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ABSTRACT 
We have created a system for music search and retrieval. A user 
sings a theme from the desired piece of music. Pieces in the 
database are represented as hidden Markov models (HMMs). The 
query is treated as an observation sequence and a piece is judged 
similar to the query if its HMM has a high likelihood of 
generating the query. The top pieces are returned to the user in 
rank-order. This paper reports the basic approach for the 
construction of the target database of themes, encoding and 
transcription of user queries, and the results of initial 
experimentation with a small set of sung queries. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval– Query formulation, retrieval models, search 
process  

General Terms 
Algorithms 

Keywords 
music, hidden Markov model, melody, Forward algorithm, 
database 

1. INTRODUCTION 
Our group has created a system for music search and retrieval 
called MuseArt [1]. In this system, a user sings a query, assumed 
to be a theme, hook, or riff from the piece of music the user wants 
to find. The system transcribes the sung query and searches for 
related themes in a database, returning the most similar themes, 
given some measure of similarity. We call this “retrieval by 
query.” Retrieval by query for music has been investigated by 
several research groups [2][3][4] in recent years, typically with an 
emphasis on string matching techniques. 
The system described in this paper assumes a matching based 
solely on timing and pitch contour. We represent each theme 

using a hidden Markov model (HMM). The query is treated as an 
observation sequence and a theme is judged similar to the query if 
the associated HMM has a high likelihood of generating the 
query. A piece of music is deemed a good match if at least one 
theme from that piece is similar to the query. The pieces are 
returned to the user in order, ranked by similarity.  
Other researchers [5] are also investigating the use of Markov 
models for music retrieval, but do not use hidden Markov models, 
forcing the system to require exact matches between query and 
theme. Our use of HMMs lets the system gracefully handle 
queries that contain errors. We consider this a strength of our 
approach. Our state representation also makes the system robust 
to differences in the tempo and transposition of the query, as 
compared with Durey[6],  who relies on the target and query 
being presented at the same tempo and in the same pitch range. 

2. REPRESENTATION OF A QUERY 
A query is a melodic fragment sung by a single individual. The 
singer is asked to select one syllable, such as “ta” or “la,” and use 
it consistently during the query. The consistent use of a single 
consonant-vowel pairing lessens pitch-tracker error by providing 
a clear onset point for each note, as well as reducing error caused 
by vocalic variation. 
A query is recorded as a .wav file and is transcribed into a MIDI-
based representation using a pitch-tracking system developed at 
Carnegie Mellon University [7] based on an enhanced 
autocorrelation algorithm [8].  
MIDI is to a digital audio recording of music as ASCII is to a 
bitmap image of a page of text. Note events in MIDI are specified 
by three integer values in the range 0 to 127. The first value 
describes the event type (e.g. “note off” and “note on”). The next 
value specifies which key on a musical keyboard was depressed. 
Generally, middle “C” gets the number 60. The final integer 
specifies the velocity of a note (used as an indication of loudness). 
Pitch tracking can be thought of as the equivalent of character 
recognition in the text world. 
The pitch tracker divides the input file into 10 millisecond frames 
and tracks pitch on a frame-by-frame basis. Contiguous regions of 
at least five frames (50 millisecond) whose pitch varies less than 
one musical half step are called notes. The pitch of each note is 
the average of the pitches of the frames within the note. The pitch 
tracker returns a sequence of notes, each of which is defined by 
pitch, onset time and duration. Pitches are quantized to the nearest 
musical half step and represented as MIDI pitch numbers.  
Figure 1 shows a time-amplitude representation of a sung query, 
along with example pitch-tracker output (shown as piano roll) and 
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a sequence of values derived from the MIDI representation (the 
deltaPitch, IOI and IOIratio values). Time values in the figure are 
rounded to the nearest 100 milliseconds. 

delta pitch           2    2        0   -2 –2    2  2 –4   –1 -3 -3  
IOI (100 ms units)    3    2        3    2  1    2  1  1    2  1  1 
IOI ratio             1.5  .66      1.5  2  .5   2  1  1    2  1  1    

C

C 

Figure 1: A sung query 
 
We define the following. 

