
Improved Score Following for Acoustic Performances

Bryan Pardo, William Birmingham
Department of Electrical Engineering and Computer Science, University of Michigan

email: bryanp@umich.edu

Abstract
This paper examines the standard string-matching

approach to automated score following of an acoustic
performance, looking at limitations imposed by both
the score representation used and the matching
approach. The approach is then extended through the
incorporation of duration information and match-
scores based on a model of transcriber error. The
resulting score follower promises to allow computer-
based accompaniment to follow acoustic
performances in situations where earlier systems
would fail.

1 Introduction
Automated musical accompaniment that reacts

naturally to the human performer is a long-standing
goal of a number of computer-music researchers. The
ideal is to create a peer musician that can be
integrated into an ensemble of human players with
minimal need for the humans to adjust their
interaction style to accommodate the computer
performer. Algorithms that match a score to a human
performance are essential for an automated
accompanist that reacts appropriately during
performance. Systems that perform this function are
called score followers. Figure 1 outlines the basic
steps in score following. Black arrows illustrate steps
commonly performed by score followers. Gray
arrows show steps performed by outside agents.

Pitch Duration (beats)
 G4 1.5
 A4 .5
 B4 1
 B4 1

Written Score Interpretation

TranscriptionTranscription

Score
Representation Performance

Representation

Mapping

Audio

Pitch Duration (secs)
 G4 .3
 D5 .05
 A4 .1
 C4 .2
 B4 .3

Figure 1. Basic Steps in Score Following

Score-following research, with the exception of

recent work by Grubb and Dannenberg (1997) has
concentrated on using string-matching techniques to
solve the problem. Unfortunately, such techniques, as
currently applied, do not take into account either
timing information (rhythm) or transcription error.
This paper improves the standard string-matching
approach through the incorporation of duration
information and explicit modeling of transcriber
error.

2 String-match Score Following
A number of researchers (Dannenberg 1984;

Dannenberg and Mont-Reynaud 1987; Dannenberg
and Mukanio 1988; Puckette and Lippe 1992; Large
1993; Puckette 1995; Desain, Honing et al. 1997;
Pardo and Birmingham 2001) have built score
followers that assume a score representation where
the score is represented as an untimed sequence of
pitches from a finite alphabet, such as the keys on a
piano, or MIDI pitch numbers. The lower left portion
of Figure 1 contains an example (omitting the
duration information). They further assume a
transcription of the performance using a similar
alphabet of pitches, such as is shown in the lower
right-hand corner of the figure. Given this, the
problem is that of finding the best alignment between
two sequences of symbols from the same alphabet.

String matchers find the best alignment between
string A and string B by finding the lowest cost
transformation of A into B in terms of operations
(insertion or deletion of characters). Such matchers
are all based on similar techniques and are examples
of the “classic” score following approach.

Dynamic-programming based implementations
that search for a good alignment of two strings have
been used for over 30 years to align gene sequences
based on a common ancestor (Needleman and
Wunsch 1970), and have also been used in score
following by such researchers as by researchers as
Dannenberg and Puckette. We now describe a
canonical matcher of this kind.

Construct a matrix AlignScore, where
AlignScore(i,j) is the score of the best alignment
between the initial segment a1 through ai of A and the
initial segment b1 through bj of B.

Copyright 2002. Bryan Pardo, William Birmingham
The process is initialized by setting

AlignScore(0,0) = 0. Thereafter, the elements of the
matrix are filled in using the following equation.

(1, 1) (,)

(,) max (1,) ()
(, 1) ()

i j

j

i

AlignScore i j matchScore a b
AlignScore i j AlignScore i j skipPenalty b

AlignScore i j skipPenalty a

− − +
= − −
 − −

 The top line in this equation gives the reward

assigned in the score matrix for calling (ai , bj) a
match. The middle line calculates the penalty for
skipping bj and the lowest finds the penalty for
skipping ai.

