[tapraids/z8n-jasis/z8n-jasis/zBn00204/8n1315004a | bennicoj | S=25 | 11/14/03 [ 18:33 | Art: 2040 | Input-DCT-msh |

B

Name That Tune: A Pilot Study in Fmdmg a Melody From

a Sung Query

Bryan Pardo and Jonah Shifrin

Department of Electrical Engineering and Computer Science, University of Michigan, 110 ATL, 1101 Beal
Avenue, Ann Arbor, Mi. 48109-2110. E-mail: bryanp&umich.edu

William Birmingham

Math & Computer Science Department, Grove C/ty College—Faculty Box 2655, 100 Campus Drive, Grove

City, PA 16127.

We have created a system for music search and re-
trieval. A user sings a theme from the desired piece of
music. The sung theme (query) is converted into a se-
quence of pitch-intervals and rhythms. This sequence is
compared to musical themes (targets) stored in a data-
base. The top pieces are returned to the user in order of
similarity to the sung theme. We describe, in detail, two
different approaches to measuring similarity between
database themes and the sung query. In the first, queries
are compared to database themes using standard
string-alignment algorithms. Here, similarity between
target and query is determined by edit cost. In the sec-
ond approach, pieces in the database are represented
as hidden Markov models (HMMs). In this approach, the
query is treated as an observation sequence and a target
is judged similar to the query if its HMM has a high
likelihood of generating the query. In this article we
report our approach to the construction of a target da-
tabase of themes, encoding, and transcription of user
queries, and the results of preliminary experimentation
with a set of sung queries. Our experiments show that
while no approach is clearly superior to the other sys-
tem, string matching has a slight advantage. Moreover,
neither approach surpasses human performance.

Introduction

As digital music proliferates, researchers have been in-
vestigating methods to easily and accurately search musical
databases. Query-by-humming (QBH) systems_allow users
to pose queries by singing or humming them. This approach
has two advantages: first, humming or singing is a natural
way to describe the melody of a piece of music; second,
QBH systems search musical content. This second point is
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" in stark contrast to approaches to music retrieval based on

searching music metadata such as search by song title,
genre, and so forth.

Our group has created a system for music search and
retrieval called MuseArt (Birmingham et al., 2002; Shifrin
et al., 2002). In this system, a user sings a query, assumed
to be a theme, hook, or riff from the piece of music the user
wants to find. The query is sung into audio recording
software, transcribed, and then matched to a database of
musical themes. The matcher returns a song list, ranked by
similarity, which is brought up in Apple’s iTunes audio
playback software. The user may then click on the songs in
the list to play the desired piece of music. Figure 1 gives an
overview of the system’s operation. In this article, we detail
the matching processing.

Related Work

Music information retrieval aimed at returning the best
match from a database for a query has been investigated by
a number of researchers. A good source for finding articles
on the topic is the music-ir Web site at www.music-ir.org.
The dominant query matching techniques investigated in the
literature have been n-grams and simple dynamic-program-
ming-based string matching.

Pickens (2000) compared language models to n-grams
by encoding subportions of database targets in the language
model format and as various length n-grams and passing
those to the search engine as queries. He found n-grams
superior, however results from n-grams are only good when
the full content of a piece in the database is passed in as a
query. Downie and Nelson (2000) performed a systematic
investigation of the best length n-gram to use, given queries
and targets encoded as sequences of pitch intervals. Results
were evaluated using normalized precision and recall mea-
sures. The best performance for simulated error-prone que-
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FIG. 1. System diagram.

ries was achieved using length four n-grams, as it provided
the best fault tolerance for their simulated errors.

Uitenbogerd and Zobel (1999) examined the effect of
encoding queries and targets using simple relative pitch
contour, where intervals are categorized as ascending (U),
descending (D), or the same (S), vs. encoding melodies as
pitch intervals, or as modulo n pitch intervals. They also
compare two kinds of n-gram measures to local string
alignment with a fixed match score. Their results show pitch
contour is the worst encoding. Modulo n and exact pitch
intervals were both better and showed similar performance
to each other. Local string alignment was found to beat the
performance of n-gram based matching.

Query-by-humming music has been investigated by sev-
eral research groups (Clarisse et al., 2002; Clausen et al.,
2002; Doaisamy & Ruger, 2002; Hoos et al., 2001; McNab
et al., 1996) in recent years, also with an emphasis on
n-gram and string-matching techniques. McNab et al.
(1996) describe approximate string-matching techniques
and dynamic programming using a simple match score
function. They analyze how many notes are required to
uniquely identify melodies in their database, given different
encoding schemes and exact vs. approximate matching.
They do not present any results on system performance
when presented with real sung queries, however.

A number of systems, such as those of Kornstadt (1998)
and Tseng (1999), have focused on sound input, and thus
are particularly relevant to our work. These systems gener-
ally take as input a melody that is “hummed” or played on
some type of musical input device, such as a MIDI key-
board. The hummed melodies are converted to text strings,
usually with a representation of intervallic distance or sim-
ply relative pitch contour.

Some researchers have investigated stochastic methods,
particularly the use of Markov models for music retrieval,
but do not use hidden Markov models (Rabiner & Juang,
1993), forcing the system to require exact matches between
query and theme (Durey & Clements, 2001). This is a
problem, since hummed input is usually fraught with a
number of distortions inherent in the way that humans
remember and perform melodies. Such distortions include a
tendency to raise or lower the pitch of various notes, a
tendency to “go flat” over time, losing the beat, or humming
“off key.” Unfortunately, these distortions plague even the
finest musicians (Meek & Birmingham, 2002; Raphael,
1999).

To account for these distortions, the query must be
treated as imprecise. The system described here assumes
matching based solely on timing and pitch contour. The
representation of pitch and timing is robust to differences in
the tempo and transposition of the query, as compared with
systems such as that developed by Durey (Durey & Clem-
ents, 2001), which relies on the target and query being
presented at the same tempo and in the same pitch range.

We match queries to musical themes in one of two ways.
The first is with standard string-matching techniques that
have been adjusted to allow for errors in the query and
probabilistic matching of elements between the query and
target. The other method of matching we use is the hidden
Markov model (HMM), which is designed to handle dis-
crepancies (such as singer error) between expected and
observed sequences. The query is treated as an observation
sequence and a theme is judged similar to the query if the
associated HMM has a high likelihood of generating the
query. With both methods, pieces in the database are re-
turned to the user in order, ranked by similarity. A piece of
music is deemed a good match if at least one theme from
that piece is similar to the query.

‘ Representaﬂon of a Query

A query is a melodic fragment sung by a single individ-
ual. The singer is asked to select one syllable, such as “ta”
or “la,” and use it consistently during the query. The con-
sistent use of a single consonant-vowel pairing lessens
pitch-tracker error by providing a clear onset point for each
note, as well as reducing error caused by vocalic variation.

