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Abstract 
This paper examines the standard string-matching 

approach to automated score following of an acoustic 
performance, looking at limitations imposed by both 
the score representation used and the matching 
approach. The approach is then extended through the 
incorporation of duration information and match-
scores based on a model of transcriber error. The 
resulting score follower promises to allow computer-
based accompaniment to follow acoustic 
performances in situations where earlier systems 
would fail. 

1 Introduction 
Automated musical accompaniment that reacts 

naturally to the human performer is a long-standing 
goal of a number of computer-music researchers. The 
ideal is to create a peer musician that can be 
integrated into an ensemble of human players with 
minimal need for the humans to adjust their 
interaction style to accommodate the computer 
performer. Algorithms that match a score to a human 
performance are essential for an automated 
accompanist that reacts appropriately during 
performance. Systems that perform this function are 
called score followers. Figure 1 outlines the basic 
steps in score following.  Black arrows illustrate steps 
commonly performed by score followers. Gray 
arrows show steps performed by outside agents. 
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Figure 1. Basic Steps in Score Following 

Score-following research, with the exception of 

recent work by Grubb and Dannenberg (1997) has 
concentrated on using string-matching techniques to 
solve the problem. Unfortunately, such techniques, as 
currently applied, do not take into account either 
timing information (rhythm) or transcription error. 
This paper improves the standard string-matching 
approach through the incorporation of duration 
information and explicit modeling of transcriber 
error. 

2 String-match Score Following 
A number of researchers (Dannenberg 1984; 

Dannenberg and Mont-Reynaud 1987; Dannenberg 
and Mukanio 1988; Puckette and Lippe 1992; Large 
1993; Puckette 1995; Desain, Honing et al. 1997; 
Pardo and Birmingham 2001) have built score 
followers that assume a score representation where 
the score is represented as an untimed sequence of 
pitches from a finite alphabet, such as the keys on a 
piano, or MIDI pitch numbers. The lower left portion 
of Figure 1 contains an example (omitting the 
duration information). They further assume a 
transcription of the performance using a similar 
alphabet of pitches, such as is shown in the lower 
right-hand corner of the figure. Given this, the 
problem is that of finding the best alignment between 
two sequences of symbols from the same alphabet.  

String matchers find the best alignment between 
string A and string B by finding the lowest cost 
transformation of A into B in terms of operations 
(insertion or deletion of characters). Such matchers 
are all based on similar techniques and are examples 
of the “classic” score following approach. 

Dynamic-programming based implementations 
that search for a good alignment of two strings have 
been used for over 30 years to align gene sequences 
based on a common ancestor (Needleman and 
Wunsch 1970), and have also been used in score 
following by such researchers as by researchers as 
Dannenberg and Puckette. We now describe a 
canonical matcher of this kind. 

Construct a matrix AlignScore, where 
AlignScore(i,j) is the score of the best alignment 
between the initial segment a1 through ai of A and the 
initial segment b1 through bj of B.  
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The process is initialized by setting 

AlignScore(0,0) = 0. Thereafter, the elements of the 
matrix are filled in using the following equation. 
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 The top line in this equation gives the reward 

assigned in the score matrix for calling (ai , bj) a 
match. The middle line calculates the penalty for 
skipping bj and the lowest finds the penalty for 
skipping ai. 

Define the matchScore as follows. 
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The penalty for skipping an element of either 
sequence is given by 

( ) 1skipPenalty α =  
 

As AlignScore is filled in, another table must be 
kept, keeping track of the parent used to fill in each 
cell (i,j). In many cases, it may be that more than one 
of the parents of cell (i,j)  gives the maximum value. 
In this case, all parents may be noted (although, in 
practice, researchers have noted only a single parent). 
Once this is done, the best-scoring alignment(s) may 
be read by starting at the final cell in the matrix and 
tracing backwards through the series of parents used 
to generate the score. 

For real-time score following, the score sequence 
is known in advance. This means the number of 
columns in the table is fixed. Since each cell in the 
array is filled in using the values of three previously 
filled in cells, each row may be filled in using a fixed 
number of steps. The time to fill in the table is linear 
with respect to the length of the performance, so this 
method presents no theoretical limit on the ability of 
a system follow a score in real-time. 

 
Table 1. Alignment Matrix 

Score 
 
Perform. 

