
HMM-Based Musical Query Retrieval
Jonah Shifrin, Bryan Pardo, Colin Meek, William Birmingham

EECS Dept, University of Michigan
110 ATL, 1101 Beal Avenue
Ann Arbor, MI 48109-2110

+1 (734) 936-1590

jshifrin@umich.edu, bryanp@umich.edu, meek@umich.edu, wpb@eecs.umich.edu

ABSTRACT
We have created a system for music search and retrieval. A user
sings a theme from the desired piece of music. Pieces in the
database are represented as hidden Markov models (HMMs). The
query is treated as an observation sequence and a piece is judged
similar to the query if its HMM has a high likelihood of
generating the query. The top pieces are returned to the user in
rank-order. This paper reports the basic approach for the
construction of the target database of themes, encoding and
transcription of user queries, and the results of initial
experimentation with a small set of sung queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval– Query formulation, retrieval models, search
process

General Terms
Algorithms

Keywords
music, hidden Markov model, melody, Forward algorithm,
database

1. INTRODUCTION
Our group has created a system for music search and retrieval
called MuseArt [1]. In this system, a user sings a query, assumed
to be a theme, hook, or riff from the piece of music the user wants
to find. The system transcribes the sung query and searches for
related themes in a database, returning the most similar themes,
given some measure of similarity. We call this “retrieval by
query.” Retrieval by query for music has been investigated by
several research groups [2][3][4] in recent years, typically with an
emphasis on string matching techniques.
The system described in this paper assumes a matching based
solely on timing and pitch contour. We represent each theme

using a hidden Markov model (HMM). The query is treated as an
observation sequence and a theme is judged similar to the query if
the associated HMM has a high likelihood of generating the
query. A piece of music is deemed a good match if at least one
theme from that piece is similar to the query. The pieces are
returned to the user in order, ranked by similarity.
Other researchers [5] are also investigating the use of Markov
models for music retrieval, but do not use hidden Markov models,
forcing the system to require exact matches between query and
theme. Our use of HMMs lets the system gracefully handle
queries that contain errors. We consider this a strength of our
approach. Our state representation also makes the system robust
to differences in the tempo and transposition of the query, as
compared with Durey[6], who relies on the target and query
being presented at the same tempo and in the same pitch range.

2. REPRESENTATION OF A QUERY
A query is a melodic fragment sung by a single individual. The
singer is asked to select one syllable, such as “ta” or “la,” and use
it consistently during the query. The consistent use of a single
consonant-vowel pairing lessens pitch-tracker error by providing
a clear onset point for each note, as well as reducing error caused
by vocalic variation.
A query is recorded as a .wav file and is transcribed into a MIDI-
based representation using a pitch-tracking system developed at
Carnegie Mellon University [7] based on an enhanced
autocorrelation algorithm [8].
MIDI is to a digital audio recording of music as ASCII is to a
bitmap image of a page of text. Note events in MIDI are specified
by three integer values in the range 0 to 127. The first value
describes the event type (e.g. “note off” and “note on”). The next
value specifies which key on a musical keyboard was depressed.
Generally, middle “C” gets the number 60. The final integer
specifies the velocity of a note (used as an indication of loudness).
Pitch tracking can be thought of as the equivalent of character
recognition in the text world.
The pitch tracker divides the input file into 10 millisecond frames
and tracks pitch on a frame-by-frame basis. Contiguous regions of
at least five frames (50 millisecond) whose pitch varies less than
one musical half step are called notes. The pitch of each note is
the average of the pitches of the frames within the note. The pitch
tracker returns a sequence of notes, each of which is defined by
pitch, onset time and duration. Pitches are quantized to the nearest
musical half step and represented as MIDI pitch numbers.
Figure 1 shows a time-amplitude representation of a sung query,
along with example pitch-tracker output (shown as piano roll) and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL ’02, July 13-17, 2002, Portland, Oregon, USA.
Copyright 2000 ACM 1-58113-513-0/02/0007…$5.00.

a sequence of values derived from the MIDI representation (the
deltaPitch, IOI and IOIratio values). Time values in the figure are
rounded to the nearest 100 milliseconds.

delta pitch 2 2 0 -2 –2 2 2 –4 –1 -3 -3
IOI (100 ms units) 3 2 3 2 1 2 1 1 2 1 1
IOI ratio 1.5 .66 1.5 2 .5 2 1 1 2 1 1

C

C

Figure 1: A sung query

We define the following.