A query is recorded as a .wav file and is transcribed into
a MIDI-like representation using a pitch-tracking system
written by our research group, based on an enhanced auto-
correlation algorithm (Tolonen & Karjalainen, 2000).

MIDI is to a digital audio recording of music as ASCII is
to a bitmap image of a page of text. Note events in MIDI are
specified by three integer values in the range O to 127. The
first value describes the event type (e.g., “note off” and
“note on”). The next value specifies which key on a musical
keyboard was depressed. Generally, middle “C” gets the
number 60. The final integer specifies the velocity of a note
(used as an indication of loudness).
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FIG. 2. A transcription of a sung query.

Pitch tracking can be thought of as the equivalent of
character recognition in the text world. In our system, the
pitch tracker divides the input file into 10 millisecond
frames and tracks pitch on a frame-by-frame basis. Contig-
uous regions of at least five frames (50 millisecond) whose
pitch varies less than one musical half step are called notes.
The pitch of each note is the average of the pitches of the
frames within the note. The pitch tracker returns a sequence
of notes, each of which is defined by pitch, onset time, and
duration. Pitches are quantized to the nearest musical half
step and represented as MIDI pitch numbers. We define the
following.

e pitchinterval, is the difference in pitch between note n and
note n + 1.

o The inter onset interval (I0],) is the difference between the
onset of notes n and n + 1.

o [Olratio,, is IOL /IOI, . ,. For the final transition, IOIratio = 1.

¢ A note transition between note n and note n + 1 is described
by the duple (pitchinterval, IOIratio).

Figure 2 shows a time-amplitude representation of a sung
query, along with example pitch-tracker output and a se-
quence of values derived from the MIDI representation (the
pitchinterval, 101, and [Olratio values). Time values in the
figure are rounded to the nearest 100 milliseconds.

We represent a query as a sequence of note transitions.
Note transitions are useful because they are robust in the
face of transposition and tempo changes, as we explain in
the Appendix. Note that the note transition representation
does not allow direct representation of rests, since it does
not make sense to discuss the pitch interval between a note
and a rest. Instead, rests simply increase the /Ol between
two note onsets.

String-Alignment Methods

A string is any sequence of characters drawn from an
alphabet. String matchers find the best alignment between

string A and string B by finding the lowest cost (or, equiv-
alently, highest reward) transformation of A into B in terms
of operations (matching or skipping characters). Dynamic-
programming based implementations that search for a good
alignment of two strings have been used for over 30 years to
align gene sequences based on a common ancestor (Needle-
man & Wunsch, 1970), and have also been used in musical
score following Danneberg (1984), Puckette and Lippe
(1992), and Pardo and Birmingham (2001; 2002) and query
matching (Hu et al., 2002).

The Global Alignment Algorithm

The Global alignment algorithm is a typical string align-
ment, or string-matching, algorithm. Denote the length of a
string, S, as |S]. Let there be the query string, O, and the
target string, 7. Assume they are both composed of charac-
ters drawn from the same alphabet. Construct a matrix
AlignScore with |Q| + 1 rows and |7| + 1 columns where
AlignScore(i,j) is the score of the best alignment between
the initial segment g, through g, of Q and the initial segment
t, through #; of T.

The process is initialized by setting AlignScore(0,0) = 0.
Thereafter, the elements of the matrix are filled in using
Equation 1. The top line in this equation gives the reward
assigned in the score matrix for calling (g,) a match. The
middle line calculates the penalty for skipping target ele-
ment £; and the lowest line finds the penalty for skipping
query element g;. Note, when in column O or row 0 one of
the lines in the equation is undefined. We treat undefined
values as negative infinity.

AlignScore(i, j)

AlignScore(i — 1, j) — skipPenaltyTarge(t;)
AlignScore(i, j — 1) — skipPenaltyQuery(q;)

(D

. AlignScore(i — 1, j — 1) + matchScore(g;, t;)
= max

We define a simple example matchScore function as
follows:

2, ifg =1

matchScore(q;, ;) ={ —2. otherwise 2

Let the penalty for skipping an element of either se-
quence be given by:

skipPenaltyQuery(q)) = 1
skipPenaltyTarget(t) =1 3)

As AlignScore is filled in, another table may be kept,
keeping track of the parent used to fill in each cell (i,j). In
many cases, it may be that more than one of the parents of
cell (i,j) gives the maximum value. In this case, all parents
may be noted (although, in practice, researchers have noted
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FIG. 3. Alignment matrix.

only a single parent). Once this is done, the best-scoring
alignment(s) may be read by starting at the final cell in the
matrix and tracing backwards through the series of parents
used to generate the score.

An AlignScore matrix for query “G D A C B” and target
“G A B B” is shown in Figure 3. Values for the matrix were
calculated using Equations 1--3. Target elements identify
columns. Query elements identify rows. Arrows show the
parent(s) of each element along a maximal-scoring align-
ment. Where an element has multiple parents that maximize
Equation 1, arrows to all parents are shown.

In the figure, a vertical arrow indicates a skip of an
element in the query sequence, a horizontal arrow is a skip
of a target element, and a diagonal arrow indicates a match
between the two. Cells along the maximal-scoring align-
ment path(s) are shown in boldface with arrows marking the
path. The score for the top global alignment is given by the
value in the lower, right-hand corner of the table. In this
case, the score is 3. The table shows the following four
maximal-scoring alignments between query and target.
Here, matches are aligned vertically and a dash indicates a
skip.

TARGET: G-A-BB G-A-BB G-ABB G-AB-B
QUERY: GDACB- GDAC-B GDACB GDA-CB

Modeling Transcription and Singing Error

The string matcher described previously has a simplistic
matchScore function, giving two points if ¢; is an exact
match of #; and subtracting two if they are at all different.
This is too simple a model when comparing a note sequence
transcribed from audio using a pitch tracker to a target note
sequence (a theme). Octave displacement, tracking a strong
partial, and half step errors due to pitch quantization are all
common occurrences (Sterian, 1999). Singers are also prone
to systematic error that can be predicted. Such errors can be
handled gracefully if a probability distribution over the set
of possible observations (the note reported by a pitch

tracker), given a state (the note in the theme), is maintained.
It would be good to have a matchScore function that could
take this kind of error into account.

The dynamic-programming algorithm introduced by
Gotoh (1982) as described in Durbin et al. (1998) finds an
optimal global alignment between two strings, Q and T. It
takes into account the likelihood that any given element in
sequence Q is related to any given element in sequence T.
We adapt Gotoh’s approach to the problem of modeling
transcription error and replace the matchScore function with
the log-odds ratio matchScore given by Equation 4.

