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Abstract
Separating an audio scene, such as a cocktail party
with multiple overlapping voices, into meaningful
components (e.g., individual voices) is a core task
in computer audition, analogous to image seg-
mentation in computer vision. Deep networks are
the state-of-the-art approach. They are typically
trained on synthetic audio mixtures made from
isolated sound source recordings so that ground
truth for the separation is known. However, the
vast majority of available audio is not isolated.
The human brain performs an initial segmenta-
tion of the audio scene using primitive cues that
are broadly applicable to many kinds of sound
sources. We present a method to train a deep
source separation model in an unsupervised way
by bootstrapping using multiple primitive cues.
We apply our method to train a network on a large
set of unlabeled music recordings to separate vo-
cals from accompaniment without the need for
ground truth isolated sources or artificial train-
ing mixtures. A companion notebook with audio
examples and code for experiments is available12.

1. Introduction
A fundamental problem in computer audition is audio source
separation: isolating a sound producing source (e.g., a
singer) or group of sources (e.g., a backing band) in an
audio scene (e.g., a music recording). Source separation is
important for building machines that can perform percep-
tual audio tasks on realistic audio inputs with human-level
performance. Deep models are the current state-of-the-art

1Department of Computer Science, Northwestern Univer-
sity, Evanston, IL, USA 2Mitsubishi Electric Research Labs,
Cambridge, MA, USA. Correspondence to: Prem Seetharaman
<prem@u.northwestern.edu>.

Published at the workshop on Self-supervision in Audio and Speech
at the 37 th International Conference on Machine Learning, Vi-
enna, Austria. Copyright 2020 by the author(s).

1https://github.com/pseeth/bootstrapping-computer-audition
2This work has made use of the Mystic NSF-funded infrastruc-

ture at Illinois Institute of Technology, NSF award CRI-1730689.

Repetition

Time and pitch proximity

More repetitive

M
or

e 
m

el
od

ic

Less repetitive

Le
ss

 m
el

od
ic

Figure 1. The process for making a primitive embedding. A set
of primitive algorithms is run on the mixture. Each algorithm
produces a mask with values between 0 (blue) and 1 (red) indi-
cating how it is segmenting the auditory scene. Here, we show
primitive clustering for two primitives. Together, they map each
time-frequency point into a 2D embedding space, shown on the
right. The marked point was classified by the primitives as melodic
and not repetitive, indicating that it likely belongs to the vocals.

for source separation of mixtures of speech or music (Stöter
et al., 2018). These models are trained on thousands of
synthetic mixtures of isolated recordings of musical instru-
ments and voices. Using synthetic mixtures guarantees
that the ground truth isolated sources are known. However,
most sounds in the world do not occur in recording studios
and most available audio recordings (e.g., field recordings,
YouTube videos) do not have available decompositions into
their isolated components.

A system that learns in an unsupervised way, bootstrapping
from audio scenes where no pre-separation into isolated
sources is available, would be foundational to building sys-
tems that can learn from broadly available sources of audio
(e.g., audio from YouTube, or live microphone input) con-
taining a much larger range of sounds in a much larger
range of mixtures than is possible with synthetic mixtures.
This should lead to more robust source separation, able to
separate more classes of sounds in more kinds of mixtures.

The way deep source separation models learn is in stark
contrast to how humans learn to segregate audio scenes
(Bregman, 1994): sources are rarely presented to us in isola-
tion and almost never in “mixture/reference” pairs. There
is experimental evidence that the brain uses primitive cues
(e.g., direction of arrival, repetition, proximity in pitch and
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time) that are independent of the characteristics of any par-
ticular sound source to perform an initial segmentation of
the audio scene (McDermott et al., 2011a). The brain could
use such cues to separate at least some scenes to some ex-
tent, and use that information to train itself to separate more
difficult scenes (McDermott et al., 2011b).

Source separation algorithms based on primitives are well-
studied (Wang & Brown, 2006). These include algo-
rithms based on common-fate (Seetharaman et al., 2017),
melodic contours (Salamon & Gómez, 2012), direction of
arrival (Fitzgerald et al., 2016), repetition (Liutkus et al.,
2012; Rafii & Pardo, 2013) and harmonic/percussive timbre
(Fitzgerald, 2010).

