audio software, like a Digital

Audio Workstation (DAW). Specifically, some DAWs are designed around non-real time audio processing,

like iZotope RX [125] or Adobe Audition [1]. Whereas with real time processing where the system processes

audio in milliseconds, non real time systems have no such time constraint, so we can expect that the user

will tolerate slower turnaround times (e.g., on the order of seconds to minutes). Users accept these slower

turnaround times in exchange for enabling an advanced set of functionality that might not be possible or

feasible in real time settings, such as spectral editing. As a result of these more advanced features, non real

time systems tend to have a user base with more experience with these tools. Typically, the users are audio

professionals. Deep learning inference times on commodity hardware (i.e., laptops with no GPUs) can take

minutes to finish [83], requiring non real time processing. Because the proposed Multi-level QBE interface

is built on deep learning methods and because this is a new technology (compared to older DSP techniques

like reverb), the intended audience for this interface is expected to have familiarity with the advanced, non

real time DAWs. For example, a post-processing engineer on a movie set or a recording engineer would both

be potential users for this interface.
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An envisioned interface is shown in Figure 2.17. After providing an input mixture (“Open Mix” button,

top center) a user can hear it by pressing the global play/pause/stop controls and the mix is shown in the

blue waveform. To perform separation, a user must provide an audio query shown on the left side of the

interface. A user could either record their own query audio to upload to the system (red button labeled

“Record Query”), or they can select from a drop down menu (bottom left) to pick a predefined query audio

clip from a set of sources known by the system. The selections in the drop down menu fetch a corresponding

audio clip to use as a query. One the query audio is selected, it is displayed as a waveform (top left) and

the user can listen to it. Once the user is satisfied with the query audio, they press “Separate!” and the

system provides a separation estimate. When the user presses “Separate!”, the system will run inference on a

Multi-level QBE system and get a separation estimate. This separation estimate is displayed in a waveform

below the mix (labeled “Estimate”) and a user can hear it by the pressing “Play” on the global controls.

The source estimate track is soloed by default when the separation is first displayed, i.e., all other tracks

are muted except the separation estimate. Soloing and muting tracks can be controlled with the “S” and

“M” buttons, respectively, to the left of each track (these icons will be familiar to users who have experience

with DAWs). Below the tracks there is a slider that lets the user hear the different hierarchical levels of

the estimate. In this mockup, I imagined letting the user interpolate between different levels, which can be

implemented under the hood as proportionally adjusting the audio volumes between the levels (i.e., if the

slider is halfway between Level 1 and Level 2, then each is played at 50% volume).

Figure 2.18. An alternate imagined interface for hierarchical source separation. The backend
system is a Multi-level Query-by-Example (QBE) system as outlined in Section 2.3.6. Here,
instead of selecting an audio clip, a user can move around in an annotated plot of the
t-SNE [282] embedding space produced by the QBE model (left).
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Finally, I also envisioned a version of this interface where, instead of uploading an audio clip, a user

can see and explore the QBE model’s latent space directly. This is shown in Figure 2.18. This latent

space is annotated, so by moving around the latent space the user can guide the model to separate different

sources without having to upload a clip. Under the hood, we can precompute the actual latent matrices that

correspond to different locations in the plot shown to the user. Then, once the user makes a selection that

latent matrix is put into the model. If a user selects a part of the space that is between precomputed latents,

we can interpolate. Instead of being a completely different interface, this iteration could be integrated with

the previous one, where a user could choose between uploading audio or interacting with the latent space.

To see either interface to fruition, a set of user studies will need to be designed and implemented such

that the interface can be iteratively updated and optimized for user needs and minimize their confusion.

Such user studies could focus on two aspects of this system: the intuitiveness of the interface itself and the

effectiveness of the backend separation system. Both of these aspects are intertwined; the backend system

might provide a perfect separation, but if the user is frustrated by the layout then the interface would not be

useful. The opposite is true as well: it is problematic if the interface is intuitive but the backend separation

system cannot effectively separate a source they care about. I leave the final design and user studies for

future work.

2.7. Conclusion

In this chapter, I have introduced hierarchical source separation, a conceptualization of source separation

based on the premise that auditory scenes can be analyzes hierarchically. In doing so, I provided four general

strategies for creating hierarchical source separation systems, each of which I instantiated by modifying a

standard source separation architecture. I conducted a set of experiments aimed at determining which of

these strategies provided the best separation performance and flexibility with respect to number of source

types. I found that Multi-level systems always outperform Single-level systems despite the fact that Multi-

level have a fraction of the allotted computing resources. I demonstrated that the hierarchical Multi-level

Query-by-Example is able to separate many more fine-grained sources than typical separation systems usually

consider. I have also demonstrated that hierarchical systems provide a pathway to alleviating the strenuous

data requirements in situations where we require very specific, yet sparse, source data. Finally, I have

sketched out a design for an interface for a Multi-level Query-by-Example separation system. Fruitful

directions for future research might include adapting a more state-of-the-art source separation architecture
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to fit within the proposed hierarchical strategies, evaluating hierarchical source separation on recordings of

live musicians instead of synthesized music as in Slakh2100, and conducting user-centered design studies to

determine the best means for developing interactive hierarchical separation interfaces.
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CHAPTER 3

Simultaneous Separation and Transcription with Cerberus

Source separation is an important way to analyze the contents of a musical scene because it promises users

or downstream tasks an unobstructed audition into the constituent elements of a musical scene. However,

while the resultant audio clips from an ideal separator could perfectly represent every detail of the instrument

source audio, audio clips might contain too much detail to quickly assess the relevant content within that

audio clip when a user wants to make certain kinds of edits. A key piece of musical content that a user might

want to assess at a glance is the set of notes contained in the audio. Notes are a high-level and ubiquitous

way to represent musical content for human consumption (for more discussion, see Section 1.3.1). The other

side of this is that because note representations are typically designed with human readability in mind, these

representations are extremely lossy; they strip the data of everything but the essential components, forgoing

fidelity in favor of concision.

This brings us to two paradigms of analyzing a musical scene: on one side are scenarios in which we

want a low-level analysis that perfectly describes our desired content with high-dimensional data, and on the

other are scenarios where we want a high-level analysis that privileges some attributes over others, producing

low-dimensional data that sacrifices the ability to perfectly describe every detail of the content. As you may

have guessed, Source Separation falls under the former paradigm and Automatic Music Transcription (AMT)

falls under the second.

So, which of these paradigms is best for analyzing a musical scene? As with many things in life, the true

answer to this question is “it depends.” If your task is to learn a song so that you can play it in rehearsal,

analyzing the notes in a musical scene at a high-level is sufficient most of the time. On the other hand, if

you are tasked with remixing a song, then you might require a low-level audio representation that preserves

the exact timbre of each instrument in the song, like a waveform. Given that both of the high-level and

low-level analyses are useful in different contexts, it is natural to ask if doing both types of analysis is useful

when training machine learning systems. Certainly, a system that can do both can support both high- and

low-level analyses would be useful in both of the aforementioned scenarios.
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As discussed in Section 1.4.2, there is a barrier to making systems that support both of these high-

and low-level analysis paradigms. This barrier is the simple fact that most Automatic Music Transcription

(AMT) systems only work for recordings of isolated instruments (e.g., a recording of only a piano [11, 53, 63,

64, 103, 105, 106, 135, 136, 139, 149, 204, 219, 247, 307], or only a drumset [19, 213, 261, 301]). These AMT

systems provide these high-level analysis (i.e., extracting notes from raw audio), but because existing systems

do not work for multi-instrument audio (i.e., recordings with multiple instruments heard simultaneously),

there is a sizeable portion of musical audio content where it is impossible to produce a high-level analysis.

Therefore, it is important to make AMT systems that are able to analyze musical scenes that contain multiple

instruments heard simultaneously.

When the discussion moves towards multi-instrument AMT, source separation seems natural to bring

back into the conversation. The relationship between source separation and multi-instrument AMT has

been noted by early music information retrieval scholars [8, 144, 145, 218], who saw both tasks as having

much in common; they both try to analyze multiple overlapping instruments in a scene. In fact, some early

techniques for source separation, such as Non-Negative Matrix Factorization (NMF) [75, 156, 252, 285], were

initially proposed as AMT systems. However, the discussion about the benefits of doing both separation and

AMT simultaneously has evaporated in the past decade or so, just as deep learning efforts for both tasks has

ramped up. Given the obvious link between these tasks, it seems like a logical step to see if modern deep

learning approaches can benefit from doing both separation and transcription simultaneously.

In this chapter, I will describe the first combined source separation and automatic music transcription

system, called Cerberus. This system is built by extending a standard source separation architecture to

also do transcription, providing a first step in solving the single-instrument problem with AMT systems by

transcribing multiple instruments in a mixture. I will demonstrate that training a deep learning system to

both simultaneously can enable it to get better performance on both tasks according to standard separation

and transcription metrics. Cerberus uses musical score information (i.e., piano roll data) during training,

and therefore there is an argument to made that it is Score-Informed, however has the potential to play a

significant part as an upstream, pre-processing step for a true Score-Informed system described in the next

chapter.
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3.1. Contributions of this Chapter

This chapter makes the following contributions:

• I introduce the first deep learning-based system that can simultaneously separate and transcribe

multiple harmonic and percussive sources in a mixture. This system is called Cerberus, a modifica-

tion to a standard source separation architecture that supports both separation and transcription

outputs. Cerberus combines architectural insights from state-of-the-art separation systems to in-

clude transcription estimates.

• I evaluate this system against separation-only and transcription-only baselines, and I show that

doing both separation and transcription simultaneously leads to better performance when compared

to single-task systems according to standard metrics for both tasks.

• I demonstrate that Cerberus is able to separate and transcribe mixtures with up to five instruments,

making it able to support many more instruments than the vast majority of previous Automatic

Music Transcription systems.

• As I will discuss at the end of this chapter, Cerberus provides an important piece of the puzzle for

downstream systems that need multi-instrument transcription data, like the Score-Informed source

separation system described in Chapter 4, which can edit an output source estimate based on note

input data.

Unlike the other two projects in this dissertation, this chapter will not present an envisioned user

interface. This is because the next chapter on score-informed separation builds on the work presented here

in this chapter. I will present an interface next chapter that uses Cerberus under the hood.

3.2. Cerberus Architecture: Overview

As its name suggests, the Cerberus architecture has three “heads” that are connected to a single “body.”

These three heads are trained jointly and they each have specific outputs and loss functions. The input to

Cerberus is a magnitude spectrogram that represents a mixture. The rest of this section will go into more

detail about each of Cerberus’ heads and how they work, but briefly the output heads are as follows:

(1) The Deep Clustering Head (separation) produces a high-dimensional embedding space for each

time-frequency bin ((t, f) bins) in a spectrogram, whereby (t, f) bins that come from the same

source are close together and (t, f) bins from different sources are far apart [114].
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(2) The Mask Inference Head (separation) outputs a real-valued mask for each source, that is multiplied

by the input mixture spectrogram to produce a source estimate [69].

(3) The Transcription Head (transcription) produces a transcription estimate for each source in the

mixture in the form of a piano roll.

The “body” of Cerberus is a stack of Bidirectional Long Short-Term Memory (BLSTM) layers [94, 118]

(see Appendix Section 6.1 for more details about BLSTMs), which inputs a mixture spectrogram and outputs

a common representation that is given to each head, each of which will do a minimal amount of processing to

convert this common representation into the format the head expects. This BLSTM stack architecture is very

similar to the Backbone Separation System described in Section 2.3.2, however, here, I make modifications

specific to accomplishing the goals of this chapter, namely separation and transcription. Cerberus is trained

jointly on the loss functions computed with all three heads (to be described below), which means that the

body must produce a representation that is suitable for all three. Further training details will be provided

in Sections 3.3.4 and 3.3.5.

Cerberus draws heavily from the source separation literature, specifically it is inspired by Chimera [165],

which is a two-headed separation-only system. The rest of this section will be dedicated to examining each

of Cerberus’ three heads and understanding the role each plays in creating a system that can simultaneously

separation and transcribe multiple instruments in a mixture.

3.2.1. Deep Clustering

Deep Clustering [114] is a technique originally designed for speech separation, whereby a neural network

creates a high-dimensional, discriminative embedding space populated by the time-frequency bins of the

mixture spectrogram. The embedding space is trained such that time-frequency bins that are dominated by

the same source (i.e., where the same source is loudest) are close together and time-frequency bins that are

dominated by different sources are far apart.

To train this embedding space, a set of C ground truth source spectrograms are flattened from shape

RF×T×C to shape RFT×C and are then converted to a binary label indicator matrix Y ∈ RFT×C where

the value at Yi,j = 1 if the source j is loudest at time-frequency bin i = (t, f) and 0 otherwise. This

binary label indicator matrix, Y, is then used to make a binary affinity matrix A = YYT , which represents

the ‘assignment’ of each of the sources: Ai,j = 1 if i and j are dominated by the same source, Ai,j = 0

otherwise. The network is then designed to produce a D dimensional embedding space V ∈ RFT×D that
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has a corresponding estimated affinity matrix Ã = VVT . The network is trained to minimize the distance

between these two affinity matrices with the Deep Clustering loss [114]

LDC = ‖Ã−A‖2F = ‖VVT −YYT ‖2F ,(3.1)

where ‖·‖2F denotes the squared Frobenius norm. At inference time, source estimates are created by clustering

the embedding space that the network produces; typically, k-means clustering is used. Equation 3.1 is the

original loss function that was introduced for Deep Clustering, but alternative objective functions have been

proposed in the literature that correct for differences in number of time-frequency bins per source, eliminating

quiet time-frequency bins, and regularizing and normalizing the embedding space during training so that

can more effectively separated by k-means [291].

3.2.2. Mask Inference

As discussed numerous times in this document, Mask Inference [69] is a technique where the network produces

a matrix that is the same shape as the input mixture spectrogram. This matrix is called a mask, and has

values in the range [0.0, 1.0]. The mask is element-wise multiplied with the mixture spectrogram to produce

a source spectrogram estimate. For more details on masks, see Section 1.2. Typically Mask Inference

systems are trained to minimize the distance between the ground truth source spectrogram and the estimated

spectrogram, either using a simple L1 or L2 distance or something more involved like the truncated Phase

Spectrogram Approximation (tPSA) [69]. Here, I use the tPSA loss for the Mask Inference head,

LMI = LtPSA =
∥∥∥M̂c � |X| − clamp (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
,(3.2)

where |X| and ∠X denote the magnitude and phase of the mix spectrogram, respectively, and clamp(x) =

min(max(x, 0), |X|) is a truncation function ensuring the tPSA target can be reached with a sigmoid activa-

tion function. Here, I use the tPSA loss over a simpler L1 loss on spectrograms because deep networks trained

with tPSA losses have been shown to have better performance than those with just an L1 loss [69]. However,

there are no conceptual issues with using a simpler L1 or MSE loss instead of tPSA. See Section 2.3.2 for

more information on the tPSA loss function. The Mask Inference network creates one mask for each source

it estimates, e.g., to separation 4 sources the net makes 4 masks.
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The types of systems that use Mask Inference outputs are varied; researchers have proposed many types

of U-Nets [34, 35, 111, 127, 133, 148] and other types network architectures that have a Mask Inference

output layer [268, 269]. A common architecture is a stack BLSTM layers, connected to a fully connected

layer the output of which represents the mask [69, 265]. Here, I use the BLSTM stack (see Appendix

Section 6.1 for more details about BLSTMs).