P(q, timatch o
(g jlmatc )) @

. matchScore(q,-, tj) = ]Og(m
i b

This function returns a negative value when the proba-
bility of a meaningful match is below that of a random
co-occurrence. Similarly, the value is positive when a mean-
ingful match is more likely than random chance.

Let there be two distinct, but identical alphabets, Aque,y
and A, ... They might contain, for example, the 88 pitches
available on a piano, or a fixed set of {pitchlnterval, IOIra-
tio) duples.

Assume every element, e, of each alphabet occurs inde-
pendently with some known prior probability, P(e). For
Aprger Pleiarge) may be estimated by the proportion of
times e,,,,., OCCurs in a representative corpus of targets.
This is useful domain knowledge. For example, music for a
baritone singer will not contain many pitches three octaves
above middle C. For A,,,,, P(€ ., for each e,,,,, may be
estimated from a representative corpus of transcriptions.

P (erargw equerylr andom) =P (emrget)P (equery) (5)

The prior probability of a random co-occurrence of e,
and e,,,,, is given by Equation 5. Typically, P(€;s,ge0€4uery
random) is calculated using the naive assumption that all
members of A,,,,., have an equal probability of occurrence,
as do all members of A_,,,,. This results in a fixed proba-

bility for all pairings of e,,,,,, and e,,,,, as follows.

v (etarget € Atarget’ equery € Aquery)’ P (erarget’ equerylr andom)

©)

- IAtargetl : |Aquery|

The probability of a match is given by Equation 7. Here,
one must estimate the likelihood of the transcriber reporting
€,4uery When the singer intends e,,,,,,. This probability cap-
tures the combined error introduced by the singer and the
transcription device. We describe our method of estimating
this error here in a later section, entitled “Making Hidden
Markov Models.” For an example of how this was done for
alto saxophone performance, see Pardo and Birmingham
(2002).

4  JOURNAL OF T"HE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 15, 2004



" [tapraidS/z8n-jasis/z8n-jasis/z8n00204/8n1315004a | bennicoj | S=25 | 11/14/03 | 18:33 [ Art: 2040 | Input-DCT-msh |

P (emrgen equerylmatCh) =P (equerylemrget) (7)

Local String Alignment

The Global algorithm generates a score for the best
global alignment between two sequences. This is an appro-
priate approach if one assumes that the likely match sce-
nario is finding two complete copies of the same sequence,
so every element of both sequences must be explained in
terms of a match or a skip. Of course, we cannot be assured
that a person searching for a song will sing the exact theme
in the database. It is more likely that there will be some
significant overlap between the query and theme, but that
each will have a beginning or end portion not covered by the
other. In this case, it is more appropriate to use a local
string-matching algorithm. We chose to use the one given
described in Durbin et al. (1998).

AlignScore(i, j)

0
_ AlignScore(i — 1, j — 1) + matchScore(q;, t;))
= Max) AlignScore(i — 1, ) — skipPenaltyTarget(t;)
AlignScore(i, j — 1) — skipPenaltyQuery(q;)

@®

The Local alignment algorithm replaces Equation 1 with
Equation 8. Once the AlignScore matrix is full, the score of
the best alignment of a subsequence of Q to a subsequence
of T is used to judge the similarity of Q and 7. This is done
by returning the largest value in the AlignScore matrix,
wherever it occurs.

Selecting the Most Likely Target

Let there be a query, Q, and a set of targets, {T,...T,}.
An order may be imposed on the set of targets by running
the same alignment algorithm (Global or Local) between Q
and each target, T,, and then ordering the set by the value
returned, placing higher values before lower. We take this
rank order to be a direct measure of the relative similarity
between a theme and a query. The ith target in the ordered
set is then the ith most like the query. Thus, the first target
is the one most similar to the query.

The computational complexity of finding the most sim-
ilar target to the query depends on the time it takes to
compute the similarity of a single target. In the case of string
- alignment, the number of steps required to find the similar-
ity of a target to the query is linearly related to the size of
the alignment table. This, of course, is just the length of the
target multiplied by the length of the query. If we let N be
the number of targets in the database, and mean(|T]) be the
average length of a target, then the computational complex-
ity of finding the most similar target is given by Equation 9.

. N
StringMatchComplexity = 0| 2. 0| |T}|

i=1

= O(N|Q|mean(|T})) (9)
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FIG. 4. Markov model for a scélar passage.

Targets as Markov Models

A Markov model (MM) models a process that goes
through a sequence of discrete states, such as notes in a
melody. The model is a weighted automaton that consists
of:

o A set of states, S = {s5;, S3 Sz. .. Sp).

e A set of transition probabilities, 7, where each ¢,; in T
represents the probability of a transition from s, to s;.

e A probability distribution, 7, where 77, is the probability the
automaton will begin in state s,.

¢ E, a subset of S containing the legal ending states.

In this model, the probability of transitioning from a
given state to another state is assumed to depend only on the
current state. This is known as the Markov property.

The directed graph in Figure 4 represents a Markov
model of a scalar passage of music. States are note transition
duples, (pitchinterval, IOIratio). Nodes represent states.
Recall that the note transition representation does not allow
direct representation of rests, as all states describe pitch and
rhythm intervals between note onsets.

We assume all states are equally likely to be the start
state. As a default, we currently assume all states are legal
ending states. Directed edges represent transitions. Numer-
ical values by edges indicate transition probabilities. Only
transitions with non-zero probabilities are shown.

Here, we have implicitly assumed that whenever state s
is reached, it is directly observable, with no chance for error.
This is often not a realistic assumption. There are multiple
possible sources of error in generating a query. The singer
may have incorrect recall of the melody he or she is at-
tempting to sing. There may be production errors (e.g.,
cracked notes, poor pitch control). The transcription system
may introduce pitch errors, such as octave displacement, or
timing errors due to the quantization of time. Such errors
can be handled gracefully if a probability distribution over
the set of possible observations (such as note transitions in
a query) given a state (the intended note transition of the
singer) is maintained.

A model that explicitly maintains a probability distribu-
tion over the set of possible observations for each state is
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FIG. 5. Markov model for Alouette fragment.

called a hidden Markov model (HMM). More formally, an
HMM requires two things in addition to that required for a
standard Markov model:

o A set (alphabet) of possible observations, A ;... = {0}, 02,
05, .., 0, }.

e A probability distribution over the set of observations for
each state in S.

In our approach, a query is a sequence of observations
and A, . corresponds directly to A,,,,, for the string
matchers. Each observation is a note-transition duple,
(pitchinterval, IOIratio). Musical themes are represented as
hidden Markov models.