Le Roux et al. (2013) proposed to use ensemble learning for
speech enhancement, combining time-frequency masks cor-
responding to outputs of multiple enhancement algorithms
using a shallow classifier. Liutkus et al. (2014) put primi-
tive separation algorithms into a framework where elements
of the time-frequency representation are clustered using a
set of primitive-specific proximity kernels. Their approach
assumes each source can be separated using a single prim-
itive and does not provide a way of estimating confidence
in that primitive. Other approaches (Bach & Jordan, 2006;
Manilow et al., 2017; McVicar et al., 2016) learn how to
combine primitives but require ground truth to do so.

We build on deep learning source separation models (Luo
et al., 2017; 2020) that use time-frequency embeddings to
separate sources (Hershey et al., 2016; Luo et al., 2018).
Training these models typically requires ground truth. Pre-
vious efforts (Drude et al., 2019; Seetharaman et al., 2019;
Tzinis et al., 2019) to train source separation models without
ground truth all learn models to separate speech in stereo
mixtures using only the direction-of-arrival primitive to gen-
erate training data. These approaches fail when direction-
of-arrival is unreliable (e.g., highly reverberant audio) or
unavailable (monophonic audio).

Overview: Our approach has three components: the la-
beller, the student, and the teacher. We first develop a
clustering-based labeller that allows combining multiple
perceptually-inspired primitive cues, which separates better
than any primitive by itself. We then propose a confidence
measure that estimates the effectiveness of any clustering-
based source separation approach, without ground truth.
Finally, a teacher uses the confidence measure to select
outputs from the primitive clustering system to recombine
into training examples. This curriculum is used to train the
student (a deep model) which outperforms the primitive clus-
tering labeller. We then reuse this framework to bootstrap a
second student using teacher-selected separation estimates
from the first student as training data, outperforming the
first student. Although we focus our presentation on music
mixtures, our approach is applicable to other domains.

2. The Labeller
The first component of our system is the labeller, which sep-
arates mixtures using an ensemble of primitive auditory cues
in a method we call primitive clustering (Fig. 1). We apply
the labeller to a magnitude spectrogram, a widely-used rep-
resentation that indicates the magnitude of the audio at each
point in time and frequency. Given a music mixture X , each
primitive-based algorithm produces a soft time-frequency
mask that assigns to each time-frequency (TF) point (t, f)
in the mixture a real number ranging from 0 (if it is dom-
inated by the accompaniment) to 1 (if it is dominated by
vocals). The masks produced by the primitives are used to
create an embedding of each TF point in the mixture, where
each dimension of the embedding contains the soft mask
value at that TF point according to one of the primitives.
Given D primitives, each TF point X(t, f) is thus mapped
to a D dimensional vector, which we denote as F(X)(t, f).

To turn the multi-dimensional embedding representation
into a single mask that takes into account all the primitives,
we choose to use a clustering-based approach, specifically
so we can not only cluster points into accompaniment- and
vocals-dominated regions but also predict the separation
quality. We use here an approach related to soft K-Means
clustering (Jain, 2010). However, since our goal is not to
find cluster centroids as in K-means, but rather calculate a
score for each embedding vector based on consensus of the
different primitives, we fix the means of the two clusters
to µ0 = [0]D and µ1 = [1]D. These points are where
the primitive separation algorithms all strongly agree on
how to assign a TF point to either the accompaniment (0)
or vocals (1). We then use the distance of the primitive
embedding F(X)(t, f) of every TF point (t, f) to µ0 and
µ1 to calculate the soft mask for each source Mk(t, f) as

Mk(t, f) =
e−βD(F(X)(t,f),µk)∑
j e
−βD(F(X)(t,f),µj)

(1)

where D(x, y) is the Euclidean distance between points x
and y. This maps distances in the embedding space to values
between 0 and 1. β (= 5.0, here) controls the hardness of
the decisions made by the clustering algorithm.

3. The Teacher
Our goal is to train a deep learning model to separate audio
mixtures without ground truth. One simple way to do this
would be to train the network directly from the TF labels
(i.e., soft mask values) the labeller generates for every mix-
ture in a large pool of unlabeled examples. If the labeller
fails on some of these mixtures, the network will be trained
with bad data. To mitigate this problem, the teacher uses
two strategies: a confidence measure used to identify failure
cases and exclude them from training, and a data augmenta-
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tion process to create high-quality training examples from
the separated outputs produced by the labeller.