3.2.3. Chimera: Deep Clustering and Mask Inference

In 2017, Luo et. al. proposed combining Deep Clustering and Mask Inference in one network architec-

ture [164]. Here, a shared set of neural network layers form a “body” that outputs a representation that is

sent to two heads–a Deep Clustering head and a Mask Inference head. Both heads do separation, albeit in

different ways; the Deep Clustering head makes a discriminative embedding space, and the Mask Inference

head makes a set of masks. The Chimera network is jointly trained with the losses from both heads, in a

multi-task setup. The Chimera loss is thus,

LCHI = αLDC + (1− α)LMI,(3.3)

where α is a scalar that controls the weight between the two losses.

At inference time either of the heads can used for the final separation estimate. By doing both Deep

Clustering and Mask Inference, Chimera networks have been shown to outperform networks that only do

one or the other [164].

3.2.4. Three Heads are Better than One: Separation and Transcription with Cerberus

Taking inspiration from Chimera [164], in this chapter I propose Cerberus. Shown in Figure 3.1, Cerberus

adds a third head to Chimera–a transcription head. Whereas Chimera is a multi-task network that does

separation in two different ways, Cerberus extends that multi-task framework to include a completely differ-

ent output modality: transcription. Now the shared layers of the “body” must transform the input mixture

spectrogram into a shared representation that is suitable for both separation and transcription tasks. The

separation estimates are output as I described for Chimera, unaltered, but what is new here is the tran-

scription estimate. To produce transcription estimates, Cerberus must train using transcription data, which

could make it viewed as a Score-Informed system (in the next chapter, I will describe a true Score-Informed

system).
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Figure 3.1. The Cerberus architecture for simultaneously separating and transcribing a mu-
sical mixture. The input is the magnitude spectrogram of a musical mixture. There are
three outputs (heads): an embedding space (trained via LDC - deep clustering loss), esti-
mated sources (trained via LMI - mask inference loss) and the piano roll transcription of
each source (trained via LTR - transcription loss).

Figure 3.2. Cerberus’ transcription output head produces a piano roll as a matrix. A piano
roll (left) is easily converted into a matrix representation of the same data (right). The
piano roll determines when any particular note is active in a performance, denoting when
the note begins, which pitch the note is, the duration of the note, and when it ends. The
piano roll is readily converted to and from a matrix representation: the pitch values of the
equal temperament scale are used directly as the rows of the matrix and time is discretized
to represent the columns of the matrix (in units called “time frames”). In the matrix, a
value of 1.0 (dark values) indicates that a note is active in that time-pitch bin, and a value
of 0.0 (not shown) denotes silence for that particular time-pitch bin. Piano rolls can also be
used to represent the volume of a note (called its “velocity”), however estimating volume is
outside the scope of this work.
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The transcription estimates are output in the piano roll representation, as shown in Figure 3.2. A piano

roll represents a transcription as a matrix where one axis represents time (in units of time frames of e.g.,

32ms), the other represents pitch, and values in the matrix represent the presence or absence of a note at

that particular pitch at that time frame. Sometimes, the values of the matrix represent the volume of that

note (called its “velocity”), but here I binarize the matrix to only estimate whether a note is present or not.

I leave the estimating the velocity for future work.

Cerberus outputs a set of piano rolls, one for each source that the system estimates. For example,

a Cerberus model trained on mixtures of Piano and Guitar will output two separation estimates and two

piano roll estimates–one of each for Piano and Guitar. In this example, Cerberus outputs a piano roll for

representing Piano transcription and another piano roll representing the Guitar transcription.

Formally, Cerberus’ transcription estimates are output as a piano roll matrix with shape P ∈ RK×T×I ,

where K is the number of pitches, T is the number of time steps (aligned with the spectrogram input), and

I is the number of instruments to transcribe (aligned with number of sources to separate). During training,

the transcription head is designed to minimize the MSE between the ground truth transcription and the

network’s output, LTR. Combining the Chimera losses with the transcription loss produces the Cerberus

loss,

LCerberus = αLDC + βLMI + γLTR,(3.4)

where α, β, and γ are scalars used to control the importance of each loss term. At inference time, any of the

three heads can be used, depending on the task. In this work, for separation I use the Mask Inference head

for simplicity (skipping the extra clustering step required to get source estimates from the Deep Clustering

head). The raw transcription output of Cerberus is a probability estimate that a note is active for each

time-pitch entry in the piano roll for each instrument; at inference time, these probabilities are thresholded

to make the final transcription output.

Cerberus outputs source separation estimates as well as transcription estimates. The source separation

estimate provides a low-level, high-fidelity description of each source in the mixture, and the transcription

estimate provides a high-level summarization of the musical content of the mixture. Cerberus provides both,

giving a more complete description of a musical scene than a system that only provides one or the other.

Furthermore, because it transcribes multiple instruments in a mixture, it breaks free of the limitations posed

by existing Automatic Music Transcription systems that only work for recordings of individual instruments.
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3.3. Experimental Design

I designed a set of experiments to answer three questions about the Cerberus system. Each of these

questions probes a certain aspect of how well the Cerberus system is able simultaneously separate and

transcribe. Specifically, I wanted to find answers to the following questions:

• Does learning to simultaneously separate and transcribe using a single network help or hurt per-

formance on either task, versus learning the tasks independently? In practical terms, do we need

all three heads to make an effective separation and transcription system, or can we get away with

less?

• Given that we need synthesized data (i.e., Slakh) to train Cerberus networks, how well do they

generalize to recordings of live musicians?

• How does separation/transcription performance change as more instruments are added?

Each of these questions has a corresponding experiment and results that will elucidate answers to these

specific questions, and provide an overall picture of the capabilities of Cerberus as it separates and transcribes

in different scenarios. The rest of this section is devoted to expounding on the design of these experiments.

First I will discuss these three questions in detail before describing the datasets, evaluation, and model

details. I want to make special note that, despite being self-consistent, the results presented in this chapter

are not apples-to-apples comparable to the results in the next chapter due to many factors (different ways

of producing testing sets, different codebases, different hyperparameters, etc).

Note that while each of these two tasks–source separation and automatic music transcription–have been

tackled individually, I am aware of no prior work containing a system that can jointly separate and transcribe

multiple sources in a mixture. As such, the experiments in this chapter are designed as a proof of existence

for the proposed work. Where I can, I will provide baseline systems (i.e., comparing single-task networks to

multi-task networks).

3.3.1. Are Separation and Transcription Mutually Beneficial?

The first question I ask aims to understand if learning to separate is symbiotic with learning to transcribe.

As I mentioned above, it has been long thought that separation and multi-instrument transcription are

tasks that are reciprocally advantageous, however I am unaware of any work that has rigorously tested this

hypothesis. The purpose of this first experiment is to answer this question with the Cerberus system.
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From a practical standpoint, evaluating this question is simply a matter of training a system with all

possible subsets of the three heads (including using all three and excluding using none). Of course, we only

need two heads–one for transcription and one for separation–however, given that the Deep Clustering head

is known to be valuable when doing another type of separation (i.e., Mask Inference), a natural question to

ask is if all three heads can be similarly advantageous for separation and transcription. To train the system

without a certain head, I set the loss weight for that output head to be exactly 0.0; this eliminates any

gradients that will flow through that head and therefore the weights in the layers that make up that head

will never change throughout training (i.e., they will have the same weights they did at initialization, namely

random). That head is then ignored during all experiments at inference time. Setting the loss weight to 0.0

effectively removes the head.

Specifically, I construct the one Cerberus network (to be discussed shortly in Section 3.3.5) multiple times

and train each network using a different combination of losses such that all possibilities of loss functions are

used–all possibilities of the three loss functions, LDC, LMI, and, LTR. I initialize each network with the

exact same weights each time, and use the same hyperparameters for each training run. The only difference

is the weights applied to each loss function.

For this experiment, I only look at mixtures that contain two sources: piano and guitar. I examine the

performance of each network on both tasks (where applicable) using standard metrics for source separation

and automatic music transcription.

3.3.2. How well do these networks generalize to live recordings?

The next question is about how well Cerberus networks are able to generalize to recordings of live musicians.

Given that Cerberus’ training data is all Slakh [184] data–which is synthesized–it is logical to wonder how

well a trained Cerberus model can perform on more realistic sounding input data.

This question poses an interesting challenge. One of the reasons that the Slakh data is such a valuable

resource, especially for Cerberus, is because it is hard to find recordings of live musicians with highly-aligned

note data. That is why Slakh is useful: because the alignment of the audio and note data comes for free via

the synthesis process. This alignment is a rarity in the field, and while it is great that Slakh has aligned data,

the effect of synthesizing data is that it does not sound like musicians when they play their instruments. For

example, many of the instrument sounds in Slakh sound stiff and unnatural; they would never be mistaken
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for a set of musicians playing the same song.1 The reality is that there are no large datasets that I am aware

of that contain real-world recordings of mixtures, isolated source data, and ground truth transcription data.

Given that this is the state of the world, it will be necessary to make a few concessions in order to

answer this experimental question. While these compromises might reduce our ability to trust the resulting

experiments carte blanche, they are currently the only way to understanding how well a multi-instrument

separation and transcription system will perform on recordings of live musicians. That being said, I propose

two ways to leverage existing single-instrument transcription datasets (with live musicians) for use in my

experiments. For these experiments, I limit the data to only include mixtures of piano and guitar, as above.

The first way involves looking at transcription performance on these existing single-instrument datasets,

ignoring the separation task and assuming the system is a single-instrument transcription system. For

example, a common single-instrument piano transcription dataset is the MAPS dataset [64]. MAPS has

audio recordings of piano performances along with aligned transcription data. In this case, to evaluate a

Cerberus model trained on Piano and Guitar sources, I would run the MAPS piano data through the model

and ignore the separation output and look only at the transcription performance of the network’s piano

output. Similarly, with the same Cerberus trained on Piano and Guitar, I could use a single-instrument

guitar transcription dataset, GutiarSet [303], to evaluate the network’s guitar transcription performance.

Despite the slight mismatch between the training setup–which expects mixes–and the evaluation setup, this

should be a decent, albeit noisy, proxy for transcription performance when evaluated on recordings of live

musicians.

The second way to leverage single-instrument transcription datasets is to mix audio examples from each

dataset together and use those mixtures as input data to the system. For example, in this case I would

randomly grab on example from MAPS and another random example from GuitarSet, and mix the audio

from both examples together to get input for a Piano-Guitar Cerberus network. I could then evaluate the

separation performance comparing the network’s output against the solo MAPS example as the source audio

for the Piano source, and similarly with the GuitarSet audio being the Guitar source. I could also evaluate

the transcription performance by comparing against the transcription data in each of these datasets.

There is a key caveat to this second approach, though: that is that the pianists in MAPS and the

guitarists in GuitarSet are recorded separately, with no thought given to ever combining these recordings

in the way that I propose. Because of this, when I make mixtures from these two datasets, the results are

1Hear some examples for yourself at: http://www.slakh.com/#examples

http://www.slakh.com/#examples
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cacophonous and discordant. For instance, the MAPS dataset contains piano recordings of European classical

music; GuitarSet contains recordings of guitarists playing in 5 different styles (Rock, Singer-Songwriter, Bossa

Nova, Jazz, and Funk). By randomly selecting one example song from each of these datasets, we know that

they will not have the same style and we are nearly guaranteed that the examples will be in different keys

and have different tempos. I refer to these mixtures as incoherent mixtures, as opposed to coherent mixtures

which all come from the same song. While incoherent mixing is frequently used as an augmentation strategy

to train separation-only networks [148, 184, 220, 257, 280], it is rare that it is used for evaluation. For this

test, the training data is coherently mixed and the evaluation data is incoherently mixed and as such the

evaluation data highly dissimilar from the network’s training data.

In the single-instrument evaluation and the incoherent mixing approaches, this unfortunately means that

there are two experimental variables that could contribute to the results. The first variable for is the distribu-

tion shift from synthesized audio recordings to recordings of live musicians. This is the independent variable

we wish to measure the effect of. The second variable is the distribution shift from the coherently mixed

training data to either the single instrument audio (in the first evaluation approach) or to the incoherently

mixed evaluation data (in the second evaluation approach).

However imperfect these two approaches are, they still provide hints as to a system’s performance when

evaluated on real world data. There is still plenty of work to be done in providing high-quality, multi-

instrument transcription data containing live musicians such that we can create more trustworthy evaluation

methods.

3.3.3. How does separation/transcription performance change as more instruments are added?

Given that Cerberus is the first system of its kind to simultaneously separate and transcribe, I want to test

the limit of how many instrument sources it can work for. It is generally understood that more instrument

sources in the mixture make it harder to separate each individual instrument; this make sense intuitively

because when there are more instruments in the mix, each one becomes more difficult for a human listener

to hear. The question this experiment asks is if the same thing happens with Cerberus networks: how are

separation and transcription performance affected by the number of instruments in the mixture?

To answer this, I train a set of Cerberus networks that are able to support more source types than

the networks in the earlier two experiments. Here I train three additional Cerberus networks using the

Slakh data such that they can support 3, 4, and 5 sources, respectively. The 3-source Cerberus supports
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Piano, Guitar, and Bass; the 4-source Cerberus supports Piano, Guitar, Bass, and Drums; and the 5-source

Cerberus supports Piano, Guitar, Bass, Drums, and Strings. I examine how the separation and transcription

performance changes using the Slakh test set as I vary the number of sources that each network can support.

3.3.4. Dataset and Evaluation

To train a Cerberus network, a dataset is required that contains mixtures, isolated sources, and ground truth

transcriptions for those sources. Slakh2100 [184] is one such dataset. It is comprised of 2100 mixtures made

with sample-based professional synthesizers along with isolated sources and accompanying MIDI data for

each source. For more information on Slakh, see Section 1.2.2. I downsampled the audio to 16 kHz. To make

an example, I randomly chose a mix, selected a random subset of the sources (e.g. piano, guitar, bass) in the

mixture that match the desired sources the network will support, and then chose a random 5 second segment

where all the desired sources have at least 10 note onsets with MIDI velocity above 30. The source audio for

the desired sources was combined to make a mixture of just those sources. STFTs with 1024-point window

size and 256 sample hop were calculated from mixture segments as inputs to the network. The musical score

was the accompanying MIDI data binarized with a velocity threshold of 30 (i.e., any note with a velocity

value over 30 is considered “on”, else it is considered “off”).