• A note transition between note n and note n+1 is described 
by the duple <deltaPitch,  IOIratio>.  

• deltaPitchn is the difference in pitch between note n and note 
n+1. 

• The inter onset interval (IOIn) is the difference between the 
onset of notes n and n+1. 

• IOIration is IOIn/IOIn+1. For the final transition, IOIn = IOIn 
/durationn+1. 

We represent a query as a sequence of note transitions. Note 
transitions are useful because they are robust in the face of 
transposition and tempo changes. The deltaPitch component of a 
note transition captures pitch-change information. Two versions 
of a piece played in two different keys have the same deltaPitch 
values. The IOIratio represents the rhythmic component of a 
piece. This remains constant even when two performances are 
played at very different speeds, as long as relative durations 
within each performance remain the same. 
In order to reduce the number of possible IOI ratios, we quantize 
them to one of 27 values, spaced evenly on a logarithmic scale. A 
logarithmic scale was selected because data from a pilot study 
indicated that sung IOIratio values fall naturally into evenly 
spaced bins in the log domain. 

3. THEMES AS MARKOV MODELS 
A Markov model (MM) models a process that goes through a 
sequence of discrete states, such as notes in a melody. The model 
is a weighted automaton that consists of: 

• A set of states, S = {s1, s2, s3,…, sn}. 

• A set of transition probabilities, T, where each ti,j in T 
represents the probability of a transition from si to sj. 

• A probability distribution, π, where πi is the probability the 
automaton will begin in state si. 

• E, a subset of S containing the legal ending states. 

In this model, the probability of transitioning from a given state to 
another state is assumed to depend only on the current state. This 
is known as the Markov property. 
The directed graph in Figure 2 represents a Markov model of a 
scalar passage of music. States are note transitions. Nodes 
represent states. The numerical value below each state indicates 
the probability a traversal of the graph will begin in that state. As 
a default, we currently assume all states are legal ending states. 
Directed edges represent transitions. Numerical values by edges 
indicate transition probabilities. Only transitions with non-zero 
probabilities are shown.  
Here, we have implicitly assumed that whenever state s is 
reached, it is directly observable, with no chance for error. This is 
often not a realistic assumption. There are multiple possible 
sources of error in generating a query. The singer may have 
incorrect recall of the melody he or she is attempting to sing. 
There may be production errors (e.g., cracked notes, poor pitch 
control). The transcription system may introduce pitch errors, 
such as octave displacement, or timing errors due to the 
quantization of time. Such errors can be handled gracefully if a 
probability distribution over the set of possible observations (such 
as note transitions in a query) given a state (the intended note 
transition of the singer) is maintained. 
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Figure 2: Markov model for a scalar passage 
A model that explicitly maintains a probability distribution over 
the set of possible observations for each state is called a hidden 
Markov model (HMM). More formally, an HMM requires two 
things in addition to that required for a standard Markov model: 

• A set of possible observations, O={o1, o2, o3,…, on}. 

• A probability distribution over the set of observations for 
each state in S. 

In our approach, a query is a sequence of observations. Each 
observation is a note-transition duple, <deltaPitch, IOIratio>. 
Musical themes are represented as hidden Markov models. 

3.1 Making Markov Models from MIDI 
Our system represents musical themes in a database as HMMs. 
Each HMM is built automatically from a MIDI file encoding the 
theme. The unique duples characterizing the note transitions 
found in the MIDI file form the states in the model. Figure 2 
shows a passage with eight note transitions characterized by four 
unique duples. Each unique duple is represented as a state.  



Once the states are determined for the model, transition 
probabilities between states are computed by calculating what 
proportion of the time state a follows state b in the theme. Often, 
this results in a large number of deterministic transitions. Figure 3 
is an example of this, where only a single state has two possible 
transitions, one back to itself and the other on to the next state.  
The probability distribution for the initial state in each model in 
our database is given by the formula in Equation 1. Here, |S| is the 
number of states in the model, p is a probability, and first is the 
state based on the first observation in the sequence from which 
the model was constructed. In the case of Figure 2, α is the first 
state. 