3.1. Confidence measure

Our deep models and all the primitive source separation
methods in this paper use clustering-based source separa-
tion. Time-frequency points are mapped to an embedding
space. In a good embedding, clusters are distinct, and points
in the same cluster correspond to the same sound source.
By analyzing the embedding space, we can estimate con-
fidence in the performance of any clustering-based source
separation algorithm without the need to compare to ground
truth sources. The confidence measure c(X) over the set
of embedded TF points in an audio example X has two
parts: the silhouette score and posterior strength, which are
multiplied together: c(X) = s(X)P (X).

3.1.1. SILHOUETTE SCORE

The silhouette score (Rousseeuw, 1987) produces a score
for every point in a dataset that corresponds to how well that
point is clustered. To compute the silhouette score, let us
first assume we have a partition of dataset X =

⋃K
k=1 Ck

into K clusters. For a data point xi in cluster Ck, we com-
pute the following terms:

a(xi) =
1

|Ck| − 1

∑
xj∈Ck,i6=j

d(xi, xj),

b(xi) = min
o 6=k

1

|Co|
∑
xj∈Co

d(xi, xj).

a(x) is the mean distance (using a distance function d)
between xi and all other points in Ck, and b(x) is the mean
distance between xi and all the points in the nearest neighbor
cluster. The silhouette score s(x) ranges from −1 to 1 and
is defined as:

s(x) =
b(xi)− a(xi)

max(a(xi), b(xi))
if |Ck| > 1, (2)

and s(xi) = 0 if |Ck| = 1. While the soft assignment
from Eq. (1) is used when separating, in order to apply the
silhouette score to primitive clustering, we assign each point
to the cluster (vocals or accompaniment) whose center it is
closest to.

Computing the silhouette score for all points in a typical
auditory scene (millions of points) is intractable. Instead,
we compute the silhouette score on a sample ofQ points and
take the mean as the score for the overall example. With a
relatively small Q, we can approximate the mean silhouette
score efficiently. We set Q = 1000, and sample these Q
points from the loudest 1% of time-frequency bins in the
mixture spectrogram, to focus our estimate on elements that
are perceptually prominent.

3.1.2. POSTERIOR STRENGTH

For every point xi in set X , the clustering algorithm pro-
duces soft assignments γik ∈ [0, 1] that indicate the mem-
bership of the point xi in each cluster Ck. γik is also called
the posterior of the point xi in regards to cluster Ck. The
closer γik is to 0 (belongs to a different cluster) or 1 (be-
longs to this cluster), the more confident the assignment
of that point. For a point xi with corresponding γik for
k ∈ [0, 1, ...,K], we compute

P (xi) =
K(maxk∈[0,...,K] γik)− 1

K − 1
, (3)

where K is the number of clusters, and P (xi) is the poste-
rior strength, as it captures how strongly a point is assigned
to any of the K clusters. This equation maps points that
have a maximum posterior of 1

K (equal assignment to all
clusters) to confidence 0, and points that have a maximum
posterior of 1 to confidence 1. To compute a single P (X)
score over X , we take the mean posterior strength across
the top 1% of points, by loudness.

3.2. Constructing the curriculum

For each mixture, we apply primitive clustering to obtain
each separation estimate (isolated voice or background mu-
sic) from each unlabeled audio mixture. A threshold on the
confidence for each estimate is used to determine whether
to use it in training. To create training examples, we take
vocals and accompaniment estimates and remix them to
create new mixtures. We remix in two ways: coherent and
incoherent. Coherent mixing occurs when the vocals and
accompaniment estimates come from the same song at the
same time instant (e.g., it sounds like conventional music).
Incoherent mixing mixes estimates obtained from different
songs. A single training example then consists of the created
mixture as the input and the primitive separation estimates
as the target.

We use Scaper (Salamon et al., 2017) for data augmentation.
Each training mixture is 10 s long and at 16 kHz sample rate,
with a signal-to-noise ratio between vocals and accompani-
ment chosen randomly between 0 and 10 dB. Estimates are
pitch shifted randomly between −2 and +2 semitones and
time stretched randomly between 0.8x and 1.2x the original
length. In the coherent mixing case, both estimates are pitch
shifted and time stretched by the same amount.