Define the matchScore as follows.
2, if

(,)
2, otherwise

matchScore
α β

α β
=

= −

The penalty for skipping an element of either
sequence is given by

() 1skipPenalty α =

As AlignScore is filled in, another table must be
kept, keeping track of the parent used to fill in each
cell (i,j). In many cases, it may be that more than one
of the parents of cell (i,j) gives the maximum value.
In this case, all parents may be noted (although, in
practice, researchers have noted only a single parent).
Once this is done, the best-scoring alignment(s) may
be read by starting at the final cell in the matrix and
tracing backwards through the series of parents used
to generate the score.

For real-time score following, the score sequence
is known in advance. This means the number of
columns in the table is fixed. Since each cell in the
array is filled in using the values of three previously
filled in cells, each row may be filled in using a fixed
number of steps. The time to fill in the table is linear
with respect to the length of the performance, so this
method presents no theoretical limit on the ability of
a system follow a score in real-time.

Table 1. Alignment Matrix

Score

Perform.

G A B B
 0 -1 -2 -3 -4

G -1 2 1 0 -1

D -2 1 0 -1 -2

A -3 0 3 2 -1

C -4 -1 2 1 0

B -5 -2 1 4 3

The AlignScore matrix for the performance and

score from Figure 1 is shown in Table 1. Score
elements identify columns. Performance elements
identify rows. Arrows show the parent(s) of each
element. In this table, a vertical arrow indicates a skip

of an element in the performance sequence, a
horizontal arrow is a skip of a score element, and a
diagonal arrow indicates a match between the two.
Cells along the maximal-scoring alignment path(s)
are shown in boldface with arrows marking the path.
The table shows the following four maximal-scoring
alignments between performance and score.

SCORE: G-A-BB G-A-BB G-ABB G-AB-B
PERF: GDACB- GDAC-B GDACB GDA-CB

Here, matches are aligned vertically. A skip of a
performance element is indicated by a – in the score.
A skip of a score element is indicated by a – in the
performance.

Of the four alignments, the third is interesting
because it shows the matcher aligns a C in the
performance to a B in the score. This is a result of the
interplay between the skip penalty and the score for a
bad match. Varying the scoreMatch, skipPenalty
functions and the order in which the array is filled
allows this simple matcher to emulate the function of
both the Dannenberg (84) and Puckette (92)
matchers.

3 Modeling Transcription Error
The score matcher described in the previous

section has a simplistic matchScore function, giving
two points if ai is an exact match of bj and subtracting
two if they are at all different. While this may be
adequate, in many cases, for comparing a MIDI
sequence to a score, it is too simple a model when
comparing a note sequence transcribed from audio
using a pitch tracker. Octave displacement, tracking a
strong partial, and half step errors due to pitch
quantization are all common occurrences. Such errors
can be handled gracefully if a probability distribution
over the set of possible observations (the note
reported by a pitch tracker), given a state (the note
played by the performer), is maintained. It would be
good to have a matchScore function that could take
this kind of error into account.

The dynamic-programming algorithm introduced
by Gotoh (1982) as described in Durbin, Eddy et al.
(1998) finds an optimal global alignment between
two sequences, A and B, taking into account how
likely it is that any given element in sequence A is
related to sequence B. We adapt Gotoh’s approach to
the problem of modeling transcription error.

Here is a summary of our notation. Let there be
two distinct, but identical alphabets, Ascore and Atrans.
They might contain, for example, the 88 pitches
available on a piano.

Assume every element, e, of each alphabet occurs
independently with some known prior probability,
P(e). For Ascore, P(escore) may be estimated by the
proportion of times escore occurs in a representative
corpus of scores. This is useful domain knowledge.
For example, music for a baritone singer will not
have pitches three octaves above middle C. For Atrans,

P(etrans) for each etrans may be estimated from a
representative corpus of transcriptions. Given this,
the prior probability of a random co-occurrence of
escore and etrans is given by

)()()|,(transscoretransscore ePePrandomeeP =

Of course, it may be that escore and etrans occur

together because the performer read pitch escore in the
score, played it, and the transcriber returned etrans as
output. In this case, we call escore and etrans a match
and the match probability for them may be estimated
as follows.