,   if 
1 ,otherwise

| | 1
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i
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 Equation 1 

If the themes in our database perfectly reflect the segments of a 
song that the subject will sing, we can simply set p = 1. We relax 
this restriction by setting p<1 and assigning a uniform distribution 
over the remaining states. This allows a traversal of the Markov 
Model for a theme to begin in any state with some low 
probability. This is done both because the database themes are 
sometimes poorly delimited and because the subject may 
reasonably choose to begin the query at a different point. 
The appropriate value for p depends on the situation and must be 
approximated given a particular set of queriers and themes in the 
database. For the examples in Figure 2 and Figure 3, p has been 
set to 0.7. 
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Figure 3: Markov model for Alouette fragment 
Markov models can be thought of as generative models. A 
generative model describes an underlying structure able to 
generate the sequence of observed events, called an observation 
sequence.  
Note that there is not a one-to-one correspondence between model 
and observation sequence. A single model may create a variety of 
observation sequences, and an observation sequence may be 
generated by more than one model. Recall that our approach 
defines an observation as a duple, <deltaPitch, IOIratio>. Given 
this, the observation sequence q = {(2,1), (2,1), (2,1)} may be 
generated by the HMM in Figure 2 or the HMM in Figure 3. 

3.2 Estimating Observation Probabilities 
To make use of the strengths of a hidden Markov model, it is 
important to model the probability of each observation oi in the 
set of possible observations , O, given a hidden state, s.  
Observations consist of duples <deltaPitch, IOIratio>. There are 
twelve musical half steps in an octave. If one assumes pitch 
quantized at the half step and that a singer will jump by no more 
than an octave between notes, there are 25 possible deltaPitch 
values. We quantize IOIratio to one of 27 values. This means 
there are 25*27= 675 possible observations given a hidden state. 
Since hidden states are also characterized by 
<deltaPitch, IOIratio>, there are 675 possible hidden states for 
whom observation probabilities need to be determined. The 
resulting table has 6752, or over 450,000 entries.  
We use a typical method to estimate probabilities. A number of 
observation-hidden state pairs are collected into a training set and 
observed frequencies are used as an estimator for expected 
probabilities. Given a state, s, the probability of observation oi 
may be estimated by the count of how often oi is seen in state s, 
compared to the total number of times s is entered. 
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Creating a dataset of paired observations and hidden states from 
which to estimate nearly half a million observation probabilities is 
daunting. This can be made more tractable by assuming 
conditional independence between deltaPitch and IOIratio. 
Given independence, two separate observation probability tables 
may be maintained, one for deltaPitch and one for IOIratio. The 
former having 25*25 = 625 values, the latter having 27*27=729 
values. The probability of encountering any observation duple, 
given a hidden state duple, can then be derived from the two 
tables using Equation 3. 

( | )  ( | )
              ( | )

o s

o s

P o s P deltaPitch deltaPitch
P IOIratio IOIratio

=
∗

Equation 3 

Even given the reduced size of the observation probability tables 
allowed by Equation 3, there are observations that do not occur in 
the training data. We cannot assume that a pairing unobserved in 
the training set will never be observed in an actual query. Thus, 
we impose a minimal probability, Pmin on both observation 
probability tables. Any probability falling below Pmin is set to 
Pmin. Probabilities are then normalized so that the sum of all 
observation probabilities, given a particular hidden state, is again 
equal to one. 

Given probability tables for IOIratio and deltaPitch, a Markov 
model constructed from a MIDI file, such as the one in Figure 3, 
may be treated as a hidden Markov model. A query is an 
observation sequence and the probability of an observation, given 
a state may be calculated using Equation 3. 

 



4. FINDING THE BEST TARGET  
We encode the themes in our database as HMMs and the query is 
treated as an observation sequence. Given this, we are interested 
in finding the HMM most likely to generate the observation 
sequence. This can be done using the Forward algorithm. 