• A note transition between note n and note n+1 is described
by the duple <deltaPitch, IOIratio>.

• deltaPitchn is the difference in pitch between note n and note
n+1.

• The inter onset interval (IOIn) is the difference between the
onset of notes n and n+1.

• IOIration is IOIn/IOIn+1. For the final transition, IOIn = IOIn
/durationn+1.

We represent a query as a sequence of note transitions. Note
transitions are useful because they are robust in the face of
transposition and tempo changes. The deltaPitch component of a
note transition captures pitch-change information. Two versions
of a piece played in two different keys have the same deltaPitch
values. The IOIratio represents the rhythmic component of a
piece. This remains constant even when two performances are
played at very different speeds, as long as relative durations
within each performance remain the same.
In order to reduce the number of possible IOI ratios, we quantize
them to one of 27 values, spaced evenly on a logarithmic scale. A
logarithmic scale was selected because data from a pilot study
indicated that sung IOIratio values fall naturally into evenly
spaced bins in the log domain.

3. THEMES AS MARKOV MODELS
A Markov model (MM) models a process that goes through a
sequence of discrete states, such as notes in a melody. The model
is a weighted automaton that consists of:

• A set of states, S = {s1, s2, s3,…, sn}.

• A set of transition probabilities, T, where each ti,j in T
represents the probability of a transition from si to sj.

• A probability distribution, π, where πi is the probability the
automaton will begin in state si.

• E, a subset of S containing the legal ending states.

In this model, the probability of transitioning from a given state to
another state is assumed to depend only on the current state. This
is known as the Markov property.
The directed graph in Figure 2 represents a Markov model of a
scalar passage of music. States are note transitions. Nodes
represent states. The numerical value below each state indicates
the probability a traversal of the graph will begin in that state. As
a default, we currently assume all states are legal ending states.
Directed edges represent transitions. Numerical values by edges
indicate transition probabilities. Only transitions with non-zero
probabilities are shown.
Here, we have implicitly assumed that whenever state s is
reached, it is directly observable, with no chance for error. This is
often not a realistic assumption. There are multiple possible
sources of error in generating a query. The singer may have
incorrect recall of the melody he or she is attempting to sing.
There may be production errors (e.g., cracked notes, poor pitch
control). The transcription system may introduce pitch errors,
such as octave displacement, or timing errors due to the
quantization of time. Such errors can be handled gracefully if a
probability distribution over the set of possible observations (such
as note transitions in a query) given a state (the intended note
transition of the singer) is maintained.

1
.5

.33

Delta pitch 2 2 1 2 -2 -1 -2 -2
IOI 1 1 1 1 1 1 1 1
IOI ratio 1 1 1 1 1 1 1 1
State α α β α χ δ χ χ

1

.33

.33 .5

α

β

χ

δ
.7

.1

.1

.1

Figure 2: Markov model for a scalar passage
A model that explicitly maintains a probability distribution over
the set of possible observations for each state is called a hidden
Markov model (HMM). More formally, an HMM requires two
things in addition to that required for a standard Markov model:

• A set of possible observations, O={o1, o2, o3,…, on}.

• A probability distribution over the set of observations for
each state in S.

In our approach, a query is a sequence of observations. Each
observation is a note-transition duple, <deltaPitch, IOIratio>.
Musical themes are represented as hidden Markov models.

3.1 Making Markov Models from MIDI
Our system represents musical themes in a database as HMMs.
Each HMM is built automatically from a MIDI file encoding the
theme. The unique duples characterizing the note transitions
found in the MIDI file form the states in the model. Figure 2
shows a passage with eight note transitions characterized by four
unique duples. Each unique duple is represented as a state.

