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ABSTRACT

Audio source separation is the act of isolating sound sources
in an audio scene. One application of source separation is
singing voice extraction. In this work, we present a novel
approach for music/voice separation that uses the 2D Fourier
Transform (2DFT). Our approach leverages how periodic
patterns manifest in the 2D Fourier Transform and is con-
nected to research in biological auditory systems as well as
image processing. We find that our system is very simple to
describe and implement and competitive with existing unsu-
pervised source separation approaches that leverage similar
assumptions.

Index Terms— Audio source separation, singing voice
extraction, 2DFT, auditory scene analysis, automatic karaoke,
foreground/background separation, image processing

1. INTRODUCTION

Audio source separation is the act of isolating sound sources
in an audio scene. Examples of source separation include
isolating the bass line in a musical mixture, isolating a single
voice in a loud crowd, and extracting the lead vocal melody
from a song. Automatic separation of auditory scenes into
meaningful sources (e.g. vocals, drums, accompaniment)
would have many useful applications. These include melody
transcription [1], audio remixing [2], karaoke [3], and instru-
ment identification [4].

One application of source separation is singing voice
extraction. A variety of approaches have been used for
singing voice extraction, the vast majority of which use the
spectrogram as the input representation. Examples include
Non-negative matrix factorization [5], deep learning-based
approaches [6], a source filter model with melodic smooth-
ness constraints [7] and a multi-kernel framework [8].

One of the simplest and most robust approaches for
singing voice extraction is to leverage repetition. REPET-
SIM [9] uses repetition in the spectrogram by using the
similarity matrix to find similar frames. Huang et al. [10]
separate a low-rank background (the accompaniment) from a
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sparse foreground (the singing voice) using robust principal
component analysis. The most closely related work to ours
is REPET [3], which finds periodic repetition in a magnitude
spectrogram, separating a periodic repeating background
(accompaniment) from a non-periodic foreground (vocals).
In this work we describe a novel, simple method to separate
the periodic from the non-periodic audio that leverages the
two dimensional Fourier transform (2DFT) of the spectro-
gram. The properties of the 2DFT let us separate the periodic
from the non-periodic without the need to create an explicit
model of the periodic audio and without the need to find the
period of repetition, both of which are required in REPET.

The 2DFT has been used in music information retrieval
for cover song identification [11] [12] and music segmenta-
tion [13]. There is also some prior work in audio source sep-
aration that uses the 2DFT as the input representation. Stöter
et al. [14] apply the 2DFT to small 2D patches of the spec-
trogram. Pishdadian et al. [15] further refined this represen-
tation by using a multi-resolution 2D filter bank instead of
fixed-size 2D patches. Both approaches use the 2DFT to dif-
ferentiate modulation characteristics (e.g. vibrato, trills) of
distinct sources and separate them from one another. These
works both focus on separation of harmonic sources with
the same fundamental frequencies (unisons) in very short ex-
cerpts of audio. Neither focuses on separating periodic from
non-periodic patterns in long audio segments and both re-
quired the creation of a more complicated, tiled representa-
tion using the 2DFT. We present a novel singing voice extrac-
tion technique to separate periodic from non-periodic audio
via a single 2DFT of the spectrogram, with no need to create
a more complex multi-resolution filter bank.

2. PROPOSED METHOD

Our approach leverages the fact that musical accompaniment
will typically have some amount of periodic repetition, while
the vocals will be relatively aperiodic. Given this insight, we
use the 2DFT to analyze the audio spectrogram and borrow
a technique from image processing to perform singing voice
extraction.
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Figure 1: Examples of time-frequency-domain signals (top
row) and their associated magnitude 2D Fourier transforms
(bottom row). The left two show 2D sinusoids and the right-
most plot shows a more complex 2D signal. Darker colors
show higher values in all plots.

2.1. The 2D Fourier Transform

The 2DFT is an essential tool for image processing, just
as the 1DFT is essential to audio signal processing. The
2DFT decomposes images into a summation of weighted
and phase-shifted 2D sinusoids [16]. We apply a 2DFT
to the magnitude spectrogram of audio mixtures to detect
and extract particular patterns such as temporal repetitions.
We refer to the vertical and horizontal dimensions of the
2D transform domain as scale and rate. These terms are
borrowed from studies of the auditory system in mammals
[17] [18][19], which have shown that the primary auditory
cortex uses representations capturing the spectro-temporal
modulation patterns of audio signals. In this context, scale
corresponds to the spread of spectral energy (e.g. frequency
modulation depth) as well as frequency-domain repetitions
(e.g. overtones) and rate corresponds to temporal repetitions
(e.g. repeating percussive patterns).

In Figure 1, the left and middle columns show illustrative
examples of 2D (time-frequency domain) sinusoids and their
2DFTs (scale-rate domain). A 2D sinusoid is represented by
a pair of peaks in the transform domain, where the orienta-
tion of the peaks with respect to axes (upward or downward)
is the opposite of the orientation of the sinusoid. The rate of
repetitions across the frequency and time axes are reflected
by the absolute value of scale and rate respectively. The right
column shows a more complex pattern which can be decom-
posed into a number of 2D sinusoids using the 2DFT.