Making Markov Models From MIDI

Our systemn represents musical themes in a database as
HMMs. Each HMM is built automatically from a MIDI file
encoding the theme. The unique duples characterizing the
note transitions found in the MIDI file form the states in the
model. Figure 4 shows a passage with eight note transitions
characterized by four unique duples. Each unique duple is
represented as a state.

Once the states are determined for the model, transition
probabilities between states are computed by calculating
what proportion of the time state a follows state b in the
theme. Often, this results in a large number of deterministic
transitions.

. An example of this is shown in Figure 5, where only a
single state has two possible transitions, one back to itself
and the other on to the next state.

Markov models can be thought of as generative models.
A generative model describes an underlying structure able
to generate the sequence of observed events, called an
observation sequence.

Note that there is not a one-to-one correspondence be-
tween model and observation sequence. A single model
may create a variety of observation sequences, and an
observation sequence may be generated by more than one
model. Recall that our approach defines an observation as a
duple, (pitchInterval, 10Iratic). Given this, the observation
sequence g = {(2,1), (2,1), (2,1)} may be generated by the
HMM in Figure 4 or the HMM in Figure 5.

Researchers (Durey & Clements, 2001; Hoos et al.,
2001) have used Markov models for query matching that
were generated in a manner similar to that described above.
Such systems are vulnerable to query error, for if a single
transition is present in the query that is not present in the
model the model reports a zero probability of having gen-
erated the query. Hoos et al. (2001) have attempted to deal
with this by introducing low-probability transitions into a
Markov model where no note-transitions were observed in
the theme upon which the model was based. This allows
inexact matches between models and queries to return non-
zero probabilities. There is no correlation, however, be-
tween the strength of a low-probability transition and the
likelihood of a particular error. This makes the approach a
blunt instrument that does not take into account specific
errors (such as a singer that regularly confuses perfect fifths
with perfect fourths) that are known to occur. Such errors
are handled well by a hidden Markov model.

Making Hidden Markov Models

To make use of the strengths of a hidden Markov model, |

it is important to model the probability of each observation
0, in the observation alphabet, A ... given a hidden state,
s. The approach described here is also used to estimate
values for the function in Equation 7,

In our system, observations consist of duples {pitchinter-
val, IOIratio). There are 12 musical half steps in an octave.
If one assumes pitch quantized at the half step and that a
singer will jump by no more than an octave between notes,
there are 25 possible pitchinterval values, corresponding to
all possible transitions whose range is no greater than an
octave. We quantize IOlratio to one of five values. We
chose five values, as an earlier study indicated that roughly
five bins were the minimum number that could be used
without compromising performance. This means there are
25 - 5 = 125 possible observations, given a hidden state.
Since hidden states are also characterized by (pitchinterval,
IOlIratio), there are 125 possible hidden states for which
observation probabilities need to be determined. The result-
ing table has 1252, or over 15,000 entries.

We use a typical method to estimate probabilities. A
number of observation, hidden-state pairs are collected and
observed frequencies are used as an estimator for expected
probabilities. Given a state, s, the probability of observation
o0, may be estimated by the count of how often o; is seen in
state s, compared to the total number of times s is encoun-
tered.

, - count(o;, 5) 10
(0l) = ST oumi(o, 5) o

Creating a data set of paired observations and hidden
states from which to estimate over 15,000 probabilities is
daunting. This can be made more tractable by assuming
conditional independence between pitchinterval and IOIra-
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FIG. 6. Error models for a singer.

tio. Were we to represent rhythm as /OI, this might not be
a reasonable assumption, since it is easier to quickly sing a
small pitch interval (such as a semi-tone) than it is to
quickly sing a large one (such as 10 semi-tones). We,
however, represent the rhythm as /Ofratios. There is no
obvious correlation to be drawn between the size of the
current pitch interval and the relative duration of this pitch
interval when compared to the previous pitch interval’s
duration.

Given independence, two separate observation probabil-
ity tables may be created, one for pitchinterval and one for
IOlIratio. The former having 25 - 25 = 625 values, the latter
having 5 + 5 = 25 values. The probability of encountering
any observation duple, given a hidden-state duple, can then
be derived from the two tables using Equation 11.

P(o|s) = P(pitchinterval |pitchinterval,)
X P(IOlratio,|IOIratio,) (11)

Even given the reduced size of the observation probabil-
ity tables allowed by Equation 4, there are observations that
do not occur in the training data. We cannot assume that a
pairing unobserved in the training set will never be observed
in an actual query. Thus, we impose a minimal probability,
P,,., on both observation probability tables. Any probability
falling below P, is set to P, Probabilities are then
normalized so that the sum of all observation probabilities,
given a particular hidden state, is equal to one.

Estimating pitch interval observation probabilities.

Our system uses labels for hidden state pitchlnterval values
that are integers in the range from negative 12 to positive 12.
This corresponds to all musical intervals from a descending
octave through an ascending octave. Our current method of
deriving pitch interval observation probability for a particular
singer is to present the singer with hundreds of examples of
ascending and descending intervals of one octave or less in the
range from the second E below middle C (MIDI key 40) to the
second G above middle C (MIDI key 79). This range was
chosen to approximate the range of pitches commonly encoun-
tered in vocal music, from baritone through soprano voices.

After hearing an interval, the person sings that interval
into a microphone and the result is automatically pitch-
tracked and segmented. The output interval is then com-
pared to the input interval and the resulting pairing used to
update the observation probability table. We do not attempt
to estimate the singer’s vocal range before training and do
not limit the intervals presented to the range the singer is
capable of reproducing. This is because there will be many
instances when a singer will attempt to reproduce something
outside of his or her range and it is important to model what
the singer does when this happens.

Figure 6 shows three views of combined singer-pitch
tracker error on the training set for a particular singer. The
singer in this example is a 22-year-old male, computer
science major with no vocal training. The upper left figure
shows a histogram of pitch-interval error as measured in
half-steps. In the pitch-interval histogram, only the size of
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the pitch interval contributes to error. Here, if the system
presents the interval 42 to 44 and the person sings 56 to 58,
it is counted as an error of size 0 (i.e., not an error).
Similarly, the absolute-pitch error histogram shows the ab-
solute-pitch error. Here, the person singing 56 to 58 would
generate two errors, each of size 14.

The graph in the bottom portion of the figure is the
observation probability matrix for the singer. It is repre-
sented as a confusion matrix. The horizontal axis represents
the stimulus pitch interval presented to the singer. The
vertical axis represents the response generated by the com-
bination of singer and pitch-tracker. Each square represents
the frequency with which a particular stimulus—response
pair was observed. The darker the square, the more frequent
the occurrence. Response intervals > 12 are binned to 12.
Those < —12 are binned to —12.

The confusion matrix in shows the singer’s tendency to
become increasingly error prone as the size of the stimulus
interval increases. This is captured in our observation prob-
ability model.