Once the states are determined for the model, transition
probabilities between states are computed by calculating what
proportion of the time state a follows state b in the theme. Often,
this results in a large number of deterministic transitions. Figure 3
is an example of this, where only a single state has two possible
transitions, one back to itself and the other on to the next state.
The probability distribution for the initial state in each model in
our database is given by the formula in Equation 1. Here, |S| is the
number of states in the model, p is a probability, and first is the
state based on the first observation in the sequence from which
the model was constructed. In the case of Figure 2, α is the first
state.

, if
1 ,otherwise

| | 1

i

i

p s first
p

S
π

= 
 = − 
 − 

 Equation 1

If the themes in our database perfectly reflect the segments of a
song that the subject will sing, we can simply set p = 1. We relax
this restriction by setting p<1 and assigning a uniform distribution
over the remaining states. This allows a traversal of the Markov
Model for a theme to begin in any state with some low
probability. This is done both because the database themes are
sometimes poorly delimited and because the subject may
reasonably choose to begin the query at a different point.
The appropriate value for p depends on the situation and must be
approximated given a particular set of queriers and themes in the
database. For the examples in Figure 2 and Figure 3, p has been
set to 0.7.

Delta Pitch: 2 2 0 -2 -2 2 2 -4 -5 5 2 2 0
IOI: 3 1 2 2 1 1 1 1 2 2 3 1 2
IOI ratio: 3 .5 1 2 1 1 1 .5 1 .66 3 .5 1
State: ε φ γ η χ α α ι ϕ κ ε φ γ

 .7 .0375 .0375 .0375 .0375 .0375 .0375 .0375 .0375

ε
11 111 1 1

1

.5
.5

φ γ η χ α ι ϕ κ

Figure 3: Markov model for Alouette fragment
Markov models can be thought of as generative models. A
generative model describes an underlying structure able to
generate the sequence of observed events, called an observation
sequence.
Note that there is not a one-to-one correspondence between model
and observation sequence. A single model may create a variety of
observation sequences, and an observation sequence may be
generated by more than one model. Recall that our approach
defines an observation as a duple, <deltaPitch, IOIratio>. Given
this, the observation sequence q = {(2,1), (2,1), (2,1)} may be
generated by the HMM in Figure 2 or the HMM in Figure 3.

3.2 Estimating Observation Probabilities
To make use of the strengths of a hidden Markov model, it is
important to model the probability of each observation oi in the
set of possible observations , O, given a hidden state, s.
Observations consist of duples <deltaPitch, IOIratio>. There are
twelve musical half steps in an octave. If one assumes pitch
quantized at the half step and that a singer will jump by no more
than an octave between notes, there are 25 possible deltaPitch
values. We quantize IOIratio to one of 27 values. This means
there are 25*27= 675 possible observations given a hidden state.
Since hidden states are also characterized by
<deltaPitch, IOIratio>, there are 675 possible hidden states for
whom observation probabilities need to be determined. The
resulting table has 6752, or over 450,000 entries.
We use a typical method to estimate probabilities. A number of
observation-hidden state pairs are collected into a training set and
observed frequencies are used as an estimator for expected
probabilities. Given a state, s, the probability of observation oi
may be estimated by the count of how often oi is seen in state s,
compared to the total number of times s is entered.

| |

1

(,)(|)
(,)

i
i O

j
j

count o sP o s
count o s

=

=

∑
 Equation 2

Creating a dataset of paired observations and hidden states from
which to estimate nearly half a million observation probabilities is
daunting. This can be made more tractable by assuming
conditional independence between deltaPitch and IOIratio.
Given independence, two separate observation probability tables
may be maintained, one for deltaPitch and one for IOIratio. The
former having 25*25 = 625 values, the latter having 27*27=729
values. The probability of encountering any observation duple,
given a hidden state duple, can then be derived from the two
tables using Equation 3.