Using this procedure, I made four subsets of the original Slakh dataset, each with 20,000 audio segments

(28 hours) for training, 3,000 (4 hours) for validation, and 1,000 (1.4 hours) for testing. These segments were

chosen randomly using the procedure described in the previous paragraph, and they were selected according

to the train, validation, and test set defined by Slakh (i.e., a training segment is randomly selected from

Slakh’s training set). These four subsets had different instrumentation. For the first two experiments, I used

mixes that had just two sources: Piano and Guitar. For the final experiment, there were three additional

datasets with the following instrumentation: the 3-source dataset had Piano, Guitar, and Bass; the 4-source

dataset had Piano, Guitar, Bass, and Drums; and the 5-source dataset had Piano, Guitar, Bass, Drums, and

Strings.

In addition to the synthesized audio data, I evaluated on recordings of live musicians to answer the

second experimental question (Section 3.3.2). As I mentioned, I am aware of no large dataset that contains

recordings of live musicians with mixture data, isolated source data, and ground truth transcription data.

Thus, I made mixtures from two transcription datasets of real solo instrument recordings. The first is
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the MAPS dataset2 [64], which contains 30 live piano performances of classical music recorded with two

microphones (60 clips total), and a Disklavier MIDI recorder. The second dataset is GuitarSet [303], which

contains 360 30-second guitar excerpts in 5 styles. I downsampled all audio to 16 kHz, selected 5 second

segments with at least 10 note onsets, and used the same STFT parameters. I randomly selected segments

from each dataset to make 1000 instantaneous mixtures with accompanying sources and score data. These

mixes are incoherent, meaning the mixed segments come from different songs with different tempos and key

signatures (MAPS is classical piano, GuitarSet is rock guitar). This data is highly dissimilar to the network’s

training data.

For source separation, I used the scale-dependent source-to-distortion ratio (SDR) [154] for evaluation

(see Section 1.2.3). As I have discussed earlier in this document, SDR’s correlation with human perception

is rocky at best [20, 23, 24, 77]. However, SDR is intended to measure how close a system’s source estimate

is to the ground truth source, which does make it a somewhat useful indicator of how well a system is able

to separate. Furthermore, it is much easier to run on the thousands of separation examples in the test

set (versus doing listener studies). For evaluating transcription performance I used precision, recall, and

F1-score of note onsets and offsets using the mir_eval toolbox [222] (see Section 1.3.2). Both SDR and

F1-score are both commonly used measures in the literature for their respective tasks.

Note that even though the experiments in this chapter are self-consistent (i.e., same data, same imple-

mentation, same evaluation used throughout the chapter), they are not apples-to-apples comparable with

the experiments coming up in Chapter 4.

3.3.5. Model Configuration Details

All the networks I trained use a stack of 4 bidirectional long short-term memory (BLSTM) layers. Each

BLSTM has 300 hidden units. I trained each network for 100 epochs using an Adam optimizer with an initial

learning rate of 2e-4, a batch size of 40, and a sequence length of 400 frames. Each network had three heads.

The first head maps each time-frequency point to a 20-dimensional embedding space, with sigmoid activation

and unit-normalization. The second head outputs masks for each of the sources I trained the network to

separate (between 2 and 5 masks), with a softmax activation across the masks. The third head outputs

transcriptions for each source and has a sigmoid activation. Each transcription contains 88 pitches and

when each pitch is active. For evaluation, I binarized the network’s transcriptions using an experimentally

2The MUS partition of both ENSTDkAm and ENSTDkCl.
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determined threshold of 0.8, except for drums, which was set to 0.1. Each network was initialized with the

same set of weights. The only difference between the networks is the training data (for which instrument

combination to separate) and the weights on the the loss functions: deep clustering (DC), mask inference

(MI), and transcription (TR).

3.4. Results

In this section I will present and analyze the results from the experiments outlined in the previous

section. These experiments are designed to answer questions about the performance of Cerberus. This

section is organized around each of the questions posed above.

3.4.1. Are Separation and Transcription Mutually Beneficial?

For this experiment, I was focused on understanding whether the tasks of separation and transcription

actually do benefit each other if learned jointly. I trained a Cerberus network to separate and transcribe

mixtures of one piano and one guitar from Slakh2100. I compared this to training network with a subset of

Cerberus’ heads by turning off the losses corresponding to the heads not included in the subset. For example,

turning off the transcription loss (i.e., γ = 0.0 in Equation 3.4) results in a standard Chimera network. The

loss weights for the non-zero losses were determined experimentally in such a way that the loss values for

each head were all within one order of magnitude difference. For example, the transcription loss weight

was set to 0.8 to counteract the larger magnitudes of the separation losses. Transcription F1-scores for an

untrained network are on the order of 1e-3.

The results for this experiment are shown in Table 3.1. These results suggest that transcription and

separation can be learned jointly, given the correct training regime. First, I find that the best performing

model for both transcription and separation was the Cerberus model, which surpassed or tied the highest

SDR and precision, recall, and F1 scores of the remaining models. Combining the Mask Inference and

TRanscription (MI+TR) objectives resulted in higher transcription performance but lowered separation

performance very slightly. The difference between the Cerberus and the MI+TR results is small, especially

given that the results reported are means. However, the difference between Cerberus and the other single-

task systems is much larger; e.g., 1.5 dB difference in SDR between Cerberus and Deep Clustering and 0.03

difference in F1 score. Additionally, combining the deep clustering and transcription (DC+TR) objectives

resulted in a large jump in SDR over just deep clustering, suggesting natural synergy between the two tasks.
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Network Loss Weights Separation Transcription
LDC LMI LTR SDR (dB) P R F1

Deep Clustering 1.0 8.5 – – –
Mask Inference 1.0 10.0 – – –
Transcription 1.0 – 0.48 0.43 0.44

Chimera 0.5 0.5 9.8 – – –
DC+TR 0.2 0.8 9.3 0.48 0.41 0.43
MI+TR 0.2 0.8 9.8 0.51 0.46 0.47

Cerberus 0.1 0.1 0.8 10.0 0.51 0.45 0.47
Table 3.1. Cerberus networks trained and tested on piano & guitar mixtures. Each row
is a distinct network, trained with a distinct combination of three loss functions: Deep
Clustering (DC), Mask Inference (MI) and Transcription (TR). The weight applied to a
loss function is used as shown where empty cells denote 0.0 weight applied to that loss.
Evaluation measures for the transcription task are the mean precision (P), recall (R) and
F1 of note onsets & offsets over all examples in the test set. For separation I report the
mean of (scale-dependent) source to distortion ratio (SDR) over the test set. Higher values
are better. The value in each cell is on the testing data, averaged across both instruments.
Empty cells (i.e., cells with ‘–’) indicate the network was not trained for that task.

I will underscore that the best performance for both tasks occurred when using all three of Cerberus’ heads,

further suggesting that separation and transcription are mutually beneficial.

3.4.2. How well do these networks generalize to live recordings?

Next, I took networks trained on the synthesized Slakh dataset and evaluated them on the dataset I gen-

erated from MAPS and GuitarSet. Recall that these evaluation mixtures are incoherent, meaning that the

sources are mixed randomly and sound cacophonous. The evaluation mixes are extremely unlike the training

mixtures.

The results from this experiment are shown in Table 3.2. The first thing to notice is that there is

a significant drop in separation and transcription performance when compared to the evaluation numbers

in Table 3.1. The separation performance is reduced by half according to SDR, and the transcription F1

performance is roughly 25% of the performance on Slakh data. As I mentioned above in Section 3.3.2, this

could be due in large part to the major differences between the training and test data, namely that the

training data contains all coherent mixes (instruments all playing the same song) from Slakh (synthesized)

and the test data is all incoherent mixes (instruments mixed from different songs) from two disparate datasets.
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Test Mixes? Network Separation Transcription
Dataset SDR (dB) P R F1

GS Transcription – 0.08 0.08 0.08
GS Cerberus – 0.13 0.11 0.12

M Transcription – 0.19 0.08 0.11
M Cerberus – 0.19 0.10 0.12

M + GS 3 Deep Clustering 4.3 – – –
M + GS 3 Mask Inference 4.1 – – –
M + GS 3 Chimera 4.5 – – –
M + GS 3 Transcription – 0.14 0.08 0.09
M + GS 3 Cerberus 5.0 0.16 0.10 0.12

Table 3.2. Piano/Guitar performance on MAPS and GuitarSet data using networks from
Table 3.1 trained on Slakh2100. M means MAPS recordings in isolation, GS means Gui-
tarSet recordings in isolation, and M+GS means incoherent mixtures of recordings from
MAPS and GuitarSet. A check mark under the “Mixes?” column also denotes that the
evaluation datasets (i.e., MAPS & GuitarSet) were mixed together. Empty cells (i.e., cells
with “–”) indicate the network was not trained for that task. Evaluation measures for the
transcription task are the mean precision (P), recall (R) and F1 of note onsets & offsets over
all examples in the test set. For separation I report the mean of scale-dependent source to
distortion ratio (SDR) over the test set. Higher values are better.

In spite of this, I note that the Cerberus model that was trained with all three loss functions out-performs

all of the single-task networks for both separation and transcription, suggesting that its multi-task separation

and transcription approach leads to better generalization.

3.4.3. How does separation/transcription performance change as more instruments are added?

Finally, I trained and tested a Cerberus model on Slakh datasets of increasing numbers of simultaneous

polyphonic instruments to see how the system scales up to more complex and busy mixtures. The results,

shown in Table 3.3, show that as more sources are added to the mixture, performance across both separation

and transcription predictably degrades. This same data is shown in Figure 3.3, where the Bass, Piano, and

Guitar separation and transcription performance are plotted in an effort to more clearly show this trend.

In these plots, I only include Bass, Piano, and Guitar because these are the three instruments that are

consistent through all of experiments in Table 3.3. These three instruments are also all harmonic sources

(i.e., they have a well-defined pitch. Contrast this with a percussive source, like Drums.), which means that

they are a good basis for comparing similar sounding sources.

I want to tease out some subtleties about the interactions that occur between sources, and how those

interactions are reflected in the results in Table 3.3 (and Figure 3.3). Notice how drastic the separation
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Cerberus trained/tested Separation Transcription
on data that contains: SDR (dB) P R F1

3 Sources
Piano 7.6 0.44 0.42 0.42

& Guitar 6.9 0.46 0.35 0.38
& Bass 10.1 0.85 0.80 0.82

4 Sources

Piano 6.1 0.38 0.36 0.36
& Guitar 5.8 0.42 0.32 0.34
& Bass 7.7 0.82 0.78 0.79
& Drums* 11.3 0.61 0.76 0.63

5 Sources

Piano 3.4 0.31 0.28 0.28
& Guitar 3.1 0.29 0.20 0.22
& Bass 6.4 0.77 0.72 0.74
& Drums* 10.6 0.62 0.75 0.64
& Strings 4.1 0.39 0.35 0.35

Table 3.3. Results for individual instruments from three Cerberus networks trained on dif-
ferent sets of instrument combinations, separated by horizontal lines. Each model has its
own training, validation, and test set which depend on the instruments it is trained to sep-
arate and transcribe. Evaluation measures for the transcription task are the mean precision
(P), recall (R) and F1 over all examples in the test set. Drum (*) transcription evaluation
measures are note onset only, all other instruments are note onset/offset precision/recall/f-
score. For separation I report the mean of scale-dependent source to distortion ratio (SDR)
over the test set.

Figure 3.3. Results for Bass, Piano, and Guitar for separation (left) and transcription (right)
as a function of number of sources in the mix. This is the same data shown in Table 3.3
(Drums and Strings are omitted for clarity). As more instruments are added in a mixture,
separation performance (SDR) and transcription performance (note on/off F1) for all three
instruments falls.

performance falls between the 4-source ensemble and the 5-source ensemble for the Piano and Guitar sources

in Table 3.3; their SDR values in the 5-source ensemble are roughly half of their SDR values in the 4-source

ensemble. The only new source between these two ensembles is the Strings source (e.g., violins, violas, cellos).
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Let us focus on the Piano and Guitar sources. Why do Piano and Guitar sources see a sharper decline

in separation performance when Strings were added when compared to when Drums were added? Well,

to understand what I think might be happening, I would like to take a brief detour to talk about musical

scenes and how different types of instruments typically interact in those scenes. To grossly oversimplify

Western European music theory, we can think of instruments as occupying a few different roles in a song.

Some of the roles we might expect are: a percussive instrument, a melodic instrument, a bass instrument,

and a chordal instrument (i.e., responsible for harmonies). Typically, these roles are associated with certain

pitch ranges–e.g., we expect the bass instrument to play low notes–or timbral qualities–e.g., a drumset is

a percussive instrument. This is important to know because some instrument sources are associated with

some of these roles more than others. For example, the Piano source and the Guitar source are both chordal

instruments, meaning that they can oftentimes play the same role in a song. As such, these instruments

also have a similar range of pitches that they typically play, which means they might have more overlap in

frequency content. All in all, these two sources are very difficult to separate from each other.3 So, when the

Strings source is added to these mixtures, there is now a third instrument that occupies the same role as the

Piano and Guitar sources: in the Slakh mixes the Strings oftentimes act as a chordal instrument, so adding

them makes it harder for the network to do well separating them.

Thinking about each instrument’s role also explains why the Bass and Drum sources have higher sepa-

ration and transcription performance than the other instruments across Table 3.3. Bass has between 2-3dB

higher SDR than Piano and Guitar and twice the F1 score across the 3-, 4-, and 5-Source mixes. The Bass

plays a different role than others in a musical scene; it typically has a much lower pitch than the Piano,

Guitar, or String sources, and usually there are no other instrument sources that occupy the same role at

the same time (unlike chordal instruments). A similar story occurs with the Drums source: it is the only

instrument playing the percussive role in these mixes, which explains why its separation and transcription

performance is much higher than the other sources.

All in all, Cerberus is able to separate and transcribe multi-instrument mixtures that contain up to 5

sources. Even though performance degrades as more instruments are added to the mix, the 5-Source mixes

still have consummate results on both separation and transcription. Some work that came after Cerberus

examined multi-instrument transcription performance by scaling to more instruments [84, 160, 270], and one

3I have done work that provides direct evidence for this intuition; giving a network a hint about the content of one of these
sources drastically helps the network separate the other [175].
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of the emergent issues as these systems scale is that, while the onset and pitch of the note might be correct,

it is difficult to make sure that it is assigned to the correct instrument. This error is a fruitful direction for

future work. In the next chapter, I will examine how changing the instrument assignment of a note is useful

for score-informed separation.