4. The Student
The student, following a Chimera++ architecture (Wang
et al., 2018), is a deep neural network consisting of multiple
recurrent layers and two output heads. The first output head
is a mask-inference head. This head is used for performing
the actual source separation, by masking out TF points
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Figure 2. Relationship between confidence measure and actual per-
formance for music mixtures, using primitive clustering to separate
each mixture. Each of the 1238 points represents the vocals pro-
duced by primitive clustering for one 30-second excerpt from the
MUSDB training set. The blue line is the line of best fit.

in the spectrogram that do not correspond to the desired
source. It is trained by comparing an estimated spectrogram
for a separated source Ŝ with the “ground truth” source S
obtained from the unsupervised labeller:

LMI =
1

N

∥∥∥|Ŝ| − |S|∥∥∥
1
, (4)

where N is the number of TF points in S.

The deep clustering head is trained via the whitened K-
Means objective (Wang et al., 2018), which compares the
affinity matrix of the embeddings V for all TF points with
that of the “ground truth” binary assignments Y :

LWKM = D − tr((V TV )−1V TY (Y TY )−1Y TV ) (5)

where D is the embedding size. The two objective functions
are linearly combined, with a weighting factor α:

LMI+WKM = αLMI + (1− α)LWKM. (6)

In this work, α is chosen to be 0.75. We use the dual path
recurrent layer (DPRNN) proposed by Luo et al. (2020).
We use a 3 layer DPRNN, with 300 hidden units. The
input to the network is the magnitude STFT with window
size 512, hop length 128, and the square root of the Hann
window as the window function. We apply an instance
normalization layer on the input STFT so the network is
resilient to loudness changes. Before the recurrent stack,
the linear-spaced frequency STFT is projected to 300 mel-
spaced frequencies. The output of the deep clustering head
consists in 20-dimensional embeddings of the TF points and
is used to estimate confidence in the separation produced
by the network in the same way confidence is estimated for
primitive clustering.
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Figure 3. In the top plot, we take all the estimates produced by
primitive clustering on the MUSDB train set and split them into
quintiles according to the confidence range. Higher quintiles ac-
cording to confidence also have higher SI-SDRi distributions. In
the bottom plot, we show the effect of bootstrapping a model from
curriculum created from each quintile in the top plot. The net-
work bootstrapped from the lowest quintile has poor performance,
indicating that excluding low-confidence sources is helpful.

5. Experiments
Our experiments are designed to answer whether primitive
clustering outperforms any one primitive by itself, whether
the confidence measure is a good unsupervised estimator of
separation quality, and whether the student deep networks
outperform the primitive labeller.

5.1. Data and hyperparameters

In our experiments, we use a dataset with ground truth sep-
arated sources so we can benchmark the effectiveness of
the unsupervised training. We use the 150 song MUSDB
dataset (Stöter et al., 2018), split into training (86 songs),
validation (14 songs), and test (50 songs) sets. We augment
this dataset with songs scraped from YouTube ( 800 songs),
for which we do not have ground truth separated sources.
Primitive clustering uses four primitives: micromodulation
and repetition (Seetharaman et al., 2017), time/pitch prox-
imity (Salamon & Gómez, 2012), and harmonic/percussive
timbre (Fitzgerald, 2010). Vocal separation performance
is measured using scale-invariant source-to-distortion ratio
improvement (Le Roux et al., 2019) (SI-SDRi) over using
the mixture as the estimate. All separation methods were im-
plemented using the nussl toolkit (Manilow et al., 2018) and
are evaluated on the MUSDB test set. Each deep network
was trained for 20k iterations, with a batch size of 20, and
the Adam (Kingma & Ba, 2014) optimizer with learning
rate 1e-3.
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Notes Training data SI-SDRi

Primitives

Timbre n/a −0.7
Proximity n/a 3.4

Micromodulation n/a 6.2
Repetition n/a 6.4

Prim. clustering n/a 6.8

Bootstrapping from primitive clustering

Bootstrap Q4 of MUSDB 7.3
Bootstrap MUSDB + YT (all) 7.5
Bootstrap MUSDB + YT (Q2-Q5) 7.6