 

G A B B
 0 -1 -2 -3 -4 

G -1 2 1 0 -1 

D -2 1 0 -1 -2 

A -3 0 3 2 -1 

C -4 -1 2 1 0 

B -5 -2 1 4 3
 
The AlignScore matrix for the performance and 

score from Figure 1 is shown in Table 1. Score 
elements identify columns. Performance elements 
identify rows. Arrows show the parent(s) of each 
element. In this table, a vertical arrow indicates a skip 

of an element in the performance sequence, a 
horizontal arrow is a skip of a score element, and a 
diagonal arrow indicates a match between the two. 
Cells along the maximal-scoring alignment path(s) 
are shown in boldface with arrows marking the path. 
The table shows the following four maximal-scoring 
alignments between performance and score. 

 
SCORE: G-A-BB   G-A-BB   G-ABB   G-AB-B 
PERF:  GDACB-   GDAC-B   GDACB   GDA-CB 
 

Here, matches are aligned vertically. A skip of a 
performance element is indicated by a – in the score. 
A skip of a score element is indicated by a – in the 
performance.  

Of the four alignments, the third is interesting 
because it shows the matcher aligns a C in the 
performance to a B in the score. This is a result of the 
interplay between the skip penalty and the score for a 
bad match. Varying the scoreMatch, skipPenalty 
functions and the order in which the array is filled 
allows this simple matcher to emulate the function of 
both the Dannenberg (84) and Puckette (92) 
matchers. 

3 Modeling Transcription Error 
The score matcher described in the previous 

section has a simplistic matchScore function, giving 
two points if ai is an exact match of bj and subtracting 
two if they are at all different. While this may be 
adequate, in many cases, for comparing a MIDI 
sequence to a score, it is too simple a model when 
comparing a note sequence transcribed from audio 
using a pitch tracker. Octave displacement, tracking a 
strong partial, and half step errors due to pitch 
quantization are all common occurrences. Such errors 
can be handled gracefully if a probability distribution 
over the set of possible observations (the note 
reported by a pitch tracker), given a state (the note 
played by the performer), is maintained. It would be 
good to have a matchScore function that could take 
this kind of error into account.  

The dynamic-programming algorithm introduced 
by Gotoh (1982) as described in Durbin, Eddy et al. 
(1998) finds an optimal global alignment between 
two sequences, A and B, taking into account how 
likely it is that any given element in sequence A is 
related to sequence B. We adapt Gotoh’s approach to 
the problem of modeling transcription error.  

Here is a summary of our notation. Let there be 
two distinct, but identical alphabets, Ascore and Atrans. 
They might contain, for example, the 88 pitches 
available on a piano. 

Assume every element, e, of each alphabet occurs 
independently with some known prior probability, 
P(e). For Ascore, P(escore) may be estimated by the 
proportion of times escore occurs in a representative 
corpus of scores. This is useful domain knowledge. 
For example, music for a baritone singer will not 
have pitches three octaves above middle C. For Atrans, 



P(etrans) for each etrans may be estimated from a 
representative corpus of transcriptions. Given this, 
the prior probability of a random co-occurrence of 
escore and etrans is given by 
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Of course, it may be that escore and etrans occur 

together because the performer read pitch escore in the 
score, played it, and the transcriber returned etrans as 
output. In this case, we call escore and etrans a match 
and the match probability for them may be estimated 
as follows. 

A representative corpus of scores is performed on 
the appropriate instrument and recorded. These 
recordings are then hand-transcribed. The hand 
transcriptions are presumed to report the correct 
pitch. The output of the pitch tracker may then be 
compared to the hand transcription.  From this, one 
finds the number of times the pitch tracker labeled a 
segment as pitch j, while the human labeled it as pitch 
i. The human is presumed always correct. Letting i be 
escore and j be etrans, this gives us an estimator for the 
match  probability of escore and etrans as follows. 
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The match score for escore and etrans is the match 

probability divided by the probability of random co-
occurrence, and then taking the log of the resulting 
value. 
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One nice feature of the log ratio is that when the 

probability of a match is below that of a random co-
occurrence, the value is negative. Similarly, the value 
is positive when a match is more likely than random 
chance. This matchScore function is applied to the 
score matcher described in the previous section, 
replacing the matchScore function in that section. 

In practice, the values for matchScore are pre-
computed and stored in an array where the element i,j 
represents the match score for ith note in the score 
alphabet to the jth note in the transcription alphabet.  