4.1 The Forward Algorithm 
The Forward algorithm [9], given an HMM and an observation 
sequence, returns a value between 0 and 1, indicating the 
probability the HMM generated the observation sequence. Given 
a maximum path length, L, the algorithm takes all paths through 
the model of up to L steps. The probability each path has of 
generating the observation sequence is calculated and the sum of 
these probabilities gives the probability that the model generated 
the observation sequence. This algorithm takes on the order of 
|S|2L steps to compute the probability, where |S| is the number of 
states in the model. 

4.2 Selecting The Most Likely Model  
Let there be an observation sequence (query), O, and a set of 
models (themes), M. An order may be imposed on M by 
performing the Forward algorithm on each model m in M and then 
ordering the set by the value returned, placing higher values 
before lower. The ith model in the ordered set is then the ith most 
likely to have generated the observation sequence. We take this 
rank order to be a direct measure of the relative similarity 
between a theme and a query. Thus, the first theme is the one 
most similar to the query. 

4.3 Removing Bias in the Forward Algorithm 
We have found that, in practice, the value returned by the 
Forward algorithm is negatively correlated with the number of 
states in the model. This is an effect of model topology and the 
probability distribution used to determine the starting state for a 
model.  
Many thematic models, such as that in Figure 3, are essentially 
deterministic. For a deterministic model, the factors that 
determine in the value returned by the Forward algorithm are the 
observation probabilities and the initial state distribution, as 
determined by Equation 1. 
Equation 1 reduces the probability of starting in any state (except 
for the first state) as the number of states increases. This reduction 
is linear with the number of states in the model.  
Assume that for observation sequence O, the highest probability 
path through a model, m, does not start in the first state. If a new 
state is added to m, the probability of this path will be reduced. 
This reduction tends to be greater than the probability of a path 
going through the new state. The effect is to lower the score of 
models with more states. 
We offset this bias by introducing a scaling factor that varies 
linearly with respect to the number of states in the model, |S|, 
according to Equation 4, where a and b are constants. 

| |k a S b= +   Equation 4 

An individual scaling factor is found for each HMM in the set of 
models (themes), M. When ranking themes for similarity to the 
observation sequence, the result of the Forward algorithm for each 
model is multiplied by its scaling factor and the scaled values are 
used to order the themes as described in the previous section. 

5. EXPERIMENTAL RESULTS 
As an initial test of the ideas in this paper, we constructed a 
database of pieces represented as hidden Markov models and 
generated a set of queries, sung by the authors. Themes in the 
database were ranked for similarity to each query and the ranked 
results were returned.  

5.1 Baseline Matcher 
In order to compare our results to a clear, easy-to-understand 
baseline, we implemented a simple string matcher that measures 
the edit distance between a potential target and a query. 
Allowable operations are a skip of a target element (deletion), a 
skip of a query element (insertion) and an alignment of the two 
elements. A skip of either a target or query element costs one 
point. An exact match between a target and query element is 
rewarded by a point. An inexact match costs one point. Themes 
are ranked by the cost of the best global alignment of each theme 
with the query. Matches were performed on deltaPitch 
information. The baseline matcher used no duration information. 

5.2 Target Corpus Construction 
We collected a corpus of 277 pieces of music encoded as MIDI 
from public domain sites on the web. The corpus contains a wide 
variety of genres, including Classical, Broadway show tunes, Jazz 
and popular music from the past 40 years. Pieces were selected on 
basis of familiarity to a wide audience of college students, as 
estimated by members of the research group. Each piece in the 
corpus was represented in a database by a set of themes, or 
representative monophonic melodic fragments. Themes were 
extracted automatically from each piece by an early version of 
MME, an automatic melodic motive extractor [10]. An average of 
9.58 themes per piece were found by MME, resulting in a 
database of 2653 monophonic themes. 
MME is designed to do the musical equivalent of keyword 
identification. It identifies all patterns, characterized by melodic 
contour (or interval sequence), in a piece and then uses a scoring 
mechanism to determine the relative importance of these patterns. 
It then outputs a series of "themes" corresponding to the highest 
scoring patterns. 
Once each theme was extracted and placed in an individual MIDI 
file, the HMM for that theme was generated automatically, and 
placed in the database. Each theme was then indexed by the piece 
it was derived from. 
In order to get a measure of how confusable the individual themes 
are, we randomly selected 100 of the 2653 MIDI themes used to 
generate the Markov models in the database. These files were 
transformed directly into sequences of <deltaPitch, IOIratio> 
tuples and passed to both the baseline and the HMM-based query 
matching systems. Since there is no transcription error for such 
queries and queries are guaranteed to be in the database, the only 
source of error is system inability to distinguish between themes 
in the database.  
The HMM-based query system returned the correct theme as the 
top match in 97% of cases. The baseline string matcher returned 
the correct theme as the top match in 91% of cases. This indicates 
that, in general, the themes in the database are quite 
distinguishable. 