(|) (|)
 (|)

o s

o s

P o s P deltaPitch deltaPitch
P IOIratio IOIratio

=
∗

Equation 3

Even given the reduced size of the observation probability tables
allowed by Equation 3, there are observations that do not occur in
the training data. We cannot assume that a pairing unobserved in
the training set will never be observed in an actual query. Thus,
we impose a minimal probability, Pmin on both observation
probability tables. Any probability falling below Pmin is set to
Pmin. Probabilities are then normalized so that the sum of all
observation probabilities, given a particular hidden state, is again
equal to one.

Given probability tables for IOIratio and deltaPitch, a Markov
model constructed from a MIDI file, such as the one in Figure 3,
may be treated as a hidden Markov model. A query is an
observation sequence and the probability of an observation, given
a state may be calculated using Equation 3.

4. FINDING THE BEST TARGET
We encode the themes in our database as HMMs and the query is
treated as an observation sequence. Given this, we are interested
in finding the HMM most likely to generate the observation
sequence. This can be done using the Forward algorithm.

4.1 The Forward Algorithm
The Forward algorithm [9], given an HMM and an observation
sequence, returns a value between 0 and 1, indicating the
probability the HMM generated the observation sequence. Given
a maximum path length, L, the algorithm takes all paths through
the model of up to L steps. The probability each path has of
generating the observation sequence is calculated and the sum of
these probabilities gives the probability that the model generated
the observation sequence. This algorithm takes on the order of
|S|2L steps to compute the probability, where |S| is the number of
states in the model.

4.2 Selecting The Most Likely Model
Let there be an observation sequence (query), O, and a set of
models (themes), M. An order may be imposed on M by
performing the Forward algorithm on each model m in M and then
ordering the set by the value returned, placing higher values
before lower. The ith model in the ordered set is then the ith most
likely to have generated the observation sequence. We take this
rank order to be a direct measure of the relative similarity
between a theme and a query. Thus, the first theme is the one
most similar to the query.

4.3 Removing Bias in the Forward Algorithm
We have found that, in practice, the value returned by the
Forward algorithm is negatively correlated with the number of
states in the model. This is an effect of model topology and the
probability distribution used to determine the starting state for a
model.
Many thematic models, such as that in Figure 3, are essentially
deterministic. For a deterministic model, the factors that
determine in the value returned by the Forward algorithm are the
observation probabilities and the initial state distribution, as
determined by Equation 1.
Equation 1 reduces the probability of starting in any state (except
for the first state) as the number of states increases. This reduction
is linear with the number of states in the model.
Assume that for observation sequence O, the highest probability
path through a model, m, does not start in the first state. If a new
state is added to m, the probability of this path will be reduced.
This reduction tends to be greater than the probability of a path
going through the new state. The effect is to lower the score of
models with more states.
We offset this bias by introducing a scaling factor that varies
linearly with respect to the number of states in the model, |S|,
according to Equation 4, where a and b are constants.

| |k a S b= + Equation 4

An individual scaling factor is found for each HMM in the set of
models (themes), M. When ranking themes for similarity to the
observation sequence, the result of the Forward algorithm for each
model is multiplied by its scaling factor and the scaled values are
used to order the themes as described in the previous section.

5. EXPERIMENTAL RESULTS
As an initial test of the ideas in this paper, we constructed a
database of pieces represented as hidden Markov models and
generated a set of queries, sung by the authors. Themes in the
database were ranked for similarity to each query and the ranked
results were returned.

5.1 Baseline Matcher
In order to compare our results to a clear, easy-to-understand
baseline, we implemented a simple string matcher that measures
the edit distance between a potential target and a query.
Allowable operations are a skip of a target element (deletion), a
skip of a query element (insertion) and an alignment of the two
elements. A skip of either a target or query element costs one
point. An exact match between a target and query element is
rewarded by a point. An inexact match costs one point. Themes
are ranked by the cost of the best global alignment of each theme
with the query. Matches were performed on deltaPitch
information. The baseline matcher used no duration information.