Estimating 10Iratio observation probabilities. Research in
music perception indicates rhythmic ratio values fall natu-
rally into evenly spaced bins in the log domain. Given this,
we decided to measure error in the rhythm domain as the log
of a ratio of IOIratio values as shown in Equation 12.

expected IOIratio
(12

error = 1n<observed IOIratio

Here, if the expected IOIratio is equal to the observed
IOlratio, error is zero. When observed IOIratio is less than
expected, the error is positive, when observed error is more
than expected, the error is negative. Error was initially quan-
tized to 27 values, spaced evenly on a logarithmic scale. The
number of bins was chosen ad hoc and was an artifact of
selecting a bin size of 0.2. We then determined the number of
bins could be reduced to five without degrading the ability of
a matcher to find the right target for a musical query.

Figure 7 shows observed IOlIratio error for a typical
singer using our initial 27 bins. Here, the height of the bar
represents the relative frequency of occurrence of an error
of the given size in the training data. We performed a pilot
study of IOIratio error and found the error distribution,
when measured using Equation 6, appeared not to vary
greatly with the expected IOIratio. For example, this sing-
er’s error distribution approximates a Gaussian function that
has a median of zero and a standard deviation of 0.28,
regardless of expected IOlratio. Given this assumption, we
use the same distribution for all expected IOIratios.

Using the observation probabilities with a Markov model.
Given probability tables for IOIratio and pitchlnterval, a
Markov model constructed from a MIDI file, such as the one
in Figure 5, may be treated as a hidden Markov model by

0.35

0.25¢t : -
02} : . -
015} » -
01l -
>
0. _ -
o/ m HEmm l-ll- IIlII- =il
3 2 A 0 1 2 3
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8

FIG. 7. Error model for IOIratio.

relating the states of the model to the observations through

_ the observation probabilities. _
A query is an observation sequence and the probability

of an observation, given a state, may be calculated using the
observation probability table. Consider the first observation

. in the query transcription from Figure 2 and the Markov

model in Figure 5. What is the probability that the obser-
vation (pitchinterval = 2, IOIratio = 2.75) was generated
by the first (leftmost) state in the model, given the obser-
vation probability tables for our example singer?

The first state in the model represents the duple (pitch-
interval = 2, IOIratio = 3). The pitchinterval observation-
probability table reports a P(observed = 2 | expected = 2)
= 0.76.

The log of the expected /O/ratio divided by the observed
IOIratio = In(3/2.75) = 0.0870. This value falls into the bin
for 0 in the error model from Figure 7. The probability of
falling in this bin is 0.29.

Muitiplying these probabilities together in accordance
with Equation 4, we get the probability of the observation,
given the hidden state 0.76 < 0.29 = 0.22.

This process can be repeated for each combination of
observation and hidden state in a model. The likelihood any
particular path through the model generated the observation
sequence may then be determined by multiplying the ob-

servation probabilities by the transition probabilities from

state to state.

The Forward Algorithm

The Forward algorithm (Rabiner & Yuang 1993), given
an HMM and an observation sequence, returns a value
between 0 and 1, indicating the probability the HMM gen-
erated the observation sequence. Given a query length, |Q)|,
the algorithm takes all paths through the model of up to |Q|
steps. The probability each path has of generating the ob-
servation sequence is calculated and the sum of these prob-
abilities gives the probability that the model generated the
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observation sequence. This algorithm takes on the order of
IS|’|Q| steps to compute the probability, where |S| is the
number of states in the model. In our system, the number of
states is equal to |7, the number of unique elements in the
target string, 7. The value of |7| is limited to a maximum of

the number of elements in A,,,,,, the target alphabet.

No Baum-Welch Training

Those familiar with the HMM literature may wonder why
we do not use a standard parameter re-estimation technique
such as Baum-Welch training. Our method of generating hid-
den Markov Models requires only a single exemplar, paired
with a known error model. Typical HMM training requires a
number of examples. Building a large database of target songs
with many sung examples of each song is extremely time
consuming and is a great hindrance on the scalability of a
song-finding system. One could, of course, make artificial
examples using a known error model and then train the HMM
in the standard fashion. This would, however, be an inefficient
approach in that it would be approximating a known error
model. Thus, we chose to directly use the error model.

Finding the Best Target _ -

We encode the themes in our database as HMMs and the
query is treated as an observation sequence. Given this, we
are interested in finding the HMM most likely to generate
the observation sequence. This can be done using the For-
ward algorithm.

Let there be an observation sequence (query), O, and a
set of models (themes), M. An order may be imposed on M
by performing the Forward algorithm on each model m in M
and then ordering the set by the value returned, placing
higher values before lower. The ith model in the ordered set
is then the ith most likely to have generated the observation
sequence. We then take this rank order to be a direct
measure of the relative similarity between a theme and a
query; the first theme is the one most similar to the query.

While this is simple enough in principle, in practice there
are constraints on how one may compare HMMs for the
purpose of finding the best target in the database. First, the
above method makes the implicit assumption all targets
have an equal likelihood of occurrence. If it is known that
99% of all queries to a database of Beatles music will be for
the song, “Michelle,” it would make sense to skew the
results of the ranking by a weighting factor based on that
fact. Currently, we do not have an adequate model for the
likelihood of any given target. So, instead we use the naive
assumption of equal probability for all targets.

Another problem is comparing “apples to oranges.” If
two models have a different mapping from hidden state to
observation, it may not make sense to say that one is more
likely than the other to have generated the observation
sequence. For example, imagine one HMM that maps from
note observation sequences onto hidden states representing
rhythm, while another maps onto pitch. It may not make

Observ.
Prob.
Table

Log-odds
Match Score
Table

Local/ Global
String
Alignment

(0 o

Ranked List Rarnked List
of Targets of Targets

FIG. 8. Experimental setup.

sense, depending on the task, to directly compare the prob-
abilities generated by these two HMMs. This is not an issue
for our system, because all models in our database use the
same observation probabilities when they are compared to
each other.

As with the string matcher, the computational complex-
ity of finding the most similar target to the query depends on
the time it takes to compute the similarity of a single target.

N
HMMmatchComplexity = 0(2 |o| - T

i=1

= O(N|Q|mean(T'P))  (13)

Experimental Set-Up

We have presented two string-matching methods and one
HMM method for ranking similarity between targets (mu-
sical themes) in a database and a sung query. This begs the
question “Which method is better?”” To answer this ques-
tion, we assembled a database of Beatles songs, a small set
of test queries and then ran the methods head-to-head, to
determine which one was most likely to return the right
answer as the top pick. Both the query set and the database
size are limited, so these results are provisional; however,
they do indicate clear trends that bear reporting, especially
with respect to relative efficacy of error models.