 



5.3 Query Corpus Construction 
A query is a monophonic melody sung by a single person. Singers 
were asked to select one syllable, such as “ta” or “la”, and use it 
consistently for the duration of a single query. The consistent use 
of a single consonant-vowel pairing was intended to minimize 
pitch-tracker error by providing a clear starting point for each 
note, as well as reducing error caused by dipthongs and vocalic 
variation. 
Four male singers (the authors of this paper) generated queries for 
the experiment. Two of the singers have graduate degrees in 
instrumental (not vocal) music performance. The remaining 
singers have no musical training beyond private instrumental 
lessons. None are trained as singers. All are between the ages of 
twenty and forty and are North American native speakers of 
English. 
Sung queries were recorded in 8 bit, 22.5 kHz mono using an 
Audio-Technica AT822 microphone from a distance of roughly 
six inches. Recordings were made directly to an IBM ThinkPad 
T21 laptop and were stored as uncompressed PCM .wav files. 
Each singer was allowed a trial recording to get a feel for the 
process, where the recorded melody was played back to the 
singer. This trial was not used in the experimental data. 
Subsequent recordings were not played back to the singer. 
Each singer was asked to sing three well-known pieces from the 
target corpus: America the Beautiful, Queen’s Another One Bites 
the Dust, and The Beatles’ Here Comes the Sun. Each singer was 
asked to sing any portion of the melody he considered significant. 
No tempo or key was specified and singers were allowed to go on 
as long as desired. After each query, the singer had the option of 
singing the song again, or submitting the query. Only the final 
submitted query for each song was used. 
Once the required three songs were sung, each singer was asked 
to sing an additional three songs from the list of 277 pieces in the 
target corpus, using the same protocol as for the required list of 
songs. Recordings of all queries were stored by song title, for the 
purpose of testing system performance, given known correct 
answers. 
The resulting query corpus contained six queries by each of four 
singers, for a total of 24 queries representing 15 different pieces. 

5.4 Ranking Results 
For each query, the full database of 2653 themes was scored using 
the Forward algorithm on the HMM representing each theme. 
Scores were then scaled in accordance with Equation 4. Each of 
the 277 pieces in the target corpus was represented in the database 
by a set of roughly nine automatically generated themes. Pieces 
were ranked in order by the score of their highest-ranking theme. 
Each theme was also scored by the baseline string matcher, with 
both query and theme represented as a sequence of deltaPitch 
values. As with the Forward algorithm, pieces were ranked in 
order by the score of their highest-ranking theme. 
Table 1 shows the rank of the correct answer, broken down by 
rank scoring method. The table shows HMM-based ranking using 
the Forward algorithm clearly outperforms ranking based on edit-
distance with the simple string matcher. In fact, the HMM 
approach placed the correct answer in the top five queries three 
times as often as the string matcher did and outscored the string 
matcher in twenty out of twenty-four cases. The median rank of 

the correct answer was 4th with the HMM approach and 49th with 
the string matcher. This is echoed by the mean difference in 
ranking reported by the two systems when compared on the same 
query, with the HMM system ranking the correct piece an average 
of 44.1 places higher than the string matcher. 