A representative corpus of scores is performed on
the appropriate instrument and recorded. These
recordings are then hand-transcribed. The hand
transcriptions are presumed to report the correct
pitch. The output of the pitch tracker may then be
compared to the hand transcription. From this, one
finds the number of times the pitch tracker labeled a
segment as pitch j, while the human labeled it as pitch
i. The human is presumed always correct. Letting i be
escore and j be etrans, this gives us an estimator for the
match probability of escore and etrans as follows.

)|()|,(transscoretransscore eePmatcheeP =

The match score for escore and etrans is the match

probability divided by the probability of random co-
occurrence, and then taking the log of the resulting
value.

=

)|,(
)|,(log

),(

randomeeP
matcheeP

eematchScore

transscore

transscore

transscore

One nice feature of the log ratio is that when the

probability of a match is below that of a random co-
occurrence, the value is negative. Similarly, the value
is positive when a match is more likely than random
chance. This matchScore function is applied to the
score matcher described in the previous section,
replacing the matchScore function in that section.

In practice, the values for matchScore are pre-
computed and stored in an array where the element i,j
represents the match score for ith note in the score
alphabet to the jth note in the transcription alphabet.

4 Duration Based Skip Penalties
The previous section outlined how to improve

classic score matching through explicit modeling of
transcription error. Another improvement is the use
of timing information in both the score and the
transcription. A simple change to the skipPenalty
takes the relative durations of pitches into account
and greatly reduces the number of maximal-scoring
paths.

| |

1

()()
()

i
i A

j
j

length askipPenalty a k
length a

=

=

∑

Here, the skipPenalty is now a function of the
length of a note (however length is defined) divided
by the total length of the performance (or score). In
this formula, k is a constant that can be used to adjust
the relative penalty involved with skipping an
element in the sequence. There is no requirement that
k be the same for both transcription and score and it
may be that there should be a much greater penalty
for skipping one rather than the other.

5 An Example
To illustrate the utility of the improvements to

string-match based score following described in this
paper, consider the example of following a
performance of Alouette performed on alto
saxophone.

In the interest of grounding this example in
commonly available current technology, all
transcription was performed in a quiet office
environment using MicNotator, a transcription
program included with the music notation program
Finale 2002. All recordings used a Sure SM57
dynamic microphone connected directly to a
Soundblaster Platinum card on a Windows PC.

5.1 Calculating Match Scores
In order to create the matchScore table, we

calculated P(escore,etrans | match) for an alto
saxophonist over two octaves, starting at the lowest C
on the instrument (concert E flat). The saxophonist
played a variety of chromatic scales and chord
arpeggios for a total of 29 instances of each pitch in
the range. Notes were connected, separated, tongued
and un-tongued in roughly equal proportions and
played at tempos from 30 to 240 notes per minute.
Vibrato was discouraged, although some did occur.
The resulting count of associations between
performed pitch and transcribed pitch was used to
estimate both P(escore,etrans | match) for all
combinations of transcription and score pitches and
also, the prior probability of occurrence, P(etrans), for
all transcription pitches.

Since the score was known before-hand to be
Alouette, P(escore) = 0 for any escore not in Alouette.
This causes problems for the calculation of the
matchScore, since the divisor would be 0. We solve
this by imposing a minimal value of P(escore) = 0.01
and re-normalizing probabilities accordingly. Figure
2 contains the resulting matchScore matrix. Here,
darker squares indicate higher matchScore values.

Were the matchScore function from Section 2
illustrated in a similar manner, the only darkened
squares would be along the diagonal. This matrix,
however, shows a number of dark squares off the
diagonal. These are places where the transcriber is

likely to make an error. The most common error is
that of transcribing certain pitches off by a half-step.
Such predictable transcriber errors are given nearly as
much weight as correct transcriptions and allow the
system to recover from imperfect transcriptions
whose errors are similar to ones made when
generating the matchScore table.