Figure 8 illustrates the data flow for the experimental
setup for comparing the HMM-based Forward algorithm to
the Global and Local string-alignment algorithms. For a
particular query, the query, target database, observation
probability table (and thus, match score matrix), and skip
costs are all fixed. The targets are then ranked by the
Forward, Global, and Local algorithms. The three algo-
rithms may then be compared by how well the correct target
ranked in their output. A single trial ranks all targets in the
database against all queries in the query set, given a fixed
observation probability model (match score matrix), fixed
skip costs, and ranking algorithm (Global, Local, or For-
ward). We now describe the experimental setup in greater
detail.
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Transcribed Target Database -

We collected a corpus of 260 pieces of music encoded as
MIDI from public domain sites on the Internet. The corpus
is composed entirely of pieces that have been recorded by
the Beatles. This includes all pieces recorded on albums for
~ U.S. release and a number of “covers” they performed that
were originally composed by other artists, such as “Roll
Over Beethoven.” For a full list of pieces in the database,
please consult the MusEn Web site at http://musen.engin.
umich.edu/.

We selected music performed by the Beatles because
their music tends to be well known, the salient information
to identify pieces tends to be melodic and relatively easy to
sing, and the pieces are readily accessible, both as audio and
as MIDI. Each piece in the corpus was represented in a
database by a set of “themes,” or representative monophonic
melodic fragments. The number of distinct “catchy hooks,”
as determined by the third author, decided the number of
themes chosen to represent each piece. Of the pieces, 238
were represented by a single theme, 20 by two themes, and
two pieces were represented by three themes, resulting in a
database of 284 monophonic themes. These themes consti-
tute the set of targets in the database.

A sequence of (pitchinterval, IOIratio) pairs was created
and stored in the database for each MIDI theme. Themes
were quantized to 25 pitch intervals and five log-spaced
IOlratio intervals. Each theme was indexed by the piece it
was derived from. An HMM for the theme was then gen-
erated automatically from the theme sequence and placed in
the database, using the method described herein.

The upper plot in Figure 9 contains a histogram of theme
lengths. Here the horizontal dimension indicates theme
length, and the vertical dimension indicates the count of
themes of a given length.

Our database of Beatles themes has a mean number of
54.6 elements per sequence, with a mean of 20.8 unique
elements per sequence. Comparing Equation 9 to Equation

13, it can be seen that the string matcher should perform
faster than the HMM when the mean target length is less
than |T%[%, the square of the mean number of unique ele-
ments in a target. The mean value of |T%| is 472.7 for our
theme database. From this, one would expect an HMM to
perform between 8 and 9 times slower than the equivalent
string matcher. In our implementation, additional overhead
in the HMM caused it to run roughly 12 times slower than
the string matchers on the data set, with the string matchers
taking an average of 0.16 seconds to process a single query
and the HMM taking 1.97 seconds per query.

This leads us to the reason we chose to match queries to
themes instead of full pieces. The first of these is speed. For
the string matchers, the time required to process a given
query is linearly related to the mean length of the targets in
the database. The median theme length in the database is
49.5 intervals. This compares to a median of 2,701 intervals
for the original MIDI files the themes were drawn from.
Thus, the typical theme is over 50 times shorter than the
typical piece and processing is 50 times faster. Second, the
global string matcher is designed to work well when com-
paring sequences whose entire length is expected to be
relevant to the comparison. This led us to believe matching
performance would be improved by comparing only the
most salient portions of the piece. Finally, our HMMs are
constructed in a way that it is advantageous for them to be
drawn from only the most salient portions of the piece. The
longer a segment the HMM is drawn from, the greater the
chance for spurious loops and branch points in the archi-
tecture, causing the model to give high matching scores to
sequences not very similar to the sequence from which the
model was derived. _

Of course, the downside to the use of a limited number of
short themes to represent a relatively lengthy work is data-
base coverage. If a query is presented to the system and the
query covers some portion of the piece not captured in its
representative theme set, the system will obviously fail to
retrieve the right piece. This is the price paid for the spec-
ificity and compactness of the themes.

Query Corpus

A query is a monophonic melody sung by a single
person. Singers were asked to select one syllable, such as
“ta” or “la,” and use it consistently for the duration of a
single query. The consistent use of a single consonant—
vowel pairing was intended to minimize pitch-tracker error
by providing a clear starting point for each note, as well as
reducing error caused by dipthongs and vocalic variation.

Three male singers generated queries for the experiment.
Singer 1 was a 22-year-old male with no musical training
beyond private instrument lessons as a child. Singer 2 was
a 27-year-old male with a graduate degree in cello perfor-
mance. Singer 3 was a 35-year-old male with a graduate
degree in saxophone performance. None were trained vo-
calists. All are North American native speakers of English.
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TABLE 1. Observation probability model representational ability.
Mean RR Mean RR
Index Pitch interval model 1Olratio model P i value forward global
i Singer 1 Singer 1 0 1 1
2 Singer 1 Singer 1 10"—5 1 1
3 Singer 1 Singer 1 10"—4 1 1
4 Singer 1 Singer 1 10A—3 1 1
5 Singer 1 Singer 1 100—-2 1 1
6 Singer 1 Singer 1 1001 1.92 1
7 Singer 1 Even probability 0 1 1
8 Singer 1 Even probability 100—5 1 1
9 Singer 1 Even probability 1004 1 1
10 Singer 1 Even probability 10"-3 1 1
11 Singer 1 Even probability 10"-2 1 1
12 Singer 1 Even probability 100-1 3.14 1
13 Singer 3 Singer 1 0 1 1
14 Singer 3 Singer 1 100-5 1 1
15 Singer 3 Singer 1 1004 1 1
16 Singer 3 Singer 1 1003 1 1
17 Singer 3 Singer 1 100-2 1 1
18 Singer 3 Singer 1 100-1 1.89 1
19 Singer 3 Even probability 0 1 1
20 Singer 3 Even probability 100-5 1 1
21 Singer 3 Even probability 104 1 1 -
22 Singer 3 Even probability 10"-3 1 1
23 Singer 3 Even probability 100-2 1 1
24 Singer 3 . Even probability 100-1 2.82 1
25 Exponential decay Exponential decay NA 1 1
26 Exponential decay Even probability NA 1.02 1
27 Even probability Exponential decay NA 3.21 1
28 Perfect Perfect 0 1 1
29 Unified exponential Unified exponential NA 1 1

Sung queries were recorded in 8 bit, 22.5 kHz mono
using an Audio-Technica AT822 microphone from a dis-
tance of roughly 6 inches. Recordings were made directly to
an IBM ThinkPad T21 laptop using its built-in audio
recording hardware and were stored as uncompressed
PCM.wav files.