5.2 Target Corpus Construction
We collected a corpus of 277 pieces of music encoded as MIDI
from public domain sites on the web. The corpus contains a wide
variety of genres, including Classical, Broadway show tunes, Jazz
and popular music from the past 40 years. Pieces were selected on
basis of familiarity to a wide audience of college students, as
estimated by members of the research group. Each piece in the
corpus was represented in a database by a set of themes, or
representative monophonic melodic fragments. Themes were
extracted automatically from each piece by an early version of
MME, an automatic melodic motive extractor [10]. An average of
9.58 themes per piece were found by MME, resulting in a
database of 2653 monophonic themes.
MME is designed to do the musical equivalent of keyword
identification. It identifies all patterns, characterized by melodic
contour (or interval sequence), in a piece and then uses a scoring
mechanism to determine the relative importance of these patterns.
It then outputs a series of "themes" corresponding to the highest
scoring patterns.
Once each theme was extracted and placed in an individual MIDI
file, the HMM for that theme was generated automatically, and
placed in the database. Each theme was then indexed by the piece
it was derived from.
In order to get a measure of how confusable the individual themes
are, we randomly selected 100 of the 2653 MIDI themes used to
generate the Markov models in the database. These files were
transformed directly into sequences of <deltaPitch, IOIratio>
tuples and passed to both the baseline and the HMM-based query
matching systems. Since there is no transcription error for such
queries and queries are guaranteed to be in the database, the only
source of error is system inability to distinguish between themes
in the database.
The HMM-based query system returned the correct theme as the
top match in 97% of cases. The baseline string matcher returned
the correct theme as the top match in 91% of cases. This indicates
that, in general, the themes in the database are quite
distinguishable.

5.3 Query Corpus Construction
A query is a monophonic melody sung by a single person. Singers
were asked to select one syllable, such as “ta” or “la”, and use it
consistently for the duration of a single query. The consistent use
of a single consonant-vowel pairing was intended to minimize
pitch-tracker error by providing a clear starting point for each
note, as well as reducing error caused by dipthongs and vocalic
variation.
Four male singers (the authors of this paper) generated queries for
the experiment. Two of the singers have graduate degrees in
instrumental (not vocal) music performance. The remaining
singers have no musical training beyond private instrumental
lessons. None are trained as singers. All are between the ages of
twenty and forty and are North American native speakers of
English.
Sung queries were recorded in 8 bit, 22.5 kHz mono using an
Audio-Technica AT822 microphone from a distance of roughly
six inches. Recordings were made directly to an IBM ThinkPad
T21 laptop and were stored as uncompressed PCM .wav files.
Each singer was allowed a trial recording to get a feel for the
process, where the recorded melody was played back to the
singer. This trial was not used in the experimental data.
Subsequent recordings were not played back to the singer.
Each singer was asked to sing three well-known pieces from the
target corpus: America the Beautiful, Queen’s Another One Bites
the Dust, and The Beatles’ Here Comes the Sun. Each singer was
asked to sing any portion of the melody he considered significant.
No tempo or key was specified and singers were allowed to go on
as long as desired. After each query, the singer had the option of
singing the song again, or submitting the query. Only the final
submitted query for each song was used.
Once the required three songs were sung, each singer was asked
to sing an additional three songs from the list of 277 pieces in the
target corpus, using the same protocol as for the required list of
songs. Recordings of all queries were stored by song title, for the
purpose of testing system performance, given known correct
answers.
The resulting query corpus contained six queries by each of four
singers, for a total of 24 queries representing 15 different pieces.