3.5. Conclusion

In this Chapter I introduced Cerberus, the first deep learning system to simultaneously separate and

transcribe multiple instruments in a mixture. Cerberus is an important step for Automatic Music Tran-

scription systems because it breaks through the field’s existing paradigm centered around single-instrument

transcription systems. Doing both separation and transcription is useful in many respects. First, it provides

an end-user with different types of analysis of a musical scene; a low-level, high-detail analysis describing

the source audio (i.e., the source estimate) and high-level, sparse-detail analysis describing the note events

(i.e., the transcription estimate). Both types of analysis are important for different use cases, so giving a

user both enables a more complete understanding of the content of a musical scene. Additionally–and more

practically–training a network to separate and transcribe is better for both tasks; the highest performance

came when using all three heads of Cerberus (Tables 3.1 and 3.2). Finally, I showed how Cerberus enables

the simultaneous separation and transcription of up to five sources in a mixture.

While Cerberus could be viewed as a Score-Informed separation system because it uses a musical score

(i.e., the piano roll) during training, Cerberus is also a crucial stepping stone for the next project in this

dissertation: Deep Score-informed Separation, which is bona fide Score-Informed system. I will go into

more details in the next chapter, but having a multi-instrument transcription system (like Cerberus) as a

pre-processing system has the potential to make Score-informed Separation much easier to use for end-users.
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CHAPTER 4

Deep Score-Informed Separation

In Chapter 2, I described a hierarchical Query-by-Example (QBE) separation system that enabled a user

to input a query audio clip to steer the separation system to output a different source type. In Chapter 3,

I examined how doing both separation and multi-instrument Automatic Music Transcription (AMT) can

provide multiple ways to examine a musical scene. In this chapter, I combine these ideas: here I aim to make

a controllable separation system conditioned on note data, such as to enable finer-grained, note-level edits of

the output source estimates. For example, this system should let a user move the audio content of a single

note from one source estimate to another. Put succinctly, the goal is to make a system that can enable an

end-user to steer the output of a separation system after it is trained by editing a piano roll transcription.

Why is this an important goal? One of the themes woven into the work of this thesis is that the

musical scene analysis systems we build will never be flawless, and thus it is critical to make these systems

adjustable post-hoc so that end-users have some recourse when they inevitably make mistakes. If the research

community aims to put these tools in the hands of musicians and creators, then making the underlying

machine learning systems interactive is crucial.

The question then shifts to what the most effective way of providing a way to make adjustments to

audio. Without a doubt there are many ways to answer this question depending on the situation, but in

this chapter I focus on enabling note-level edits of source estimates. To facilitate this interaction I chose to

design a system that uses a piano roll to represent note data.

I want to justify why the piano roll is the right way to represent the musical content for the desired

interaction in this chapter. Simply put, my argument is that manually editing audio signals is hard, but,

on the other hand, a piano roll is a distilled representation of note data, the information we care about in

this situation. To illustrate this, imagine that we are tasked with editing the output a source separation

system and, when listening to the output we hear the audio of an extra note from an interfering source. Let

me visualize the data to demonstrate different ways of representing this data. The same musical content is

shown as a waveform in Figure 4.1a, as a spectrogram in Figure 4.1b, and as a piano roll in Figure 4.1c.
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(a) A Waveform.

(b) A Spectrogram.

(c) A Piano Roll.

Figure 4.1. Three representations of the same musical content, where somewhere there is
an extraneous note that we want to remove. The waveform (4.1a) obscures all information
except loudness over time; it is impossible to make out the errant note, let alone fix it. The
spectrogram (4.1b) shows frequency content, so it is possible to spot the extra note if you
know what to look for, but it requires editing tens of thousands of points to fix. The extra
note is obvious in the piano roll (4.1c), because the notes are explicitly represented.
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Even finding this extraneous note is impossible in the waveform (Figure 4.1a), let alone editing it. The

offending note is inextricably enmeshed with the other notes of the desired source. If we were somehow able

to determine which of the audio samples needed editing, we would need to change over 64,000 samples1–

saying nothing about how they need to be edited, just where the edits need to occur. In short, editing

a waveform by hand is borderline masochistic. In the spectrogram (Figure 4.1b), finding where an extra

note occurs is at least possible, but editing a spectrogram manually is a laborious process. While there are

user-facing tools available that make spectrogram editing a little easier [1, 16, 125], in many cases there is

significant overlap between the content we want to keep and the content we want to scrap, making the edits

possible but challenging. Practically speaking, the most granular of control over the output audio comes

from editing the spectrogram (because the waveform is too detailed to meaningfully edit by hand). Even

in easy cases, knowing identifying which of the ≥750,000 time-frequency bins (in this example) need to be

edited and figuring out how modify them to correct a stray note is difficult and requires a considerable

learning curve.

On the other hand, looking at the piano roll in Figure 4.1c, there are only 9 dark rectangles in the

image, which are the 9 active notes in the audio. Determining which of these notes is out of place2 is much

simpler because there is much less information to contend with. The note data in this piano roll is a distilled

version of musical content that preserves note pitches, onsets, and offsets. Compared to the spectrogram,

which has a lot of detail, and the waveform, which has perhaps too much detail, the piano roll is much less

information dense, and therefore easier to parse for determining how to edit a note in the output separation.

Furthermore, to actually do the edit, we only change one of these rectangles that represents the notes, rather

than the 10s or 100s of thousands of data points needed to edit the spectrogram. For this interaction the

piano roll presents the relevant information to us at the right level of granularity to edit a note in the output

of a source separation system.

Zooming out from this example, state-of-the-art deep learning-based source separation systems offer

no recourse to edit their audio output. Lots of effort has gone into making these models work better and

better [33, 35, 43, 44, 111, 141, 148, 161, 198, 233, 265, 268, 269], however relatively little work has been

focused on adding making the output of these systems changeable or steerable. The work that does exist that

enables changing a separation system’s output centers around changing the entire source that the system

1Assuming a sample rate of 44.1 kHz
2The extra note is the D that starts at 4 seconds in.
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outputs (as done in with the QBE system in Chapter 2 and by many other similar systems [30, 34, 87, 157,

160, 182, 192, 232, 241, 251]). To make more granular edits the output of any of these systems, a user is

stuck back at editing a spectrogram. Existing systems do not support making note-level changes to their

output audio, which is the goal of this chapter.

In this chapter, I revive the now-dormant idea of Score-Informed Separation and approach it with modern

deep learning methods. Score-Informed Separation is a type of source separation method where the system is

conditioned on a musical score as a means to guide the output source estimates. Score-Informed Separation

systems were very popular prior to the deep learning era, but fell out of fashion in recent years. Here, I

propose Deep Score-Informed Separation systems that use a piano roll score as auxiliary conditioning data

for separation. Importantly, I will demonstrate that these systems allow an end-user to make note-level edits

to the audio content in the output source estimates.

4.1. Contributions of this Chapter

This chapter makes the following contributions:

• I propose Deep Score-Informed Separation systems that are able to use a musical score as additional

conditioning data when doing source separation. In doing so, I revive a long-dormant idea that

predates modern techniques and update it for use with deep neural networks. I specifically propose

to modify an existing source separation network in three ways such that it can accommodate input

score data in the piano roll format.

• I also propose a complementary task, Deep Source-Informed Transcription, which does multi-

instrument Automatic Music Transcription (AMT) from a mixture conditioned on isolated source

data. I experimentally verify that this system performs better than a baseline system according to

standard transcription metrics. While this task setup has some practical limitations, it does lead

to interesting questions about how multi-instrument AMT should be designed in future work.

• I provide a set of experiments that verify that the Deep Score-Informed Separation systems do in

fact lead to better separation performance than a baseline system that does not use score data as

input.

• I show off another set of experiments demonstrating that a Deep Score-Informed Separation system

responds to changes in its input score data. I this in two ways: first by using a systematic method
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for changing the input score and examining how this affects the output source estimates, and the

second way is to explore a set of qualitative examples simulating a few common usage scenarios.

• I envision an interface that could be built on the Deep Score-Informed Separation system described

in this chapter and I outline how such an interface can enable an end user to make edits to the

source estimates in a way that is easier than manually editing a spectrogram.

4.2. Score-Informed Separation

Score-Informed Separation systems use a musical score, or transcription, as additional conditioning

information when separating an input mixture. This score gives the source separation system a distilled

representation of the musical content in the musical scene. The goal of a Score-Informed Separation system

is that it should be able to use this score data to both aide separation performance and, more importantly,

the score input can act as a control mechanism for an end user to change the output separation after the

system is trained (see Figure 4.2).

Historically, Score-Informed Separation received a lot of attention prior to the rise of deep learning.

These early systems were built on Non-Negative Matrix Factorization (NMF) [75, 156, 252, 285]. NMF

works by decomposing a mixture spectrogram into two matrices, one where the columns represent a basis set

of spectral templates (i.e., a single column in a spectrogram) and the other whose rows represent when those

templates are active. The problem is that most realistic signals contain contain sources with many spectra,

and thus NMF would overseparate a musical scene if left to its own devices. Therefore additional score input

information was used as means to constrain the system and produce better separation estimates [26, 27, 49–

51, 58, 59, 70–72, 78, 79, 81, 82, 109, 131, 162, 195–197, 201, 202, 228, 248, 249, 254, 259, 300]. As deep

learning-based systems superseded older NMF systems because of their improved separation performance,

the need for additional score information fell by the wayside, and–with few minor exceptions [28, 91, 176,

197]–Score-Informed Separation was largely ignored.

Unlike typical deep learning-based source separation systems, which offer no intrinsic means of making

alterations to the source estimates (outside of editing the output with a spectrogram editor), Score-Informed

Separation promises that a user could make changes to the output separation estimate at the granularity of

the individual notes from the source. The score provides a means for the user to input their desired changes

to the system when it produces source estimates. For example, if a separation system accidentally puts the
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Figure 4.2. Score-Informed Separation systems use score information (shown here as a set
of piano rolls) as an auxiliary conditioning when doing source separation. Given an input
mixture (top left), a multi-instrument Automatic Music Transcription (AMT) system could
be used as a pre-processing step to make an initial set of piano roll estimates (bottom left),
that a user could then edit and refine (bottom right). The piano rolls are used as input
to the Score-Informed Separation system (top center) and they guide the source estimates
that the system produces (top right), in such a way that the edits made in the piano roll
are reflected by the source estimates that the system outputs.

sound of a few piano notes into a the Guitar source estimate, a user could use the score data to move that

piano note audio data from the Guitar source estimate to the Piano source estimate.

I want to outline one of the explicit design limitations of Score-Informed Separation systems, which is

that no new audio data is created. That is, as I have formulated the separation problem in the Introduction

Section 1.2.1, the separation system is designed to only remove audio from a mixture to produce a source

estimate. This is important to mention because it might be tempting to imagine that a user can move notes

arbitrarily and expect that the system will produce sound for any possible input score. In other words, if a

user inputs a note that does not correspond to anything in the input mixture, that note will not be generated

into audio by this system. On the other hand, if there is audio in the input mixture that does correspond to

a desired note, it should be able to be moved around to different sources. Generating new audio data based

on notes is outside the scope of this work, but is a fruitful direction for future work.

Of course, one of the prerequisites for training and running a score-informed system is actually having a

score to use as input. This score data could come from a number of places: a user could source a score from

the internet, they could create one from scratch, or perhaps the score could come from a multi-instrument

Automatic Music Transcription (AMT) system. Creating the score from scratch might be difficult; in this

case the user must transcribe their desired instrument(s) that they hear in the scene. As discussed earlier in
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(a) Vanilla DSIS (b) Piano Roll Processing DSIS (c) Residual DSIS

Figure 4.3. All of the variations of Deep Score-Informed Separation (DSIS) architectures
that I use in this dissertation. For the Main Processing Module, I use a stack of BLSTM
layers. For the Piano Roll Processing Module, I use a smaller stack of BLSTM layers.

this document (Introduction Section 1.3.1), transcribing even one instrument by hand is a tedious problem

even for trained musicians. Therefore, using a multi-instrument AMT system (like Cerberus from Chapter 3,

for example) as a pre-processing step for a Score-Informed Separation system is a good idea. Even if the

estimated score from the AMT system is imperfect, it gives the user a starting point to further refine. This

might make it easier for a user to localize their edits around a region of interest, focusing their energy on

making tweaks to the output of the AMT system rather than starting from a blank page.

Score-informed Separation systems promise to provide a powerful way for end-users to manipulate the

output of a separation system that is finer than a QBE system and at a more appropriate granularity (the

note) than a spectrogram. Pairing them with a multi-instrument AMT pre-processor can make editing the

output of source separation systems easier. Outside of those benefits, a Score-informed Separation system

could also produce better separation estimates based on the fact that the score input data gives the system

a hint of the musical content of each source needed to separate. The rest of this section will be devoted to

detailing my proposed Score-informed Separation neural network architecture.

4.2.1. Deep Score-Informed Separation: System Architecture

To accomplish the goals of the Score-Informed separation system, I designed a neural network architecture

such that it had an additional way to input score data alongside the mixture data. As with the previous

two chapters in this dissertation, I modified a standard source separation system such that it could accept

the score data as conditioning input. In fact, it is simple to modify any source separation architecture to be

score-informed: just let the system use the score (Figure 4.2).
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While there are many ways to represent the input score data, here I again turn to using a piano roll.3

Recall that a piano roll represents score data as a matrix, where one axis represents pitches, the other

represents time frames, and values indicate whether a note is active at a given time-pitch bin. For more

information on piano rolls, see the Introduction Section 1.3.1 and Cerberus Section 3.2.4. In this chapter, the

system is input a binary piano roll matrix with shape P ∈ {0, 1}K×T×I , where K is the number of pitches, T

is the number of time steps (aligned with the spectrogram input), and I is the number of instrument sources

the system can separate. Zero (0) values denote that there is no active pitch for that instrument at a given

time-pitch bin, and one (1) values denote an active pitch.

In this chapter, I will explore three different variations on a standard source separation that I modified to

ingest piano roll data. I call these systems Deep Score-Informed Separation (DSIS) systems. The variation

in these three DSIS systems stems from how they process the piano roll data. Before I go into details about

how the different parts of these three systems work, I will give an overview of how the parts in these systems

fit together. The three different variations on the DSIS system are as follows:

Vanilla DSIS: which only has Main Processing Module, shown in Figure 4.3a. This system has one set of

layers that jointly process the mixture and piano roll input data.

Piano Roll Processing DSIS: which has the same core Main Processing Module as the Vanilla system, as

well as a Piano Roll Processing Module dedicated to processing the piano roll input before being

combined with the mixture input and given to the Main Processing Module. The Piano Roll

Processing Module is designed to learn a representation of the piano roll score that can help aid

the Main Processing Module do separation.