Each singer was allowed a trial recording to get a feel for
the process, where the recorded melody was played back to
the singer. This trial was not used in the experimental data.
Subsequent recordings were not played back to the singer.
Once the trial recording was finished, each singer was
presented with a list containing the title of each of the 260
Beatles recordings in our database. Each singer was then
asked to sing a portion of every song on the list that he felt
confident of being able to sing. Singer 1 sang 28 songs;
Singer 2 sang 17; and, Singer 3 sang 28 songs. The result
was a corpus of 73 queries covering 41 of the Beatles’
songs, or roughly one sixth of the songs in our database.
These queries were then automatically pitch tracked, seg-
mented, and quantized to 25 pitch intervals and five IOIratio
intervals with the same pitch tracking, segmentation, and
quantization software used in estimating observation prob-
abilities. This resulted in 73 observation sequences, com-
posed of (pitchinterval, IOIratio) duples. These were used
as the query set for all experiments. The lower plot in Figure
9 contains a histogram of the queries, sorted by query
length. Mean query length was 17.8 intervals. The median

length was 16. The longest query had 49 intervals, and the
shortest had only two. The median number of unique ele-
ments per query sequence was nine.

Observation Probabilities and Match Scores

To observe the effects of different observation probabil-
ity models, we used 29 different combinations of pitch
interval and /Olratio observation probability models in our
experiments. Six of these were variations on the observed
pitch interval and /OIratio models of Singer 1 (see Figs. 6
and 7), with varying sizes of P,,, pseudocounts for unob-
served data. Six used the observed pitch interval values for
Singer 1 along with an even probability distribution for
IOlIratios. These, in effect, ignored rhythmic content in
queries. Twelve observation probability tables were also
constructed using pitch interval observations derived from a
study of Singer 3. Five observation probability models were
derived from synthetic distributions. Table 1 shows the
combinations of observation probability models used.

The perfect distribution placed a one along the diagonal
of the observation probability matrix and a zero in all other
elements of the matrix. The exponential decay distribution
for both pitch and rhythm models were derived by setting
the values on the main diagonal of the observation proba-
bility matrix at one, elements one off the diagonal at 271
elements two off the diagonal at 272, elements at three off
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the diagonal at 272, and so on. Values were then renormal-
ized by row to sum to one. The unified exponential distri-
bution was derived by creating a single, unified matrix of
125 X 125 elements and creating an exponential decay from
the diagonal.

Once the observation probability matrices were created,
a log-odds match score matrix was created from each of the
observation probability matrices in Table 1. This was done
simply by making the naive assumption from Equation 6
and then applying Equation 4. This allows for direct com-
parison between a ranker using HMMs with a given obser-
vation probability table and a string matcher using the
match score matrix derived from that observation probabil-
ity table.

Evaluation Method

We have 284 themes in the database representing 260
songs. The rank of a song is the rank of its best scoring
theme. The right rank of a query is the rank of the correct
song for the query. The mean right rank for a trial is the
average right rank for all queries in the trial. While this is
often a good measure of performance, it can be sensitive to
poorly ranking outliers. We can capture the same informa-
tion in a manner that is slightly less sensitive to this by using
mean reciprocal right rank (MRRR), which is calculated in
Equation 14.

1
rightRank,
numberofQueries

zzl;mlber()fpueries
MRRR =

(14

Mean reciprocal right rank is the inverse of the mean
right rank. For MRR, higher values are better and they range
between 1 and 1/260 (the number of songs in the database).

Experimental Results

Test 1: Observation Probability Model Representational
Ability

As a test of the representational ability of the 29 obser-
vation probability models, we first ran our trials using the
targets in the database as the query set. Thus, there were no
problems of database coverage or incomplete or imperfect
matches between the ideal target and the query. In this case,
an effective ranker, with distinctive targets and a good
representation, should return a mean right rank of one.

We ran trials on all 29 tables using the Forward algo-
rithm. We then used the log-odds match score matrices
generated from these tables, fixed both the target and the
query skip cost at five and then ran trials on all 29 tables
using the Global string-alignment algorithm (since queries
match targets exactly in this trial, there is no difference
between the use of Global or Local string alignment).

Forward Algorithm Global String Matching

f e @ f.'-...
. :'. l'f!ﬁ of

Target
Target

15 20 8 0 5 20

Query

$ 1

Query

FIG. 10. Confusion matrices for Test 1, observation probability model
27.

The mean right rank (MRR) for this test is shown in
Table 1, broken down by observation-probability model and
matcher. Using the string-alignment algorithm, the MRR
was always one. Using the Forward algorithm, 23 out of 29
of the representations generated a mean right rank of one.

- The worst case was that of observation-probability model

27, which uses an exponentially decaying probability for the
rhythm representation and an even probability distribution
for pitch. This is equivalent to ignoring pitch contour.

Figure 10 shows the confusion matrix for the first 20
themes in the target database for both the Forward algorithm
and the Global alignment algorithm, when using observa-
tion probability model 27. Here, each column corresponds
to a query theme. Each row represents a target theme. The
darker the box, the greater the similarity found between
target and query. A perfect response would show a black
box for every element along the main diagonal and white in
all other positions.

The results of using the HMM and the Forward algo-
rithm on this example are far from perfect. In fact, when the
sixth theme in the database (‘A Shot of Rhythm and Blues™)

- is presented as a query, the HMM with the highest proba-

bility of generating it is the one created from theme nine
(“Across the Universe”).

In this test, the architecture we chose for the HMM
works against the use of the Forward algorithm. Recall pitch
is ignored by observation probability model 27. Pitch was
not, however, ignored in determining the model transition
architecture when HMMs were created from themes. Thus,
branching points were created that reduce the probability of
a particular path in the correct model. Given a sufficiently
bad observation-probability model, these branching points
can result in the right model generating a lower score than
the wrong one.

To understand this better, consider Figure 11. Model A
was generated from string A using a method similar to the
one we described for making a Markov model from a
sequence of (pitch interval, I0I) duples. Model B was
generated from string B in the same way. During model
construction, Greek letters (the hidden states) were assumed
to have a one-to-one correspondence with Roman letters
(the observations). This results in the two models as seen.
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FIG. 11. Two HMMs.

The observation probability table in the figure describes a
one-to-one correspondence between observation and hidden
state, except for the observations “a” and “e.” This table
makes both hidden states a and & equally likely to generate
either of these two observations. Given this, the Forward
algorithm on model A generates a score of 0.5°0.51+1 -
05-05-1-1-1 = 0.0625, when passed string A as an
observation sequence. Model B, however, generates a score
of05:1-1-1:05-1+1-1+1 = 0.25. Thus, Model B
would be returned as the most likely one, which is clearly
the wrong result. This highlights the importance of choosing
a good underlying architecture and ensuring the mapping

from observation to hidden state does not undermine the
descriptive power of the architecture.