SC
O

R
E

AL
PH

AB
ET

TRANSCRIPTION ALPHABET
E1 A1 D2 G2 C3

E1

A1

D2

G2

C3

Figure 2. matchScore values

5.3 The Alignment
Figure 3 shows a score for Alouette (lower staff)

and a transcription of a saxophone performance of the
score (upper staff) as aligned by a string-matcher
based on the techniques described in this paper. The
performance did not contain any of the
embellishments shown in the transcription. These are
entirely due to transcriber error. Further, the
assignment of the transcription to written notation in
measures is entirely for ease of viewing. The score
and transcription representations used by the software
are those shown in the lower portion of Figure 1.

Figure 3. Alouette transcription and score

 We stated previously that string-based matchers
may return a number of equally high-scoring
alignments, depending on scoring functions. Alouette
is an example of this. A matcher using the fixed
matchScore and skipPenalty functions from Section 2
is forced to make an arbitrary choice between equally
high-scoring alignments nine times in the course of
following this passage. The addition of a duration-
based skipPenalty and a matchScore function based
on transcriber error reduces the number of choices to
three. A policy of choosing the latest-occuring match
for each score note narrows the field to the
transcription alignment shown in the figure.

6 Conclusions
We have described a method of incorporating a

model of transcriber error and timing information in
the standard string-matching approach to score
following. Our initial results show this is a good
approach that can significantly improve the
performance of a score follower based on string-
matching techniques. Such a score follower should
allow a more natural interaction with the human
performer than has been possible with earlier
techniques.

7 Acknowledgments
We gratefully acknowledge the support of the

National Science Foundation under grant IIS-
0085945, and The University of Michigan College of
Engineering seed grant to the MusEn project. The
opinions in this paper are solely those of the authors
and do not necessarily reflect the opinions of the
funding agencies.

References
Dannenberg, R. (1984). An On-Line Algorithm for Real-

Time Accompaniment. International Computer Music
Conference, International Computer Music Association.

Dannenberg, R. and B. Mont-Reynaud (1987). Following
an Improvisation in Real Time. International Computer
Music Conference.

Dannenberg, R. B. and H. Mukanio (1988). New
Techniques for Enhanced Quality of Computer
Accompaniment. Proceedings of the International
Computer Music Conference, Ann Arbor, MI.

Desain, P., H. Honing, et al. (1997). Robust Score-
Performance Matching: Taking Advantage of Structural
Information. International Computer Music
Conference.

Durbin, R., S. Eddy, et al. (1998). Biological Sequence
Analysis, Probabilistic models of proteins and nucleic
acids. Cambridge, U.K., Cambridge University Press.

Gotoh, O. (1982). "An improved algorithm for matching
biological sequences." Journal of Molecular Biology
162: 705-708.

Grubb, L. and R. Dannenberg (1997). A Stochastic Method
of Tracking a Vocal Performer. International Computer
Music Conference.

Large, E. W. (1993). "Dynamic Programming for the
Analysis of Serial Behaviors." Behavior Research
Methods, Instruments and Computers 25(2): 238-241.

Needleman, S. B. and C. D. Wunsch (1970). "A general
method applicable to the search for similarities in the
amino acid sequence of two proteins." Journal of
Molecular Biology 48: 443-453.

Pardo, B. and W. P. Birmingham (2001). Following a
musical performance from a partially specified score.
Multimedia Technology Applications Conference,
Irvine, CA.

Puckette, M. (1995). Score following using the sung voice.
International Computer Music Conference.

Puckette, M. and C. Lippe (1992). Score Following In
Practice. International Computer Music Conference,
International Computer Music Association.

	Abstract
	1Introduction
	2String-match Score Following
	3Modeling Transcription Error
	4Duration Based Skip Penalties
	5An Example
	5.1Calculating Match Scores
	5.3The Alignment

	6Conclusions
	7Acknowledgments
	References