Residual DSIS: which has the same building blocks as the Piano Roll Processing architecture: the Main

Processing Module and the Piano Roll Processing Module. In this case, the dedicated Piano

Roll Processing Module has a skip connection around it (i.e., a residual connection). Residual

connections can often produce well-behaved gradients during learning [4] and have been proven

useful for many tasks in the image [107] and audio domains [116]. Just as before the Piano Roll

Processing Module is designed to learn a representation of the piano roll score that can help aid

the Main Processing Module do separation.

3In this chapter, I will frequently discuss the piano roll representation–recall that a piano roll can represent note data from
many instruments (e.g., Guitars, Bass, Drums, etc). I will also discuss the Piano source which corresponds to audio from a
Piano instrument. So as not to confuse these terms, I will write ‘piano roll’ uncapitalized, and I will refer to the Piano source
with capital letters. Therefore the Piano piano roll refers to representing note data from a Piano instrument with a piano roll.
Same for a Guitar piano roll: Guitar instrument, piano roll representation.
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In this chapter, the Main Processing Module consists of a stack of Bidirectional Long Short-TermMemory

(BLSTM) layers [94, 118] (see Appendix Section 6.1 for more details about BLSTMs, and see the experiments

Section 4.3.5 for specifics on the model configuration). In a similar manner to the work in Chapters 2 and 3,

these Main Processing Layers output a set of masks that are applied to the mixture spectrogram to produce

a set of separation estimate. For more on masking see Section 1.2.1 in the Introduction. Just as before, I

use the truncated Phase Spectrogram Approximation (tPSA) [69], as the objective function for this system:

LMI = LtPSA =
∥∥∥M̂c � |X| − clamp (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
,(4.1)

where |X| and ∠X denote the magnitude and phase of the mix spectrogram, respectively, and clamp(x) =

min(max(x, 0), |X|) is a truncation function ensuring the tPSA target can be reached with a sigmoid acti-

vation function. tPSA is a variant of L1 loss that accounts for phase differences between the ground truth

source and the mixture. This loss has been shown to perform better than just plain L1 [69].

The Piano Roll Processing Module used in the latter two Deep Score-Informed Separation (DSIS) vari-

ations is also made of BLSTM layers in this work, albeit fewer layers than used in the Main Processing

Module. I will provide specifics about the module’s size when I discuss the experiments in Section 4.3.5. The

Piano Roll Processing Module is tasked with learning a representation of the piano roll that is helpful when

doing separation. For example, one could speculate that these layers might learn to map between the pitch

bins in the piano roll and the frequency bins in a spectrogram, freeing up capacity in the Main Processing

Module to focus on separation directly. These layers have no specific loss term applied directly to them;

their only loss is the source separation loss, which is applied to the whole system. Therefore, whatever these

representations are, they must be in service of producing better source estimates.

In all systems, normalization layers are applied separately to the mixture inputs and piano roll inputs.

Here, I use Batch Normalization [123]. Specifics of the model’s configuration–like hyperparameters, number

of layers, etc–will be provided when I discuss the experiments in more detail in Section 4.3.5.

The design of these Deep Score-Informed Separation systems originates from the goals of this chapter.

I want to make a separation system that can enable a user to make edits to the separation by editing note

data. Because I am designing a source separator, this system consumes a mix and outputs source estimates.

The note editing piece is serviced by the piano roll input. The expectation is that, just by making the piano

roll act as an additional conditional input, these systems will enable a note editing interaction at inference

time. I will test and verify this assumption with a set of experiments over the rest of this chapter.
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4.2.2. Source-Informed Transcription

Similar to Score-Informed Separation, we can set up the complementary task, Source-Informed Transcription.

Here, a multi-instrument Automatic Music Transcription (AMT) network is given both the mixture and

isolated source data. The architecture of the system can be set up nearly identically to the Score-Informed

Separation system, other than the fact that the inputs and outputs are changed for the task. The output of

this system is a set of piano rolls that estimate a transcription for each instrument in a given mixture. Just

as before, this network is trained with an MSE loss against the ground truth piano rolls, and at inference

time the network’s output is thresholded to get a set of binary piano rolls.

This setup by itself presents a difficult use case to justify; if a user has both the isolated source audio

and a mixture, it seems rare that they would use both to produce a transcription estimate rather than just

using a transcription system that could transcribe isolated source data. However, this setup bridges a gap

between the literature on single-instrument transcription and multi-instrument transcription. Later in the

chapter, I will show results for this setup, though I will not place a heavy emphasis on them due to their

limited application towards the goals of this chapter.

4.3. Experimental Design

I designed experiments to test how well the proposed Deep Score-Informed Separation (DSIS) system

achieves the goals set out in Section 4.2. Namely, I want to understand how the additional score input

information affects the output separation performance. For completeness, I will also examine the Source-

Informed Transcription system and see how additional source data input affects transcription performance.

Perhaps the most pertinent question I want to examine is if the score can also be used as means of controlling

or changing the source separation output.

Specifically I want to design experiments to answer the following questions:

• How does additional score input information affect output separation performance? Are certain

architectures better than others? I.e., do the additional score processing layers help? Does the

residual connection help?

• How does additional source input data affect the output transcription performance?

• Can the input score information be used to alter the output source estimates?

The next three parts of this section will be centered around expanding these research questions into

experiments, before I provide details on the data, evaluation, and model configurations that will be used in
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the across all the experiments. I want to make special note that, despite being self-consistent, the results

presented in this chapter are not apples-to-apples comparable to the results in the previous chapter due to

many factors (different testing sets, different codebases, different hyperparameters, etc).

As with the prior two projects in this document, the problem setup in this chapter is entirely novel (to

my knowledge) and represents a new task (i.e., editing a source estimate via editing a piano roll) rather

than an iterative improvement on an existing task. Just as before, I will compare to appropriate baselines

by doing ablation studies (i.e., varying the components of the system) where it makes sense to do so.

4.3.1. How does additional score input information affect output separation performance?

In this first experiment, I want to ask the fundamental question of whether adding score information as

an auxiliary input to a source separation network helps or hinders separation performance. To do this, I

will compare the separation performance of the Deep Score-Informed Separation (DSIS) network detailed in

Section 4.2.1, to a baseline system. Unlike the DSIS network, which requires a mixture and a piano roll score

as input, most typical source separation systems only require a mixture. Therefore, for a fair comparison

against a stronger baseline, I want to consider a system that also uses piano roll score data. With that

in mind, I will use the Mask Inference and TRanscription (MI+TR) network described in Chapter 3 as a

baseline for this work. This MI+TR network does not take the transcription as input–it only inputs the

mix–but MI+TR does use transcription data during training as it optimizes a transcription output head.

So, the MI+TR network has seen the same data that the DSIS systems have (i.e., mixes, sources, and piano

roll data), even though it uses it differently. In this experiment, I will only look at the separation estimates

of the MI+TR network, ignoring the system’s transcription output. The MI+TR system uses the piano roll

as a loss target, whereas the proposed DSIS system uses the piano roll as additional conditioning data. This,

of course, comes with similar requirements at inference time, where the DSIS system needs the additional

score data.

In response to this last point, I will also compare the performance of the three different variants of the

DSIS system proposed in Section 4.2.1. In this case, all three variants have the same input requirements

during training and testing time (i.e., all take in the mix and a piano roll). Diagrams that outline these three

variants are shown in Figure 4.3. During training, all DSIS systems are given ground truth piano rolls as

input (i.e., they are teacher forced). For these experiments, I will also provide the system with ground truth

piano rolls at inference time; in a later section, I will explore using piano rolls that are estimated from a
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multi-instrument Automatic Music Transcription (AMT) system. Using ground truth piano roll performance

gives us an upper bound as to the performance of the DSIS systems.

For this experiment, I will use the improvement of the scale-independent source-to-distortion ratio (SI-

SDRi) [154] for evaluate source separation performance. As a reminder, the SI-SDRi measures the difference

in SI-SDR when using the mix as input versus using the source estimate as input (see Section 1.2.3 for more

info). Again, all of the caveats about SI-SDRi still apply here: while it has a weak correlation with human

auditory perception [20, 23, 24, 77], it is still useful as a measure because it measures the similarity between

a source estimate and the ground truth source audio. Also note that, while this is the regular SI-SDRi

discussed earlier, in Section 4.3.3 I will introduce a special variation on this to report results from altering

a the piano roll input.

4.3.2. How does additional source input data affect the output transcription performance?

Similar to the previous question, here I want to understand how source input data impacts the quality of a

multi-instrument Automatic Music Transcription (AMT) system. Here, I set up the experiment analogously

to the preceding section: I use the Mask Inference and TRanscription (MI+TR) network from Chapter 3 as

a baseline, comparing against its transcription output. I will also look at three variants as before, a residual

system, a source processing system, and a vanilla system. The only difference between the network in these

experiments and those from the previous experiments is the inputs and outputs of the system. As discussed,

this system takes in a mixture and a set of isolated sources and outputs a transcription estimate for each

instrument in the mix. As before, I teacher force these systems (i.e., always provide ground truth as input)

during training and inference to get an upper bound on the systems performance.

The measure of performance, as used in Chapter 3, is the note onset/offset F1 score. Higher values

indicate that the estimated transcription is closer to the ground truth transcription. I use the same threshold

values as used in Chapter 3: 0.8 for every instrument except Drums, which are set to 0.1 [179].

As I mention in Section 4.2.2, the problem set up for this system is quite different from situations that a

user might encounter in the real world, however this experiment still has some merit in its own right. Namely,

this experiment aims to solidify the intuition that it is easier to transcribe an instrument in isolation than

if that instrument is in a mixture. This perhaps seems obvious, but I am unaware of anyone experimentally

validating this notion. This experiment provides a step towards actualizing the science behind this idea, and

is perhaps an important thought to keep in mind as future research into multi-instrument AMT progresses.
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For this experiment, I will report F1-score of note onsets and offsets using the mir_eval toolbox [222]

(see Section 1.3.2), which is the standard way of measuring transcription performance.

4.3.3. Can the input score information be used to alter the output source estimates?

Perhaps the most important question for the goals of this Chapter is this one. Here, I want to know

whether the input score data can be used to change the output source estimates of the Deep Score-Informed

Separation (DSIS) system. If the answer is in the affirmative, this system will enable edits where a user can

make changes to notes in the piano roll and the separation output changes in response. I will examine both

quantitative and qualitative methods of answering this question.

4.3.3.1. Quantitative Evaluation. While qualitative examples might give some evidence that the DSIS system

is responding to the piano roll input, before I do that I want to provide a more rigorous, quantitative analysis

of the system to ensure that any example I might selected is not a fluke. To do this, I have devised an

experiment where I randomly eliminate notes in the piano roll input and examine the output separation

performance of a trained DSIS model. This experiment has many important details to explain, so I will

break this subsection up into a few pieces. First I will describe the process of altering a piano roll input

systematically, then I will describe how I measure the scale of these alterations. What I want is to find the

relationship between the scale of the alterations and the separation performance of the system. The hope is

that when a change happens to reduce the accuracy of the input piano roll, then that change is reflected by

a lower separation performance of the system. If altering the input piano roll produces a lower separation

performance, that is a strong indicator that the DSIS system is responsive to changes in the input piano roll,

which in turn is a crucial step towards the goal of making a source separation that enables editing notes.

Altering the Input Piano Roll To alter the input systematically, I formulate a strategy to randomly

interpolate between the ground truth piano roll and the empty piano roll (i.e., a piano roll with no active

notes). This interpolation strategy works as follows: given a randomly ordered list of all of the notes in the

ground truth piano roll, I divide that list into N equal subsets. The number of subsets is the maximum

number of interpolation steps that are possible. Starting with an empty piano roll, for each step I add in the

notes for the corresponding subset all at once. This process is shown in Figure 4.4, where the ground truth

piano roll is shown greyed out at Step 0, and at each step a certain number of notes are added (shown in

pink) as the interpolation proceeds. By the last step, Step 3 in this example, the interpolated piano roll is

equivalent to the ground truth piano roll. For a given example, I randomly select a number of interpolation
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steps between 1 and the max number of steps, N , to do before inputting the resulting piano roll into the

network. Choosing the number of interpolation steps randomly ensures that there is wide coverage over

many possible interpolated alterations of the piano roll.

I chose this strategy for two reasons. First, notice that the smallest unit of interpolation is the note,

no matter how long or short it is. This is to simulate that in modern audio editing software, it is trivial

to make a note longer or shorter in a piano roll. Second, I chose to use a stepped interpolation instead of

a randomly selecting a number of notes to add in because I wanted to guarantee that the experiments had

adequate coverage of the empty piano roll case (Step 0) and the perfect ground truth case (Step N). For

these experiments, I set the number of steps N = 5, which includes the empty piano roll case at Step 0 and

the perfect ground truth piano roll at Step 5.

The interpolation example shown in Figure 4.4 starts with an empty piano roll and notes are slowly added

until the interpolated input matches the ground truth. I also conduct a second version of this experiment

where, instead of starting with an empty piano roll, I start from an estimated piano roll transcription

provided by a multi-instrument Automatic Music Transcription (AMT) system, and run the interpolation

process described to move the piano roll towards ground truth. This system is a network with 4 Bidirectional

Long Short-Term Memory (BLSTM) layers, that outputs a piano roll for a set of multiple instruments. This

network is has the same architecture as the Transcription-only network from the previous chapter; in other

words, this network is a Cerberus network without the Deep Clustering or Mask Inference heads. The

network used in this chapter is a distinct implementation from the network from last chapter (i.e., uses a

different codebase, different hyperparameters, and different testing set), therefore this AMT system is not

apples-to-apples comparable to the previous one. Further details about this network are provided in the

Appendix, Section 6.2. By taking the output of this BLSTM multi-instrument AMT network and using it as

a starting point for the interpolation experiments, I can simulate an end-user using that as a starting point

for editing a DSIS separation.

This process of removing notes from a ground truth could easily be viewed in reverse, where notes are

added, moving the piano roll closer to the ground truth transcription. This reverse view of adding notes

simulates how an end-user might actually use this system: they might start from an AMT estimate (or

empty piano roll) and refine the piano roll, moving it closer their desired stopping point (here approximated

by the ground truth). This process is more similar to how a deployed DSIS system might be used in the

wild than a process that might
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Figure 4.4. An example of the interpolation process for going from a set of empty piano roll
inputs (top row, Step 0) to the full ground truth inputs (bottom row, Step 3). The active
notes in the ground truth piano roll are shown in grey to illustrate where they are, however
grey values are not provided as input to a system. Only the notes in pink are used as input
to the system. The ∆’s above each piano roll are the (unnormalized) Hamming distance
between the ground truth and the interpolated input at that step.

Measuring alterations to the Piano Roll Now that I have established my method for making systematic

alterations to a piano roll, I want to measure how different the altered piano roll is from the ground truth.