A common task in image processing is to remove noise
from images. One particular denoising application is the re-
moval of periodic noise, which can be the result of artifacts
in the image capture instrument. A straightforward technique
to removing periodic noise from an image is by recognizing

Figure 2: An example of periodic noise removal. The noisy
image (upper left) is denoised by taking its 2DFT (upper
right), removing local peaks that correspond to the repeat-
ing pattern (lower right) and inverting the 2DFT to obtain the
denoised image (lower left).

that periodic noise will appear as a set of peaks in the 2DFT
domain (see Figure 2). When 2DFT-domin peaks are masked
out, one can invert the resulting representation to produce an
image without the periodic noise.

In many audio signals (e.g. music), a non-periodic fore-
ground source (e.g. a singing voice) is often accompanied
by a periodic background source (e.g. a repetitive musical
accompaniment). Our work adapts the idea of periodic noise
removal in images to the audio realm by applying it to the
magnitude spectrogram. By masking peaks in the 2DFT of
the spectrogram, we can separate the periodic background
from the non-periodic foreground. We now describe this al-
gorithm for music/voice separation in more detail.

2.2. Music/voice separation

Let x(t) denote a single-channel time-domain audio sig-
nal and X(ω, τ) its complex Short-time Fourier Transform
(STFT), where ω is frequency and τ is time. Our goal is to
model the background music based on a repeating pattern
in the magnitude plot of X(ω, τ), also called the spectro-
gram. To this end, all the processing in our algorithm will
be performed on |X(ω, τ)|, where |.| denotes the magnitude
operator. Periodically repetitive patterns in the magnitude
spectrogram will appear as peaks in the 2DFT of the spectro-
gram, which reduces a general pattern recognition approach
in the time-frequency domain into peak picking in the scale-
rate domain.
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Figure 3: Separation using the 2D Fourier Transform (2DFT). In the first row, the left panel shows the mixture spectrogram and
the right panel its 2DFT. In the second row, we apply our peak picking technique along the rows of the 2DFT to get a background
2DFT. Then, we invert this 2DFT and apply masking to the mixture spectrogram to get the background spectrogram. In the
third row, we show everything from the rest of the 2DFT (i.e. the non-peaks), which contains the singing voice.

The scale-rate representation of the spectrogram will be
denoted by X̃(s, r), where s and r, stand for scale and rate
respectively. The relationship between the spectrogram and
its scale-rate transform can then be formulated as

X̃(s, r) = FT 2D{|X(ω, τ)|}, (1)

where FT 2D{.} denotes the two-dimensional Fourier trans-
form. X̃(s, r) contains complex values. The magnitude
of X̃(s, r) contains peaks corresponding to periodically re-
peating elements in the time-frequency domain. Therefore,
the core of our algorithm is to locate peaks in the magni-
tude of the scale-rate transform (2DFT) and mask the peaks
to separate the repeating accompaniment from the singing
voice. We pick peaks by comparing the difference between
the maximum and minimum magnitude values over a neigh-
borhood surrounding each point in the scale-rate domain to
some threshold. In this work, the threshold, denoted by γ, is
set to the standard deviation of all |X̃(s, r)| values.

The neighborhood for peak-picking can be of an arbi-
trary shape. For this work, we restrict our neighborhood
shape to be a simple rectangle in the 2DFT domain. We de-
note the center of an arbitrary rectangular neighborhood by
c = (sc, rc), and the neighborhood surrounding this point by
N(c). The dimensions of the neighborhood along the scale
and rate axes are tunable parameters in our algorithm.

The repeating accompaniment manifests as a series of
peaks along the rate axis. Because of this, our neighborhood
is shaped to find peaks along the rate axis. In this work, the
size of the neighborhood along the scale axis is 1. In our
experiments, we vary the size of this neighborhood along
the rate axis between 15 and 100 frames in the 2DFT do-
main. Smaller values for the shape result in leakage from the
singing voice into the accompaniment, while larger values
result in leakage from accompaniment into singing voice.

Let αc denote the range of |X̃(s, r)| values over the
neighborhood, that is

αc = max
N(c)
|X̃(s, r)| −min

N(c)
|X̃(s, r)|. (2)

The value of the peak-picking mask, which we will refer to
as the scale-rate domain background mask can thus be com-
puted at c as follows

Mbg(sc, rc) =

{
1 αc > γ, |X̃(sc, rc)| = max

N(c)
|X̃(s, r)|

0 otherwise
(3)