Table 1: Number of cases by rank of correct answer 
System HMM String Matcher 
Rank of  
Correct 
Answer 

Number
of Cases

Cumulative 
Percentage 

 

Number 
of Cases

Cumulative 
Percentage

1 10 41.7% 4 16.7%
2 to 5 4 58.3% 1 20.8%

6 to 10 0 58.3% 1 25.0%
11 to 25 3 70.8% 2 33.3%
26 to 50 1 75.0% 4 50.0%
51 to100 3 87.5% 4 66.7%
Over 100 3 100.0% 8 100.0%

Figure 4 shows rankings returned by the HMM-based system for 
all queries, broken down by singer and piece sung. Lower 
numbers indicate better results. As the figure shows, rank scores 
vary tremendously by piece and singer. 
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Figure 4: Rank of correct answer by piece and singer 

A query was defined as a success when the correct piece was 
returned as one of the top five matches. Study of the ten cases 
where the correct title received a score of sixth or worse by the 
HMM system revealed three main sources of system error: pitch-
tracker error (five cases), database coverage (one case), and 
ranking system error (three cases). 
Singer 2’s Ghostbusters query is an example of pitch-tracker 
error. While the initial .wav file was recognizable as the intended 
piece, the output of the pitch tracker had so many note skips, that 



it was difficult to recognize when played as MIDI, resulting in a 
ranking of 16th by the HMM system and 64th by the string match 
system. 
The pitch tracker was successful with Singer 1’s Scarborough 
Fair. In this case, the database did not contain a model covering 
the portion of the song Singer 1 performed in the in the query. As 
a result, the HMM system ranked it 249th and the string matcher 
ranked it 273rd. 
Ranking errors occur when the transcribed query sounds 
recognizably similar to a theme in the database, but the retrieval 
program gives the song a low ranking. The transcription of Singer 
1’s New York New York had a few note skips, but otherwise 
sounded recognizably similar to one of the New York New York 
themes in the database. The HMM system, however, ranked the 
piece 145th. The string matcher did a better job on Singer 1’s New 
York New York, ranking it 44th.  
The query for Rockin’ the Casbah illustrates a situation no system 
is likely to cope with successfully. The original recording of this 
query was unrecognizable when played for several people 
familiar with the piece. It appears the singer had poor recall of the 
melody. Accordingly, the HMM system ranked it 207th, and the 
string matcher ranked it 234th. 
Successful queries, such as America the Beautiful, tended to have 
held notes and to be sung more slowly. We attribute this to the 
cleaner output of the pitch tracker and note segmenter with such 
queries. 

6. CONCLUSIONS  
We have described a system for retrieving pieces of music from a 
database on basis of a sung query. The database is constructed 
automatically from a set of MIDI files, with no need for human 
intervention. Pieces in the database are represented as hidden 
Markov models (HMMs) whose states are note transitions. 
Queries are treated as observation sequences and pieces are 
ranked for relevance by the Forward algorithm. The use of note 
transitions as states and the Hidden Markov approach make for a 
system that is relatively robust in the face of key and tempo 
change. The use of observation probability distributions for 
hidden states deals with systematic error in query transcription. 
Problems in our model include poor handling of queries longer 
than the maximum length path through the HMM for a theme 
(i.e., when the query quotes a longer segment of the piece than is 
in the database) and queries that skip notes. The addition of low 
probability “short cut” connections in the HMMs may alleviate 
the note-skip problem. Long queries may be handled by 
windowing the query to a size no longer than the longest path in 
the HMM under consideration.  
A goal for the next version of our system is a better observation 
probability training set that includes a larger set of hidden-state-
observation pairs from multiple singers. This should translate into 
a more singer-independent system and one that does a better job 
in dealing with pitch tracker error. 
Hidden Markov models provide an excellent tool for modeling 
music queries. The results of our experiments with this "first-step" 

implementation indicate both the promise of these techniques and 
the need for further refinement. Refinements to the hidden model 
topology and of the observation model will allow us to model a 
broader range of query behavior, and improve the performance of 
the system. 
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