The independent variable in this experiment is the difference between the ground truth and the changed

piano roll, as determined by the interpolation described above. I calculate how different the input piano
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roll is using the Hamming distance [97] between the ground truth piano roll and the randomly altered one,

excluding all time-pitch bins that are not active according to the ground truth piano roll.

Here, as with the rest of this chapter, I assume the input piano roll is binary, and then calculate the

Hamming distance by comparing each time-pitch bin of both piano rolls (see Figure 3.2 for an illustration

of a piano roll as a matrix). The Hamming distance is defined like,

Hamming(G,A) =
∑

k∈K,t∈T

|Gk,t −Ak,t|(4.2)

where G ∈ {0, 1}K×T is the binary-valued ground truth piano roll, and A ∈ {0, 1}K×T is the binary-valued

piano roll we are altering. Here, K is the number of pitches in the piano roll, T is the number of time steps in

the piano roll, and both G and A have the same shape. In this experiment, I will report Hamming distances

for each instrument separately, so I omit the instrument dimension of the piano roll in this calculation.

If viewed in reverse, the interpolation process described above starts from the ground truth piano roll

and eliminates notes until it gets to an empty piano roll; no new notes are added, notes are only removed.

Therefore, the inactive bins of the ground truth will always stay inactive throughout this interpolation

process (i.e., the interpolation does not introduce false positives, only false negatives). However, different

piano rolls have a wildly variable number of active notes, and therefore wildly different maximum possible

Hamming distances (see the different values for Hamming distance in the first row of Figure 4.4). Therefore,

I normalize the Hamming distance for each example such that I only consider the active time-pitch bins of

the ground truth piano roll, and ignore the inactive bins.The Normalized Hamming distance is thus:

Normalized Hamming(G,A) =
1

|G+|
Hamming(G,A)(4.3)

where |G+| is the normalization factor, which is the number of time-pitch bins in the ground truth piano roll

that are active. Now, all distance values are in the interval [0.0, 1.0], where a Normalized Hamming distance

of 1.0 means that none of the true notes are input into the system, and a Normalized Hamming distance of

0.0 means that the input to the system is exactly the ground truth piano roll. Ground truth piano rolls with

no active notes are set to a Normalized Hamming distance of 0.0. Note that this definition is 1 − Recall(),

the inverse of the Recall score.

Quantitative Evaluation: Experimental Setup Given this way of randomly altering piano rolls, I ran a

trained DSIS network on the test set using these altered piano rolls as input. I ran these networks with
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altered input piano rolls that follow the interpolation procedure as described above. I will show the results

where the input starts from an empty piano roll and gets interpolated to the ground truth piano roll. I will

also show results where input starts from the BLSTM multi-instrument AMT system’s piano roll estimate

and gets interpolated to to the ground truth piano roll.

To evaluate the performance of these systems, I define a modified SI-SDRi such that I can compare two

source estimates. Here, I want to find the change in SI-SDRi between a source estimate produced by a DSIS

system using some initial interpolated piano roll step (i.e., at interpolation Step 0) and a source produced

by a DSIS system using some other interpolated piano roll step at some Step i. Recall that Step 0 can either

be an empty piano roll, or an estimated piano roll transcription from the BLSTM multi-instrument AMT

system. Letting m be some mixture, s be the corresponding ground truth isolated source audio, ŝ0 be a

source estimate from a DSIS system that uses the interpolation Step 0 piano roll as input, and ŝi is a source

estimate from a DSIS system that uses the interpolation Step i piano roll as input, I define the ∆SI-SDRi as

(4.4)

∆SI-SDRi(ŝi, ŝ0, s) := SI-SDRi(ŝi,m, s)− SI-SDRi(ŝ0,m, s)

= (SI-SDR(ŝi, s)− SI-SDR(m, s))− (SI-SDR(ŝ0, s)− SI-SDR(m, s))

= SI-SDR(ŝi, s)− SI-SDR(ŝ0, s),

where I used the definition of SI-SDRi from Equation 1.5 in the Introduction, to cancel out the SI-SDR terms

that use the mix as the source input (i.e., SI-SDR(m, s)). This measure then simplifies to the difference in

SI-SDR between ŝ0 and ŝi. Despite being conceptually the same as SI-SDRi–although with different source

inputs–I refer to this measure as ∆SI-SDRi to avoid confusion; SI-SDRi is an established term of art that

implies that the mixture is used as the initial source estimate–which is not what I do here. The reader should

apply the same caution to ∆SI-SDRi which they apply to SI-SDRi; SI-SDRi and ∆SI-SDRi are variants of

SDR, which itself has a sketchy relationship to human perception [20, 23, 24, 77].

I will report ∆SI-SDRi as a function of the Normalized Hamming distance of the input piano rolls. If

these DSIS systems respond well to changes in their input piano rolls, we would hope to see that as the piano

rolls get closer to ground truth (i.e., have a Normalized Hamming distance of 0.0), the separation results

would get better, and vice versa. This would be evidence that a change in the piano roll input produces a

change in the source separation output. Not only that, but by systematically changing the input piano roll

from empty to ground truth (or from an AMT estimate to ground truth), we can glean how the separation

estimates change. For instance, if making the input piano roll better (i.e., closer to ground truth) produces
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better source estimates, then this tells us that a) not only does the system respond to changes in the input

piano roll, but b) it responds in such a way that would intuitive sense to an end-user. If the system produced

source estimates that were worse when given a better input piano roll, then this system would be unhelpful

and frustrating to use. What is most desirable is a system that produces better source estimates when given

better piano rolls. In other words, as Normalized Hamming distance goes to 0.0, ∆SI-SDRi increases. This

experiment is constructed to elucidate the relationship between changing the input piano roll and the quality

of a DSIS system’s resulting source estimates.

Using the experimental procedure outlined in this section, I will investigate the responsiveness of the

proposed Score-Informed system using the trained vanilla DSIS and residual DSIS models. This experiment

will provide a bird’s eye view of how these Score-Informed models respond to the input piano roll.

4.3.3.2. Qualitative Examples. Compared to the quantitative evaluation just described, the qualitative method

is simple: given an example mixture and corresponding piano roll transcription, if changes to the input piano

roll result in respective changes in the source estimates, then that is evidence that the DSIS system supports

this kind of edit. I will show a few examples of altering the input piano roll in this way and resulting source

estimates. In this case, I will use the trained DSIS residual network from the experiments in Section 4.3.2

and even though that network is trained to separation four instruments total, here I will focus on the Piano

source and the Guitar specifically. I choose to focus on these two instruments in particular, because as

discussed in the results section of the Cerberus chapter (Chapter 3, Section 3.4.3) these two instruments are

easy for a source separation system to mistake for each other. Therefore, having a note-level granularity of

control is most useful because the estimates for one of these sources might have audio from the other source,

and an end-user can easily move notes between these sources to correct these issues.

With this set of both qualitative and quantitative experiments, I hope to paint a picture of how well

this network is able to change its output based on the input piano roll.

4.3.4. Dataset Preparation

The dataset requirements for training and evaluating are similar to the requirements of the last chapter. As

with any source separation system, we need mixtures with paired source data, however to do score-informed

separation, we also need aligned score data per source. Because of these conditions, again I turn to the Slakh

dataset [184], which checks all the boxes; it contains mixtures with paired source data and aligned score data

for each source. For more information on Slakh, see Section 1.2.2.
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In this chapter I processed the Slakh data in a similar manner as before, albeit with some slight dif-

ferences. As before, I downsampled the audio to 16 kHz. I chose relevant segments from the audio in a

similar manner as before, I chose every 5 second segment where the mixture contained all desired sources

(e.g., Piano, Guitar, Bass, Drums). There was a 2.5 second hop between adjacent segments. Here, instead

of enforcing that all sources be active, as I did in Chapter 3, I only required that 2 of the 4 sources were

active. I declared that a source was ‘active’ if it had at least 5 note onsets with MIDI velocity above 30. If

a segment did not have enough active sources, it was excluded from the dataset. If a mixture had two (or

more) instances of a single source (e.g., [Piano1, Piano2, Guitar1, Bass1, Drums1]), then this example was

split into multiple training examples (one for [Piano1, Guitar1, Bass1, Drums1] and another for [Piano2,

Guitar1, Bass1, Drums1]). Using this strategy, the full training set contained roughly 206,000 examples, the

validation set had roughly 42,000 examples, and the test set had roughly 24,000 examples. The source audio

for the desired sources was combined to make a mixture of the selected sources. STFTs with 1024-point

window size and 256 sample hop were calculated from mixture segments and used as inputs to the network.

The musical score was the accompanying MIDI data binarized with a velocity threshold of 30 (i.e., any note

with a velocity value over 30 is considered “on”, else it is considered “off”).

4.3.5. Model Configuration Details

As I mentioned above, the Main Processing Module for all variants of the Deep Score-Informed Separation

(DSIS) networks was a stack of Bidirectional Long Short-Term Memory (BLSTM) layers [94, 118] (see

Appendix Section 6.1 for more details about BLSTMs). This module ingested a mixture spectrogram and

output a mask, which is applied to the input mix spectrogram to make a source estimate. The first layer in

this module is a batch normalization [123] layer, followed by 4 BLSTM layers with 600 units in each layer.

The output of the last BLSTM layer is given to a fully connected layer with a leaky ReLU nonlinearity. The

output of this final fully connected layer is the mask.

Only two variants used the Piano Roll Processing Module: the Piano Roll Processing DSIS network

and the Residual DSIS network. For these two configurations, the Piano Roll Processing module consisted

of a smaller stack of BLSTM layers. The piano rolls were fed into a batch normalization layer followed by

2 BLSTMs with 600 units each. That output was processed through a fully connected layer with a leaky

ReLU nonlinearity and this final layer produced an embedding with 512 dimensions. This embedding was
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Model Piano Roll
Processing Module? Residual? Piano Guitar Bass Drums

MI+TR – – 14.2 14.6 11.2 14.9

Score-
Informed

13.6 17.2 11.6 14.9
3 14.9 16.3 11.8 15.0
3 3 15.1 16.2 11.8 15.0

Table 4.1. Separation performance in terms of mean SI-SDRi (dB) over the test set, compar-
ing the baseline MI+TR network (described in Chapter 3) to three Score-Informed variants.
Higher values are better, bolded values indicate the highest score for that instrument. A
check mark means that the Module/Residual layer was used, whereas “–” indicates not ap-
plicable. The Score-Informed networks are given the ground truth piano rolls as input in
this test. The Score-Informed networks outperform the baseline for all four sources, with
the version that has some additional piano roll processing layers with a residual connection
performing best overall. This indicates that additional score input data is useful when doing
source separation.

concatenated to the mixture input along the frequency dimension. This concatenated feature was input into

the Main Processing Module, which proceeded as described above.

I trained these networks for 100,000 iterations each, using a batch size of 64 and using the Adam

optimizer [142] with a learning rate of 3e-4. The learning rate decayed by a factor of 0.98 after every 10,000

training steps.

4.4. Results

In this section I will provide an overview and analysis of the results of the experiments described in the

previous section.

4.4.1. How does additional score input information affect output separation performance?

This question asks whether a Deep Score-Informed Separation (DSIS) network can use its additional score

input data productively, to improve its separation estimates. These results are shown in Table 4.1, where

I use the Mask Inference and TRanscription (MI+TR) network described in Chapter 3 as a baseline and

compare it against three different DSIS systems.

There are no instances where the baseline MI+TR system achieves the highest SI-SDRi score, across all

four sources that I test. In fact, the MI+TR only beats one of the DSIS networks in one source: the Piano

source in the top row. Other than that, the DSIS networks (bottom three rows) outperform the baseline

across all sources. In the case of the Guitar source, the best DSIS system beats the baseline by 2.6 dB, which
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Model Source
Processing? Residual Piano Guitar Bass Drums

MI+TR – – 0.30 0.25 0.55 0.09

Source-
Informed

0.47 0.41 0.65 0.18
3 0.49 0.44 0.69 0.21
3 3 0.47 0.43 0.66 0.19

Table 4.2. Transcription performance in terms of mean note onset/offset F1 score over the
test set, comparing the baseline MI+TR network (described in Chapter 3) to three Source-
Informed Transcription networks. Higher values are better, bolded values indicate the high-
est score for that instrument. “3” means that the Module/Residual layer was used, whereas
“–” indicates not applicable. The Source-Informed Transcription networks outperform the
baseline in every single case across all four sources. The best version had additional source
processing layers without a residual connection. This suggests that separating instruments
is easier if the source data is available in addition to the mixture data.

is a sizeable improvement. Overall, the Residual DSIS variant (bottom row) achieved the best separation

performance in three of the four sources.

These results point to the fact that, yes, these DSIS networks are able to use the piano roll inputs to

increase separation performance. Just as before with Cerberus (and MI+TR), these networks seem to be

able to learn the relationship between the audio source data and the corresponding source data. Some of

the differences between these results are minute (e.g., the difference between MI+TR and DSIS performance

is less than 1.0 dB in both the Bass and Drums sources). However, an important thing to note is that the

DSIS networks use a piano roll score as input. This indicates that DSIS networks might be able to used for

the ultimate goal of this chapter: the ability to change a separation output by editing note data. A further

exploration of this goal is upcoming in Section 4.4.3, however before we examine those results, I will first

turn to the results for Source-Informed Transcription.

4.4.2. How does additional source input data affect the output transcription performance?

As discussed, the Deep Source-Informed Transcription (DSIT) system is analogous to the Deep Score-

Informed Separation (DSIS) system. The DSIT system is a multi-instrument transcription system that

transcribes from a mixture but is also conditioned on isolated source data. As discussed, this system does

not have a lot of practical value, however these results might provide interesting insight into the relationship

between single-instrument transcription and multi-instrument transcription systems.

The results for this experiment are shown in Table 4.2. The story here is clear cut: the Source-Informed

systems comprehensively outperform the Mask Inference and TRanscription (MI+TR) baseline system. In
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most cases, the F1 score is nearly 0.20 points higher, which is a large improvement. This is perhaps not

a surprise given the difference in problem setups between the MI+TR system and the DSIT systems; the

MI+TR only sees the mix as input, whereas DSIT sees the mixture and isolated source data. These results

may seem obvious but they point to the difference in the difficulty between these two problem setups. I

included these results for completeness, but further exploration of this topic would be a terrific subject for

future work.

4.4.3. Can the input score information be used to alter the output source estimates?

This final set of results is perhaps the most important towards verifying the goal of this chapter. The goal

of this chapter is to create a source separation system that is able to change its separation output based on

note data given as input. For practical purposes, it is important that this interaction happen at inference

time, and require no additional training or optimization steps. Thus, for this experiment I use the trained

Deep Score-Informed Separation (DSIS) networks described in Section 4.3.1 and whose results are shown

in Section 4.4.1. Let me first analyze the results of the quantitative evaluation before showcasing some

qualitative examples.