Intuitively, this is simply a way to discover local max-
ima in |X̃(s, r)| that are above a threshold γ. It should be
noted that neighborhood selection and mask value compu-
tation is performed for every single point in the scale-rate
domain. We denote the computed background mask over the
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Method Voice SDR Voice SIR Voice SAR Music SDR Music SIR Music SAR
RPCA 2.3± 1.5 11.0± 4.5 2.9± 4.0 5.0± 2.3 7.7± 2.9 10.5± 6.6
REPET-SIM 2.1± 1.5 15.2± 4.2 2.9± 3.8 6.3± 2.7 12.5± 2.7 10.5± 6.7
REPET 2.2± 1.5 15.6± 4.9 2.8± 3.8 5.0± 2.6 10.2± 2.7 10.4± 6.6
2DFT (1, 15) 2.6± 1.5 11.8± 3.9 2.8± 4.0 5.7± 2.5* 8.7± 3.0* 10.4± 6.7
2DFT (1, 35) 2.7± 1.6∗ 13.2± 3.9 2.8± 4.0* 5.1± 2.5 7.6± 2.9 10.4± 6.6*
2DFT (1, 100) 2.6± 1.5 13.5± 4.0* 2.7± 4.0 4.4± 2.4 6.7± 2.8 10.3± 6.6
Ideal Binary Mask 9.2± 2.7 30.0± 4.1 9.5± 3.2 14.9± 6.5 27.9± 8.0 15.2± 6.5

Table 1: SDR/SIR/SAR for the singing voice and the music accompaniment as extracted from the mixture. In the rows labeled
2DFT, the neighborhood shape in which we do the peak picking is shown in the parenthesis (e.g. (M, N) is M rows by N
columns.) The best performance for our system is indicated by an asterisk, while the best performance across all algorithms is
indicated by boldface. Note that SDR for foreground and background sources for our optimal settings are higher than those of
REPET, but lower than REPET-SIM, which has the advantage of exploiting non-periodic patterns as well as periodic ones.

entire scale-rate domain representation by Mbg(s, r). The
scale-rate domain foreground mask can then be computed as
Mfg(s, r) = 1−Mbg(s, r).

Next, we compute the separated magnitude spectrogram
of the background (repeating) source from the masked ver-
sion of the complex scale-rate domain representation, by tak-
ing the inverse 2DFT of the masked signal:

|Xbg(ω, τ)| = IFT 2D{Mbg(s, r)� X̃(s, r)}, (4)

with IFT 2D{.} denoting the inverse 2D Fourier transform
and � denoting element-by-element multiplication, respec-
tively. The foreground magnitude spectrogram can be simi-
larly computed using the foreground mask.

The separated audio is obtained by masking in the time-
frequency domain. The time-frequency masks are simply
computed by comparing the inverted magnitude spectro-
grams from the 2DFT for foreground and background:

Mbg(ω, τ) =

{
1 |Xbg(ω, τ)| > |Xfg(ω, τ)|
0 otherwise,

(5)

and the foreground mask as Mfg(ω, τ) = 1−Mbg(ω, τ).
In the last step, the time-domain background and fore-

ground audio signals are recovered from the masked STFT.
In short, xbg(t) = ISTFT{Mbg(ω, τ) � X(ω, τ)}, where
ISTFT{.} is the Inverse Short-Time Fourier Transform,
computed through the overlap-and-add method. The fore-
ground audio signal (the singing voice) can be similarly
computed by applying the foreground mask to the complex
spectrogram and taking the inverse STFT. The separation
process can be seen in Figure 3.

3. EVALUATION

We evaluate our approach using DSD100 [20], a dataset con-
sisting of 100 multitrack recordings of four sources - vocals,
drums, bass, and other. We label the combination of the lat-
ter three sources the accompaniment. Our task is to separate

the vocals from the accompaniment. We extract 30 second
clips from each multitrack example. The four sources (vo-
cals, drums, bass, other) are combined into a mono mixture
for separation. We compare our method to other methods for
singing voice extraction that use an assumption of a low rank
accompaniment source. These are REPET [3], REPET-SIM
[21], and RPCA [10]. For our proposed method, we vary
the size of the neighborhood for peak picking, as described
in Section 2. We also compare to the ground truth sources.
Separation performance is evaluated using the BSS Evalua-
tion metrics [22] source to distortion ratio (SDR), source to
interference ratio (SIR), and source to artifact ratio (SAR).

SDR/SIR/SAR results are shown in Table 1 for our
proposed method and competing methods. Our proposed
method shows very competitive results to a variety of algo-
rithms for source separation based on repetition. The most
direct comparison is with REPET, which also performs mu-
sic/voice separation via repeating pattern extraction. REPET
depends on computing a precise length of the periodic pat-
tern. If the computed length is off by even one frame, the
performance of the separation will be sub-optimal. Our
approach does not require estimation of the length of the
period or explicit modeling of the repeating pattern. This
approach connects an image processing technique to source
separation. The periodic noise removal in Figure 2 and the
repeating background extraction in Figure 3 are done using
the same algorithm described in Section 2.1

4. CONCLUSION

We presented a simple and novel approach for music/voice
separation. Our approach leverages how periodic patterns
manifest in the scale-rate domain and is connected to re-
search in biological auditory systems as well as image pro-
cessing. We find that our system is competitive with exist-
ing unsupervised source separation approaches that leverage
similar assumptions.

1Audio examples at https://interactiveaudiolab.github.io/demos/2dft.
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