5.4 Ranking Results
For each query, the full database of 2653 themes was scored using
the Forward algorithm on the HMM representing each theme.
Scores were then scaled in accordance with Equation 4. Each of
the 277 pieces in the target corpus was represented in the database
by a set of roughly nine automatically generated themes. Pieces
were ranked in order by the score of their highest-ranking theme.
Each theme was also scored by the baseline string matcher, with
both query and theme represented as a sequence of deltaPitch
values. As with the Forward algorithm, pieces were ranked in
order by the score of their highest-ranking theme.
Table 1 shows the rank of the correct answer, broken down by
rank scoring method. The table shows HMM-based ranking using
the Forward algorithm clearly outperforms ranking based on edit-
distance with the simple string matcher. In fact, the HMM
approach placed the correct answer in the top five queries three
times as often as the string matcher did and outscored the string
matcher in twenty out of twenty-four cases. The median rank of

the correct answer was 4th with the HMM approach and 49th with
the string matcher. This is echoed by the mean difference in
ranking reported by the two systems when compared on the same
query, with the HMM system ranking the correct piece an average
of 44.1 places higher than the string matcher.

Table 1: Number of cases by rank of correct answer
System HMM String Matcher
Rank of
Correct
Answer

Number
of Cases

Cumulative
Percentage

Number
of Cases

Cumulative
Percentage

1 10 41.7% 4 16.7%
2 to 5 4 58.3% 1 20.8%

6 to 10 0 58.3% 1 25.0%
11 to 25 3 70.8% 2 33.3%
26 to 50 1 75.0% 4 50.0%
51 to100 3 87.5% 4 66.7%
Over 100 3 100.0% 8 100.0%

Figure 4 shows rankings returned by the HMM-based system for
all queries, broken down by singer and piece sung. Lower
numbers indicate better results. As the figure shows, rank scores
vary tremendously by piece and singer.

A 1
B 2
C 3
D 4

singer

A
m

er
ic

a
fr

om
 W

es
t S

id
e

St
or

y
A

m
er

ic
a

Th
e

B
ea

ut
ifu

l
A

nc
ho

rs
 A

w
ay

A
no

th
er

 O
ne

 B
ite

s
th

e
D

us
t

B
lis

te
r i

n
th

e
Su

n
G

ho
st

bu
st

er
s

Th
em

e
H

er
e

C
om

es
 T

he
 S

un
H

it
M

e
B

ab
y

O
ne

 M
or

e
Ti

m
e

M
at

ch
m

ak
er

 fr
om

 F
id

dl
er

 o
n

th
e

R
oo

f
N

ew
 Y

or
k

N
ew

 Y
or

k
Pe

g
Pe

op
le

 a
re

 s
tr

an
ge

R
oc

k
Th

e
C

as
ba

h
R

ou
m

an
ia

n
D

an
ce

s-
Ta

nz
 a

us
 B

ut
sc

hu
m

Sc
ar

bo
ro

ug
h

Fa
ir

TITLE OF PIECE SUNG

0

25

50

75

100

125

150

175

200

225

250

R
A

N
K

 O
F

PI
EC

E
IN

 D
A

TA
B

A
SE

A

A

A A

A

A

B
B

B

B
B BC C

C
C

C

C

D D D D

D

D

Figure 4: Rank of correct answer by piece and singer

A query was defined as a success when the correct piece was
returned as one of the top five matches. Study of the ten cases
where the correct title received a score of sixth or worse by the
HMM system revealed three main sources of system error: pitch-
tracker error (five cases), database coverage (one case), and
ranking system error (three cases).
Singer 2’s Ghostbusters query is an example of pitch-tracker
error. While the initial .wav file was recognizable as the intended
piece, the output of the pitch tracker had so many note skips, that

it was difficult to recognize when played as MIDI, resulting in a
ranking of 16th by the HMM system and 64th by the string match
system.
The pitch tracker was successful with Singer 1’s Scarborough
Fair. In this case, the database did not contain a model covering
the portion of the song Singer 1 performed in the in the query. As
a result, the HMM system ranked it 249th and the string matcher
ranked it 273rd.
Ranking errors occur when the transcribed query sounds
recognizably similar to a theme in the database, but the retrieval
program gives the song a low ranking. The transcription of Singer
1’s New York New York had a few note skips, but otherwise
sounded recognizably similar to one of the New York New York
themes in the database. The HMM system, however, ranked the
piece 145th. The string matcher did a better job on Singer 1’s New
York New York, ranking it 44th.
The query for Rockin’ the Casbah illustrates a situation no system
is likely to cope with successfully. The original recording of this
query was unrecognizable when played for several people
familiar with the piece. It appears the singer had poor recall of the
melody. Accordingly, the HMM system ranked it 207th, and the
string matcher ranked it 234th.
Successful queries, such as America the Beautiful, tended to have
held notes and to be sung more slowly. We attribute this to the
cleaner output of the pitch tracker and note segmenter with such
queries.