4.4.4. Quantitative Results

Here I discuss the results from the experiments outlined in Section 4.3.3. The results from measuring the

mean ∆SI-SDRi of a residual Deep Score-Informed Separation (DSIS) network as a function of the Normalized

Hamming distance of the input piano roll are shown in Figure 4.5. The top row shows the results from doing

the interpolation of the input piano roll starting with an empty piano roll, and the bottom row shows the

results where there interpolation started from a transcription estimate.

Starting with the empty piano roll results (top row of Figure 4.5), most sources see a large increase in

separation performance as the Normalized Hamming distance gets closer to 0.0 (where indicates the ground

truth is used as input to the system). Bass, Guitar, and Piano show a ∆SI-SDRi of between 15 and 20 dB

as the Normalized Hamming distance moves to 0.0! Even as the Normalized Hamming distance gets closer

to 0.90, the ∆SI-SDRi still shows an improvement of around 7-10 dB, which is considerable. Drums shows

a steady ∆SI-SDRi improvement of 7-10 dB for nearly all but the largest Normalized Hamming distances.

This is the first indication that the output this system is very influenced by the input piano roll, which is a

positive result towards the goal of making a system whose output can be changed at inference time.
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Residual DSIS Network

Interpolation Starting from Empty Piano Roll:

Interpolation Starting from AMT System’s Transcription Estimate:

Figure 4.5. Mean ∆SI-SDRi (dB) of a residual Deep Score-Informed Separation (DSIS)
network as a function of the Normalized Hamming distance of the input piano roll. A
Normalized Hamming distance of 0.0 means the ground truth piano roll is used as input
and higher ∆SI-SDRi values mean better separation performance. The top row shows the
results from doing the interpolation of the input piano roll starting with an empty piano roll,
and the bottom row shows the results where there interpolation started from a transcription
estimate. For each line, the outer band represents on standard deviation and the inner band
represents the 95% confidence interval of the mean.

There is also another important aspect to discuss that is a little more subtle, which is the fact that the

∆SI-SDRi is still quite elevated at very high values for Normalized Hamming distances (∆SI-SDRi stays

around 10 dB until about a 0.90 Normalized Hamming distance). At those high values for Normalized

Hamming distance, the input piano rolls contain very few of the ground truth notes. This means that even

if an end user is only able to provide minimal note annotations as input, the separation performance could

vastly increase.

The second row in Figure 4.5 shows the results when interpolating between the output of an AMT

system and the ground truth. Here, the AMT system makes its initial estimate, so there is less ∆SI-SDRi

improvement that is possible. Still, Bass, Guitar, and Piano see an increase in ∆SI-SDRi of over 5 dB, with

a lot of that gain happening below a Normalized Hamming distance below 0.2. Unlike before, Drums do not

see much of a performance gain at all, perhaps due to the fact that Drums are the only percussive source,

which makes them easier to separate (perhaps supported by Table 3.3 in Chapter 3, where Drum separation
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Vanilla DSIS Network

Interpolation Starting from Empty Piano Roll:

Interpolation Starting from AMT System’s Transcription Estimate:

Figure 4.6. Mean ∆SI-SDRi (dB) of a vanilla Deep Score-Informed Separation (DSIS) net-
work as a function of the Normalized Hamming distance of the input piano roll. A Nor-
malized Hamming distance of 0.0 means the ground truth piano roll is used as input and
higher ∆SI-SDRi values mean better separation performance. The top row shows the results
from doing the interpolation of the input piano roll starting with an empty piano roll, and
the bottom row shows the results where there interpolation started from a transcription
estimate. For each line, the outer band represents on standard deviation and the inner band
represents the 95% confidence interval of the mean.

performance is significantly higher than other sources). This makes incremental changes to the input piano

roll for Drums difficult to provide additional separation improvement.

A corresponding set of results using the vanilla DSIS network are shown in Figure 4.6. Here we see vaguely

similar trends, even if they are a little more noisy and muted than the residual DSIS network. Interpolating

from an empty piano roll (top row) shows an improvement of approximately 5-10 dB in ∆SI-SDRi at a

Normalized Hamming distance of 0.0 for the Bass, Guitar, and Piano sources, although, as the interpolations

move toward 1.0, they are much noisier and they decrease much quicker than the residual DSIS network.

When the interpolation starts from the AMT system (bottom row), the Bass, Guitar, and Piano sources

start at a roughly 6-13 dB ∆SI-SDRi but show a sharper decline at a Normalized Hamming distance of 0.2.

Again, in both cases, the Drums source is barely affected by changing the piano roll inputs.

To get another sense of how the separation performance of the residual DSIS system changes as the

input piano roll interpolation proceeds, Figure 4.7 shows the a single example of the interpolated steps for

the Piano input and the resulting SI-SDRi (which can be converted to ∆SI-SDRi by subtracting the SI-SDRi
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Figure 4.7. On example of the interpolated input piano rolls for the Piano source over 5
steps using the residual DSIS network. From left to right, the input starts completely empty,
and then notes are incrementally added until the last step which uses the full ground truth
piano roll (labeled “Ground Truth”) all the way on the right. The SI-SDRi is shown at the
top of each plot; to get the ∆SI-SDRi, subtract the SI-SDRi value at Step 0 (0.90 dB) from
all values. As the input piano roll gets closer to the ground truth, the SI-SDRi raises by
over 6.5 dB for this example! This suggests that the piano roll input plays a large part
in how the network determines its output. Notice, too, that the SI-SDRi still improves
between Step 4 and the Ground Truth, despite the input piano roll for the Piano source not
changing. This interpolation is happening across all four input sources, so while the Piano
source is unchanging between Step 4 and Ground truth, another source’s input piano roll is
still changing (but is not shown here). This a further indication that the piano roll inputs
influence the separation output–the network has refined its Piano source estimate based on
piano roll input from a completely different source, perhaps using that other information to
refine its Piano source estimate.

values from the value at Step 0, which is 0.90 dB). As the input piano roll gets closer to the ground truth, the

∆SI-SDRi is over 6.5 dB for this example. This is further evidence that the piano roll input is a significant

factor in the network’s output. Something interesting also happens: the SI-SDRi still improves between Step

4 (the penultimate step) and the last step (labeled Ground Truth) even though the input piano roll for the

Piano source is unchanging. The trick here is that the interpolation happens across all four input sources,

even those not shown in the figure. So, while the Piano piano roll is static between Step 4 and Ground truth,

another source’s input piano roll is still changing (but is not shown here). This a neat example of how the

piano roll inputs influence the separation output. In this case, the network refined its Piano source estimate

based on piano roll input from a completely different source.

Overall, it seems like having the extra layers dedicated to processing the piano roll, like the residual

DSIS network has, plays a major part in making a system that is able to respond to changes in the piano roll

input. Even though the all-around performance of both systems in Table 4.1 from Section 4.4.1 show that

both systems do well when provided ground truth as input, the results from this section indicate that the

residual DSIS system is much better suited towards the goals of making an interactive separation system.
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4.4.5. Qualitative Results

Now that it has been established that Deep Score-Informed Separation (DSIS) networks can respond to

their input piano rolls from a high-level statistical perspective, I want to concretize these results by showing

how the source estimates change when given different input piano rolls. Here, I will illustrate this using

one example mixture and examining how the separation output changes in response to changes in the input

piano roll. I use the residual DSIS network discussed in the previous sections. This example is only slightly

cherry-picked; I chose this example because the changes to the output audio separations were easy to visualize

in a spectrogram, however when using the system there was no shortage of examples I could have selected

from, but were harder to visualize. Additionally I only focus on the Guitar and Piano sources, because, as

discussed in the last chapter (Section 3.4.3), these sources can often play the same role in an ensemble and

thus are easy for a separation system to mix up. Without further adieu, let me walk through these results.

In Figure 4.8, I show the output of the residual DSIS network when the ground truth piano roll is input

into the system. The top row shows the piano roll that is used as input for both instruments. Here, I color

the Guitar’s notes in green and the Piano’s notes in yellow. The bottom row shows spectrograms of the

DSIS network’s source estimates for the Guitar and Piano sources, respectively.

Before I show you the next set of results, I want to pause here and expound on the content of each

source in this figure because understanding it will be important to comprehending the results shown in the

next two figures. Notice the Guitar has two notes (G3 and G4) that begin prior to this segment (before 0.0

seconds in the plot) and then at roughly 2.5 seconds three are quick ascending notes (BZ3, C4, EZ4) before
the same two notes as before start again (G3 and G4). Looking at the Piano, after 2.5 seconds it alternates

between two notes (BZ5 and BZ6) for the rest of the audio segment.

Notice the relationship between how these notes are represented in the piano rolls and in the source

estimates. I find it is helpful to look at the timing of events to line them up. One more thing that is

important to notice is that this figure is a great illustration of why we would want to build a separation

system that enables an end user to control the output by changing the piano roll. I will take this opportunity

to reiterate that it is much easier to pick out the relevant notes in the piano rolls (top row) than in the

source estimate spectrograms (bottom row).

I want to show a note-level change to the input piano rolls. Here, I move individual notes from the

Guitar’s piano roll to the Piano’s piano roll. The results are shown in Figure 4.9, where the top row shows
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Figure 4.8. Example source estimates (bottom row) when the ground truth piano rolls (top
row) are input into a trained residual DSIS model.

how I grabbed the three notes in the middle of the Guitar piano roll (BZ3, C4, EZ4 at roughly 2.5 seconds)

and moved them to the Piano piano roll (circled in the top row). The bottom row shows the DSIS network’s

output, where the audio from those three notes are output in the Piano source, and not the Guitar source.

In this case, I have moved individual notes from one piano roll to the other and the DSIS separation system

moved the audio corresponding to those same notes in its output. This is direct evidence that this system

accomplishes the goals set out for this chapter: this system enables a user to change the notes of the input

piano roll and have them reflected in the source separation output.

The main goal of this chapter is to develop a source separation system that is able to alter its source

estimates based on note data as input. The results of the quantitative experiments and these qualitative
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Figure 4.9. The same mixture used in Figure 4.8, where I move three notes from the Guitar
piano roll to the Piano piano roll (top row, circled). In its source estimates, the DSIS model
puts the audio corresponding to these three notes into the Piano source estimate (bottom
row, circled). This shows that the DSIS model can move the audio of individual notes.

examples are all evidence that the strategies for Deep Score-Informed Separation to achieve the goals set

out of the beginning of this chapter. The quantitative experiments in Section 4.4.4 show that, over a whole

test dataset, the resulting models respond to changes in the input piano rolls, and the qualitative examples

explored in Section 4.4.5 enable us to verify on a single example that the model does express this desired

behavior. In the next section, I will explore how a user interface built on this system might work.

4.5. Envisioned Interactions with Score-Informed Separation Tools

In this final section, I mock up a user interface to investigate how a Score-Informed Separation system

could be baked into an interactive system. Score-Informed Separation systems, like the Deep Score-Informed
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Figure 4.10. My envisioned Score-Informed Separation interface. After a user opens a mix-
ture, the interface populates using DSIS and multi-instrument AMT systems running in the
background. Here, Guitar data is in green and Piano data is in red.

Separation (DSIS) networks I presented, enable an end-user to make edits to score data to modify the

separated output. So far, I have been using the piano roll to represent score data, and this is on purpose:

most potential users of a system like this will be familiar with the piano roll because of its widespread use

in Digital Audio Workstations.

My proposed interface is shown in Figure 4.10. Here I only consider a system that separates Piano and

Guitar sources, as an illustration of the concept. Once a user imports a mixture audio file, a DSIS system

and multi-instrument Automatic Music Transcription (AMT) are both run on the mixture and the interface

is populated with the separated sources and estimated transcription data. In this example, the Guitar data

is in green and the Piano data is in Green. Below the playback controls, the source data is shown as overlaid

waveforms with interspersed red and green, representing each of the sources respectively. To the left of that

is a set of toggle switches to mute each of the sources, as shown in Figure 4.11, where the Piano data is

muted. Finally, below the waveform is the piano roll. This is where a user will do the majority of their edits.

Because this system enables a user to make note-level edits to the source output, like switch which source

the audio of a particular note goes in, this interface elevates that interaction; here just clicking a note swaps
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Figure 4.11. A user can mute one source to hear the estimate for a single source. Here, a
user mutes the Piano source and realizes that there is one Guitar note missing. It turns out
that it was accidentally put into the Piano source.

Figure 4.12. The user can click a note to swap which source it is allocated to. In this
example, the user corrects the Guitar note that the system initially misallocated to the
Piano source in Figure 4.11.
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an errant Piano note to a correct Guitar note, as shown in Figure 4.12. As shown, the audio for that missing

Guitar note is restored in the waveform.

These figures are just an sketch of what an interface for a Deep Score-Informed Separation system might

look like. Refinements to these initial visions should be driven by following iterative user-centered design

principles, focusing on user needs and eliminating pain points. The consequential user-studies should focus

on two aspects of this system, specifically, making the interface itself more intuitive and ensuring that the

backend DSIS and multi-instrument AMT systems work as intended. Future work can also solicit feedback

from users about what other types of edits this system should handle, even if their desired edits fall outside

the scope of a DSIS system.

4.6. Conclusion

In this chapter, I set out with the goal of making a source separation system that enables modifying

individual notes in the system’s source estimates. Towards this goal, I turned to Score-Informed separation,

a technology that was initial developed nearly a decade ago. Score-Informed separation systems are designed

to use a musical score to aid in separation. Here, I revitalize this idea and modify a neural network-based

separation system to have additional input conditioning from a musical score. I call the resulting systems

Deep Score-Informed Separation (DSIS) systems. I show that DSIS models are able to achieve better

separation performance than a baseline system that does not use the score as input. These initial DSIS

results are an important hint about whether or not the system is able to respond to the input score. The

most pertinent results toward achieving the goals in this chapter are final set of results, where I explore

how a trained DSIS model is able to alter its source estimate outputs based on modifications to the input

score data. I show that the DSIS models are highly sensitive to changes in the input score data, showcasing

examples where I was able successfully to move the audio of individual notes from one source estimate to

another by changing the score data. Finally, I showed how I envision how a user would be able to interact

with an interactive source separation system built on a DSIS model.
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CHAPTER 5

Conclusion

In this dissertation, I have focused on expanding the capabilities of Musical Scene Analysis systems.

Through the lens of source separation and Automatic Music Transcription (AMT), I sought to extend the

machine learning systems that will power a new generation of audio workstations in an effort to aid musicians

in their creative processes. Towards this goal, I set out to make source separation and AMT systems using

Score-Informed and hierarchical techniques.