4 Duration Based Skip Penalties 
The previous section outlined how to improve 

classic score matching through explicit modeling of 
transcription error. Another improvement is the use 
of timing information in both the score and the 
transcription. A simple change to the skipPenalty 
takes the relative durations of pitches into account 
and greatly reduces the number of maximal-scoring 
paths.  
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Here, the skipPenalty is now a function of the 
length of a note (however length is defined) divided 
by the total length of the performance (or score). In 
this formula, k is a constant that can be used to adjust 
the relative penalty involved with skipping an 
element in the sequence. There is no requirement that 
k be the same for both transcription and score and it 
may be that there should be a much greater penalty 
for skipping one rather than the other. 

5 An Example  
To illustrate the utility of the improvements to 

string-match based score following described in this 
paper, consider the example of following a 
performance of Alouette performed on alto 
saxophone. 

In the interest of grounding this example in 
commonly available current technology, all 
transcription was performed in a quiet office 
environment using MicNotator, a transcription 
program included with the music notation program 
Finale 2002. All recordings used a Sure SM57 
dynamic microphone connected directly to a 
Soundblaster Platinum card on a Windows PC. 

5.1 Calculating Match Scores  
In order to create the matchScore table, we 

calculated P(escore,etrans | match) for an alto 
saxophonist over two octaves, starting at the lowest C 
on the instrument (concert E flat). The saxophonist 
played a variety of chromatic scales and chord 
arpeggios for a total of 29 instances of each pitch in 
the range. Notes were connected, separated, tongued 
and un-tongued in roughly equal proportions and 
played at tempos from 30 to 240 notes per minute. 
Vibrato was discouraged, although some did occur. 
The resulting count of associations between 
performed pitch and transcribed pitch was used to 
estimate both P(escore,etrans | match) for all 
combinations of transcription and score pitches and 
also, the prior probability of occurrence, P(etrans), for 
all transcription pitches. 

Since the score was known before-hand to be 
Alouette, P(escore) = 0 for any escore not in Alouette. 
This causes problems for the calculation of the 
matchScore, since the divisor would be 0. We solve 
this by imposing a minimal value of P(escore ) = 0.01 
and re-normalizing probabilities accordingly. Figure 
2 contains the resulting matchScore matrix. Here, 
darker squares indicate higher matchScore values. 

Were the matchScore function from Section 2 
illustrated in a similar manner, the only darkened 
squares would be along the diagonal. This matrix, 
however, shows a number of dark squares off the 
diagonal. These are places where the transcriber is 



likely to make an error. The most common error is 
that of transcribing certain pitches off by a half-step. 
Such predictable transcriber errors are given nearly as 
much weight as correct transcriptions and allow the 
system to recover from imperfect transcriptions 
whose errors are similar to ones made when 
generating the matchScore table.  
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Figure 2. matchScore values 

5.3 The Alignment 
Figure 3 shows a score for Alouette (lower staff) 

and a transcription of a saxophone performance of the 
score (upper staff) as aligned by a string-matcher 
based on the techniques described in this paper. The 
performance did not contain any of the 
embellishments shown in the transcription.  These are 
entirely due to transcriber error. Further, the 
assignment of the transcription to written notation in 
measures is entirely for ease of viewing. The score 
and transcription representations used by the software 
are those shown in the lower portion of Figure 1. 
 

 
Figure 3. Alouette transcription and score 

  We stated previously that string-based matchers 
may return a number of equally high-scoring 
alignments, depending on scoring functions. Alouette 
is an example of this. A matcher using the fixed 
matchScore and skipPenalty functions from Section 2 
is forced to make an arbitrary choice between equally 
high-scoring alignments nine times in the course of 
following this passage. The addition of a duration-
based skipPenalty and a matchScore function based 
on transcriber error reduces the number of choices to 
three. A policy of choosing the latest-occuring match 
for each score note narrows the field to the 
transcription alignment shown in the figure. 

6 Conclusions 
We have described a method of incorporating a 

model of transcriber error and timing information in 
the standard string-matching approach to score 
following. Our initial results show this is a good 
approach that can significantly improve the 
performance of a score follower based on string-
matching techniques. Such a score follower should 
allow a more natural interaction with the human 
performer than has been possible with earlier 
techniques.  
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