6. CONCLUSIONS
We have described a system for retrieving pieces of music from a
database on basis of a sung query. The database is constructed
automatically from a set of MIDI files, with no need for human
intervention. Pieces in the database are represented as hidden
Markov models (HMMs) whose states are note transitions.
Queries are treated as observation sequences and pieces are
ranked for relevance by the Forward algorithm. The use of note
transitions as states and the Hidden Markov approach make for a
system that is relatively robust in the face of key and tempo
change. The use of observation probability distributions for
hidden states deals with systematic error in query transcription.
Problems in our model include poor handling of queries longer
than the maximum length path through the HMM for a theme
(i.e., when the query quotes a longer segment of the piece than is
in the database) and queries that skip notes. The addition of low
probability “short cut” connections in the HMMs may alleviate
the note-skip problem. Long queries may be handled by
windowing the query to a size no longer than the longest path in
the HMM under consideration.
A goal for the next version of our system is a better observation
probability training set that includes a larger set of hidden-state-
observation pairs from multiple singers. This should translate into
a more singer-independent system and one that does a better job
in dealing with pitch tracker error.
Hidden Markov models provide an excellent tool for modeling
music queries. The results of our experiments with this "first-step"

implementation indicate both the promise of these techniques and
the need for further refinement. Refinements to the hidden model
topology and of the observation model will allow us to model a
broader range of query behavior, and improve the performance of
the system.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the National Science
Foundation under grant IIS-0085945, and The University of
Michigan College of Engineering seed grant to the MusEn
project. The opinions in this paper are solely those of the authors
and do not necessarily reflect the opinions of the funding
agencies. We also thank Roger Dannenberg for many helpful
comments.

8. REFERENCES
[1] Birmingham, W.P., Dannenberg, R.D., Wakefield, G.H.,

Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C., Mellody,
M., Rand, W. Musart: Music Retrieval Via Aural Queries, in
Proceedings of ISMIR 2001 (Bloomington, IN, October
2001), 73-81

[2] McNab, R. J., Smith, L. A. et al. Towards the digital music
library: tune retrieval from acoustic input. Digital Libraries,
ACM. 1996.

[3] Clausen, M., Englebrecht, R. et al. Proms: A web-based tool
for searching in polyphonic music. Proceedings of the
International Symposium on Music Information Retrieval,
2000.

[4] Tseng, Y. H. (1999). Content-based retrieval for music
collections. SIGIR, ACM. 1999.

[5] Hoos, H., Rentz, K., Gorg, M. GUIDO/MIR – an
Experimental Musical Information Retrieval System based
on GUIDO Music Notation, in , in Proceedings of ISMIR
2001 (Bloomington, IN, October 2001), 41-50

[6] Durey, A., Clements, M. Melody Spotting Using Hidden
Markov Models, in Proceedings of ISMIR 2001
(Bloomington, IN, October 2001)

[7] Mazzoni, D. and Dannenberg R.D. Melody Matching
Directly From Audio, in Proceedings of ISMIR 2001
(Bloomington, IN, October 2001), 17-18

[8] Tolonen, T. and Karjalainen, M. A computationally efficient
multi-pitch analysis model. IEEE Transactions on Speech
and Audio Processing, Vol. 8, No. 6, Nov. 2000.

[9] Rabiner, L. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proceeedings
of the IEEE. Vol. 77, No. 2, 1989, 257-286.

[10] Meek, C., Birmingham, W. Thematic Extractor, in
Proceedings of ISMIR 2001 (Bloomington, IN, October
2001), 119-128.