In Chapter 2, I presented a framework for Hierarchical Source Separation that assumes that audio sources

in a scene are related according to some hierarchy. Specifically, I looked at musical scenes because musical

instruments have a long history of being classified hierarchically [287]. Given existing precedent that sounds

can be organized hierarchically, I was able to formulate the structure of auditory hierarchies such that child

sources are mixed together to make parent sources, building a tree of submixtures by combining leaf sources

all the way up the the root, which is the full mixture. With this formulation in hand, I defined four ways of

designing hierarchical source separation systems: Single-instrument Single-level, Single-instrument Multi-

level, Multi-instrument Single-level, and Multi-instrument Multi-level. By modifying a standard source

separation network, I instantiated each of these four systems and experimentally verified them. I found that

the Multi-level systems always outperformed the Single-level systems, especially when separating leaf sources.

Leveraging the hierarchical structure of a musical scene provides a lot of affordances to the separation system

as it learns: it can use the general concept of a broader source type (e.g., “stringed instruments”) to help

it when separating more specific source types (e.g., guitar or violin). Because of this, I showed that the

Multi-instrument Multi-level system (a multi-level Query-by-Example system) was able to better separate

leaf sources in 16 of the 18 leaf node sources I test. Finally, I presented a mockup of a potential interactive

source separation system for end-users, where the proposed QBE system was used under the hood such that

a user could choose between many different sources to separate without retraining a model from scratch.

In Chapter 3, I turned my attention toward uniting the tasks of source separation and Automatic Music

Transcription (AMT) in one system. In doing so, I described Cerberus, which is deep learning system to

simultaneously separate and transcribe multiple percussive and harmonic instruments in a mixture. Cerberus
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extends the worldview behind source separation–namely, that a musical scene has multiple overlapping events

belonging to different instruments–to the task of AMT, which solves a longstanding issue with prior work in

AMT, specifically, that the majority of previous systems could only transcribe the audio of a single instrument

at a time. By combining multi-instrument AMT with two types of separation outputs (Deep Clustering [114]

and Mask Inference), I showed that Cerberus networks achieve better for both tasks according to standard

metrics, with the highest performance coming when using all three output heads. Importantly, doing both

separation and transcription is useful because it provides an end-user with different types of analysis of a

musical scene; a low-level, high-detail analysis describing the source audio (i.e., the source estimate) and

high-level, sparse-detail analysis describing the note events (i.e., the transcription estimate). Both types of

analysis are important for different use cases, so giving a user both enables a more complete understanding

of the content of a musical scene. Having multi-instrument AMT systems is also an important stepping stone

towards making Score-Informed separation systems with modern techniques, as I did in Chapter 4.

On that note, the final chapter of this dissertation had the goal of making a separation system whose

output is modifiable by making edits to note data. To that end, I described a system which I called a

Deep Score-Informed Separation (DSIS) system, which is a deep learning system that ingests a piano roll

score as an auxiliary conditioning input when doing source separation. This system is a fresh take on Score-

Informed Separation systems that were built on pre-deep learning technologies (e.g., Non-negative Matrix

Factorization [75, 156, 252, 285]) which were less performant than modern neural network techniques but

did enable modifying the system’s output at a more granular level than existing deep learning systems. As

an upper bound on performance, I show that Deep Score-Informed Separation (DSIS) systems using ground

truth transcription data as input are able to outperform a baseline system that does not use transcription

data. This initial set of results is an important step towards showing that the DSIS systems are able to

respond to the input piano roll data. The most significant results towards the goal of editing note data

in the source estimates come from the final set of experiments wherein I explored how changing the input

piano roll affected the output separation performance. I found that as more correct notes are added, the

separation results produce better outcomes according to standard measures of performance. This was a very

strong indicator that the output separation estimates are able to be modified by making changes to the input

piano roll. As a final qualitative result, I showed how I was able to move a few notes from one source to the

other in the input piano roll, and the separation output for both of those sources changed in kind. Confident

that the DSIS system had reached the goals set out for the chapter, I turned towards envisioning what an
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end-user system might look like with the DSIS system as a backend separation system. In this mockup, I

imagined how an end-user could use a piano roll to make changes to the separation estimates.

The three main projects discussed in this dissertation all make contributions to the field of Musical

Scene Analysis, with special attention paid to making systems that (a) are able to be controlled at inference

time without retraining (Chapters 2 and 4), (b) are able to support many more instrument types that were

previously considered (Chapters 2 and 3). I accomplished this via looking at the tasks of source separation

and automatic music transcription. I look forward to seeing how future researchers and build on this work

in an effort towards making the next generation of tools for artists and musicians.

5.1. Limitations and Future Work

Overall, one of the most major limitations of all the work I described in this dissertation is the training

data that these systems are built on. All of the projects described here use the Slakh [184] dataset, which

is a dataset of audio mixtures with corresponding source data and aligned note data. The problem with the

Slakh data is that it is all synthetic data, because the audio data was synthesized from note data (specifically,

MIDI data), the audio does not sound like the music was recorded by live musicians. The distribution of

audio in Slakh does not match the distribution of musical audio found in the wild; it is–at best–a minute

subset of the larger distribution of musical audio in the world. Modern deep learning systems are extremely

data hungry, which necessitates large synthetic datasets like Slakh to be able to reach the scales required

to successfully train these systems. However, modern deep learning systems are notoriously brittle when

exposed to out-of-distribution data. Therefore, it should not be assumed that the systems presented in

this work generalize well to recordings of live musicians (see Chapter 3, Section 3.3.2 for some experimental

evidence of this). Further work is needed to create realistic-sounding datasets that can support systems like

the ones described in this dissertation: datasets with a large, diverse set of audio and instrumentation that

contains mixture data, source data, and aligned notation data.

One exciting future challenge for the hierarchical separation system would be to add the capability to

train a hierarchical system without the need to explicitly define a hierarchy a priori. The primary question

would be to understand if a system can learn a set of hierarchical relationships between sources, and if

so, understanding if the learned hierarchy produces better source estimates than an established hierarchy.

Furthermore, can such a system discover new sources not in its training data? In presenting my hierarchical
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work in Chapter 2, the system was able to leverage the hierarchy to reduce its dependency on training data

at the leaf nodes. Can hierarchical priors further help future reduce the dependency on isolated source data?

For Cerberus, one of the main limitations of the system is that the number of sources it supports must

be decided ahead of time. In other words, you train a Cerberus system for mixes that contain a particular

set of instruments (e.g., Pianos and Guitars) and then the system cannot be extended to support new

instruments (e.g., Piano, Guitar, and Bass) without retraining a new system from scratch. In the time

since I originally published this work, researchers have proposed a some solutions to this problem for multi-

instrument AMT [84, 270] or for source separation, but rarely [160] have these tasks been handled jointly

like I do here. More work into general purpose source separation and/or transcription systems is needed; I

dream of a system that can automatically identify an arbitrary number of sources in a mix and separate and

transcribe the instruments therein.

Finally, the major shortcoming of the Deep Score-Informed Separation (DSIS) system is that the edits

are restricted to removing audio data or swapping which source the audio data gets allocated to; there is no

way for the system to create new audio data not already present in the mix. Of course, this would require

the system to be a generative model–something that DSIS is not. This line of reasoning brings up many

interesting ideas for future work. Specifically, the majority of prior work in generative modeling for musical

audio has focused on generating audio for a single source at a time.1 In contrast, doing separation and

generation jointly, allows generative audio modeling to be much more flexible with respect to supporting

multi-instrument audio (just as happened with AMT). Adding note conditioning is also a great entryway for

adding controllability to the system [302] because many musicians are very familiar with editing note data.

5.2. Looking Further Ahead

Taking a wider view, the work in this dissertation contributes toward a broader and more capable

Computational Musical Scene Analysis toolkit. The ability to separate sources hierarchically, to transcribe

multiple instruments in a mixture, and to use those transcriptions to make edits to musical scenes, we open

up a world where these systems have a richer understanding of musical content. In turn, these systems could

let us interact with musical content in new and exciting ways.

The work in this dissertation paves the way for making the advanced technology of the recording studio

available anywhere. We will no longer need to perfectly record each instrument individually in an expensive

1There are few notable exceptions to this [47, 104].
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sonically-treated isolation booth in order to change their volume levels or apply audio effects to them; we

can use source separation technologies. We do not need perfectly isolated recordings to change a few sour

notes; we can edit the notes using transcribed note data. We will no longer need dedicated, specialized

hardware to get transcriptions of what we play; Automatic Music Transcription systems will do that for

us. Let me concretize these ideas: imagine a set of musicians performing on street corner and recording

their performance on their phone. From this ragtag phone recording, these musicians could make it sound

like they recorded themselves in a million dollar studio. They could eliminate street noises and isolate each

instrument, they could fix some botched notes, and from there, they could apply all of the usual studio

effects to make themselves sound great.

Extrapolating further out from the direct applications of the technology developed in this dissertation,

this field of study has the potential to make a big impact in more everyday scenarios as well. Outside

of just making music, these systems can help people as they interact with general audio scenes. Imagine

hearing aids that can identify what music you are listening to, and selectively boost certain frequencies

based on your existing surroundings and the musical content, all with the goal of enhancing your experience

with the piece. Such a system could identify non-relevant sounds to remove extraneous noise (source sep-

aration/enhancement) and could understand that an important violin solo is coming up (Automatic Music

Transcription & score following). These systems could use their keen sense of musical scenes (or more general

auditory scenes) to aid us in any way that we might want to interact with them.

Personally, I am most excited to see how Computational Musical Scene Analysis can enable new modes

of interactive expression for musicians. To hearken back to the discussion at the beginning of this document,

listening is a critical part of music making. What new things could we do if our musical tools were able

to listen to what we create in the same way that another human musician might? How might the ‘musical

conversations’ we have with listening machines alter how we make music? How do we build systems that

empower users rather than sideline them? These are very big questions–perhaps each is deserving of its

own dissertation–but as these systems start to percolate from the academic literature into the hands of end-

users [83], I am enthusiastic about the types of new art that musicians can envision by using (or misusing)

future interactive Computational Musical Scene Analysis systems.
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CHAPTER 6

Appendix

6.1. (Bidrectional) Long Short-Term Memory Layers

Long Short-Term Memory layers [94, 118] (LSTMs) are a type of recurrent neural network. Recurrent

layers are network layers that where the output of the layer is wired back into themselves (i.e., they have

feedback connections) as well as onto the next layer. One practical problem with classic recurrent neural

network layers is that, when trained with back-propagation, the gradients can be unstable, tending to vanish

(go to zero) or explode (go to infinity). LSTM nodes solve this problem by adding a “forget gate” that allows

information and gradients to flow through the node unchanged. A single node is shown in Figure 6.1. LSTM

layers are composed of many LSTM cells.

Because of the feedback loops, LSTMs are well-suited for learning data that varies over time, like audio.

Each individual loop processes the data step by step. For use in source separation in this dissertation, an

audio signal is converted to a log-scale magnitude spectrogram and the LSTM layers ingest the audio as it

changes along time. So, for example, an LSTM layer will ingest one column of the spectrogram at a time

(i.e., all of the frequency components or the entire spectrum at that time step).

Figure 6.1. A single Long Short-Term Memory (LSTM) cell. LSTMs extend traditional
recurrent neural network nodes by adding a “forget gate” (the σ and tanh nodes in the
center) which allows gradients to flow through the cell unchanged. This prevents gradients
from vanishing or exploding. Image by Guillaume Chevalier, licensed under CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/deed.en).

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The number of units an LSTM has defines its receptive field or the amount of time steps the layer can

see at any given time. So for instance, if a spectrogram has 1024 time steps but the LSTM layer only has

4512 units, only 512 time steps of the spectrogram will be processed by the recurrent layers at a time. It will

start with the first time step, and work its way across every one of the 1024 time steps, advancing by one step

at a time. Because of this, if you train an LSTM that only has 512 time steps, it can accept spectrograms

of any length at inference time.

An important variant of LSTMs that are used in this dissertation is the The Bidirectional LSTM, or

BLSTM. BLSTMs are actually two sets of LSTMs, one that processes a signal forwards in time, t = 0 . . . T ,

and the other that processes the signal backwards, t = T . . . 0 (for a signal with T time steps). BLSTMs are

thus anti-causal, which also means that they are difficult or impossible to use in realtime settings, however

none of the work in this dissertation is designed with that in mind, so this extra processing that comes from

being able to ‘see into the future’ is useful for making the resulting systems more performant.

6.2. Details about the AMT System in Chapter 4

In this section, I will describe the multi-instrument Automatic Music Transcription (AMT) system used

as a pre-processing step to provide an estimated transcription as input to the Deep Score-Informed Separation

(DSIS) experiments in Chapter 4, Section 4.3.3. The architecture of this AMT system is very similar to the

Transcription Only system described in the Cerberus Chapter (Chapter 3), however its training data and

implementation make it not directly comparable to that system.

This multi-instrument AMT system consists of a stack of Bidirectional Long Short-Term Memory

(BLSTM) layers [94, 118] (see Appendix Section 6.1 for more details about BLSTMs), which ingested a

mixture spectrogram and output a set of N = 4 piano rolls, where the piano roll frames were aligned with

the spectrogram frames. The first layer is a batch normalization layer [123], followed by 4 BLSTM layers with

600 units each. The output of the last BLSTM layer was given to a fully connected layer with a leaky ReLU

nonlinearity and this output is reshaped to become the piano roll estimates for each of the 4 instruments

used in these experiments. This network was trained for 100,000 iterations with a batch size of 64 and using

the Adam [142] optimizer with a learning rate of 3e-4. The learning rate was multiplied by a factor of 0.98

every 10,000 training steps.

The results of this multi-instrument AMT system are shown in Table 6.1, where I show both note

onset/offset F1 scores and the frame F1 scores (see Introduction Section 1.3.2 for further details). Even
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Metric Piano Guitar Bass Drums

Onset/offset F1 0.03 0.03 0.05 0.00
Frame F1 0.30 0.29 0.49 0.06

Table 6.1. Transcription F1 scores for the 4-layer BLSTM multi-instrument Automatic Mu-
sic Transcription (AMT) system used as a pre-processing step for the Deep Score-Informed
Separation (DSIS) interpolation experiments in Chapter 4, Section 4.3.3. Here, I provide
both the note onset/offset score and the frame score (discussed in the Introduction Sec-
tion 1.3.2) to show how even though this system does not get many onsets & offsets correct,
it does do a decent job at getting some of the frames correct. An imperfect AMT system is
actually desirable for the DSIS experiments because it lets us better simulate how the DSIS
system’s separation estimates will change when a user makes edits; if the AMT system were
perfect there would be less opportunities to simulate potential changes to the piano roll.

though this system barely gets any of the note onsets and offsets correctly, it does produce a fair amount of

correct results according to the frame F1 scores. This system serves as input for the interpolation experiment

in Chapter 4, Section 4.3.3, therefore an imperfect AMT system is preferred. In the interpolation experiment,

I wanted to simulate a user making edits to correct the piano roll input. Thus, if the upstream AMT system

was perfect, then it would have been of no use to simulate the desired edits. With this system, there are lots

of edits to simulate.
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