Bootstrapping from bootstrapping

Bootstrap MUSDB + YT (Q2-Q5) 7.7

Training with ground truth

From scratch MUSDB VAL (800 iters) 3.0
Bootstrap init. MUSDB VAL (800 iters) 8.5

From scratch MUSDB (20k iters) 10.0
Bootstrap init. MUSDB (20k iters) 10.4

Table 1. Vocal separation performance of all approaches in terms
of SI-SDR improvement [dB] on the MUSDB test set. In the table,
MUSDB is the MUSDB training set, MUSDB VAL is the MUSDB
validation set (which has only 14 songs), and YT is the dataset of
songs scraped from YouTube. “Qn” (n = 2, . . . , 5) refers to the
n-th quintile by confidence. For SI-SDRi, higher values are better.

5.2. Results

In Table 1, we show the performance of each primitive
on the MUSDB test set. We find that the best-performing
primitive is repetition. The combination of all 4 primitives
(“Prim. clustering”) is 0.4 dB better than repetition alone.

We now test whether the confidence measure is predictive
of separation quality. We split each track in the MUSDB
training set into 30 second mixture segments and performed
primitive clustering on each segment. For each segment, we
applied our confidence measure and computed true separa-
tion performance with SI-SDRi. Fig. 2 and 3 show a strong
relationship between confidence and SI-SDRi.

Next, we consider whether using the confidence measure to
create a curriculum has an impact on the performance of a
bootstrapped model. In Fig. 3, we show the performance
of a model bootstrapped from curriculum created from esti-
mates with varying confidence. We see that the higher the
confidence we have in the estimates used to train a model,
the better the performance of the model, to a point. The last
quintile has a dip in performance, which we hypothesize is
due to the lower diversity of songs in that subset.

In Table 1, we show the results of other training condi-
tions. We find that including additional unlabeled data from
YouTube improves performance by 0.2 dB. Using the con-
fidence measure to exclude the bottom quintile from the

Figure 4. Relationship between confidence measure and actual per-
formance for music mixtures, using the bootstrapped deep model
to separate each mixture. The confidence measure is calculated
using the deep clustering head’s output, but the separation estimate
is produced by the separation head.

curriculum further improves performance by 0.1 dB. All
bootstrapped models outperform the primitive clustering
labeller. The separation quality of a deep model can be
predicted by applying our confidence measure to the deep
clustering output head, as is illustrated by the strong positive
correlation in Fig. 4. This lets us train a second deep model,
using the first deep model as the labeller. The second trained
model results in even further improvement to 7.7 dB, 0.9
dB better than the primitive clustering labeller.

We finally experiment with using the best bootstrapped
model as an initialization for training with ground truth iso-
lated sources. We compare these to models that are trained
from scratch in Table 1. With very little data – the MUSDB
validation set of 14 songs – trained for only 800 iterations,
bootstrap initialization leads to a boost in performance to
8.5 dB, 5.5 dB higher than a model trained from scratch for
800 iterations. This continues to hold for more iterations
more data, though the gap decreases to 0.4 dB.

6. Conclusion
We have presented a method for learning to separate sounds
directly from mixtures without ground truth via primitive
auditory grouping principles. First, a labeller is applied to a
large set of mixtures for which we do not have ground truth.
Then, a teacher uses the confidence measure to construct a
curriculum. Finally, a student learns from the curriculum.
The student network can outperform the primitive labeller
by a significant margin. The process is then repeated using
the bootstrapped model as the labeller, as the confidence
measure can be used for any separation algorithm that is
based on clustering, resulting in further improvement. This
opens the door to deep separation models that can continu-
ously learn in the wild via bootstrapping.
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Stöter, F.-R., Liutkus, A., and Ito, N. The 2018 signal sepa-
ration evaluation campaign. In International Conference
on Latent Variable Analysis and Signal Separation, pp.
293–305. Springer, 2018.

Tzinis, E., Venkataramani, S., and Smaragdis, P. Unsu-
pervised deep clustering for source separation: Direct
learning from mixtures using spatial information. In Proc.
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 81–85, May 2019.

Wang, D. and Brown, G. J. (eds.). Computational Auditory
Scene Analysis: Principles, Algorithms, and Applications.
Wiley-IEEE Press, 2006.

Wang, Z.-Q., Le Roux, J., and Hershey, J. R. Alternative
objective functions for deep clustering. In Proc. IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP), April 2018.