Test 2: Observation Probability Models and the Forward
Algorithm

Consider that 23 of the 29 models in Table 1 performed
perfectly on Test 1. Which of these models allows the
Forward algorithm to perform best when presented with real
queries? Since the architecture for each HMM was fixed by
the creation of the model, the only variation was the choice
of observation probability model and the subset of the
queries sung by the three people mentioned in an earlier
section. Queries were broken down into sets by singer,
resulting in three sets of queries and a total of 29 - 3 = 87
trials. We hypothesized the observation-probability model
created from the analysis of a particular singer would result
in the best performance on queries by that singer.

Figure 12 shows the mean reciprocal right rank (MRRR)
for each combination of singer and observation-probability
model. Recall that for MRRR on this data set, a perfect
score is 1 and chance is 1/130 = 0.0077. Scores below
chance indicate a negative correlation between right rank
and the rank generated by an algorithm. No trial resulted in
a number below chance. The lowest scoring trial used
observation-probability model 27 on Singer 3, with a
MRRR of 0.012732 and a median right rank of 106.5. The
best scoring trial was also for Singer 3 and used observa-
tion-probability model 26. For this trial, the MRRR was
0.68358 and the median right rank was 1.
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FIG. 12. Mean reciprocal right rank using the Forward algorithm.
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TABLE 2. Best results: Forward algorithm.

Observation Mean recip Right answer Right answer Number of
Singer probability model right rank intop 5 top choice queries
Singer 1 ) 10 0.26 8 (29%) 6 (21%) 28
Singer 2 26 0.41 7(41%) 6 (35%) 17
21 (75%) 19 (68%) 28

Singer 3 26 0.70

Table 2 shows the results of the best trial for each singer.
Here, the number for the observation probability model is
the index of the observation-probability model from Table 1
that generated the highest MRRR using the Forward algo-
rithm. As expected, the highest performance for Singer 1
was achieved using model 10, an observation probability
model based on Singer 1’s actual data. Note that model 10
ignores rhythmic information; indicating inclusion of rhyth-
mic information is actually detrimental to the performance
of the matcher. This may be because the observation prob-
ability model for rhythm does not properly support the
architecture of the model. An example of how this can occur
was given in an earlier section.

Unexpectedly, the best performance on Singer 3’s que-
ries was not achieved using an observation probability
model based on his data, but rather with the synthetic model
26. This model proved to be the best overall model for this
algorithm, as it provided the best performance for Singer 3
and Singer 2 and second-best for Singer 1. Table 2 shows
the numerical scores for the highest-scoring observation
probability model for each of the three singers.

Test 3: String-Matcher Optimization

To optimize the string matcher, we fixed the query set to
the queries used by the HMM. The observation probability
models used were the 29 from Table 1.

Although there is a well-developed theoretical basis for
creating the log-odds match probability table for string
alignment, a method for choosing good skip-penalty values
is not well developed. Not having a good model, we chose
a brute-force solution to finding good penalty values. The
query skip penalty was varied from 0 (skips cost nothing) to
12 (slightly more expensive than the worst log-odds match
score possible). The theme skip penalty was varied simi-
larly. This resulted in 13 - 13 = 169 combinations.

Finally, it seemed unlikely that queries and targets would
match exactly in starting and endpoints. Thus, we decided to
try both the Global and Local string-matching algorithms.

TABLE 3. Best results: Global string matcher.

This resulted in a total of 29 match score matrices, 169
skip-cost combinations and two match algorithms, for a
total of 9,802 trials, where a single trial consists of the
ranking of the entire target database for each of the queries
in the query set by a ranker with fixed properties.

Table 3 contains the results for the best combination of T3
skip costs and observation-probability model for each of the
three singers on the Global-matching algorithm, as mea-
sured by mean reciprocal right rank (MRRR). One thing to
note is that the optimal combination of skips’ costs varies
from singer to singer and search algorithm to search algo-
rithm. The same also holds true for observation probability
model. In all cases, the best observation probability model
was a synthetic model, not based on actual singing data.
Another thing to note is the target skip cost for the global
matcher. A global matcher must account for every note in a
target, whether or not there is a corresponding note in the
query. In our data set, queries tend to be shorter than targets.
It may very well be optimal to minimize the cost of skipping
an element of the target in this situation. Thus, the cost of
skipping a target element is reduced to O for two of the
singers.

Table 4 contains the values for target skip cost, query T4
skip cost, and observation probability model that optimize
Local string-matcher performance for each singer’s queries.
As can be seen, the ideal target skip cost is no longer zero
for any singer. Interestingly, the ideal relative cost of skip-
ping a query element vs. skipping a target element varies
greatly between singers from a three-to-one ratio all the way
to a one-to-five ratio. For Singer 2, the cost of skipping a
query element could be varied from S to 12 without affect-
ing performance. Other singers showed a single best point
setting for skip costs.

The winning observation probability models were again
the synthetic ones, although not necessarily the same ones
as were the optimal for the global matcher or the Forward
algorithm. There is, however, a tendency for model 26
(exponential decay around the diagonal for pitchinterval,
even probability for /OIratio) to appear as a top choice for

Observation Target skip Query skip Mean reciprocal Right answer Right answer Number of
Singer probability model cost cost right rank in top 5 top choice queries
Singer 1 26 0 1 0.35 13 (46%) 8 (29%) 28
Singer 2 25 ) 1 0.25 5(29%) 4 (24%) 17
Singer 3 25 0 2 0.43 12 (43%) 11 (39%) 28
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TABLE 4. Best results: Local string matcher.
) Observation Target skip Query skip Mean reciprocal Right answer Right answer Number of
Singer probability model cost cost right rank in top S top choice queries
Singer 1 26 3 . 1 0.40 13 (46%) 10 (36%) 28
Singer 2 29 1 5t0 12 0.44 8 (47%) 7 (41%) : 17
Singer 3 26 4 3 0.74 22 (79%) 20 (711%) 28

all three algorithms. This indicates the observation proba-
bility models we collected from sung data are inadequate,
especially for rhythmic information.

A breakdown of system performance by query is enlight-
ening. Figure 13 shows the ranking results for all Local
string-matcher trials on Singer 2 using error model 26, the
best error over-all error model when all three singers are
taken into consideration. There were 169 such trials as the
skip costs were varied for both query and target. Song
names preceded by an asterisk indicate songs whose themes
did not overlap any portion of the sung query. As expected,
coverage errors result in poor performance, no matter what
the skip cost. Several queries showed significant variation in
pitch contour between the sung query and the stored theme.
Among these was “All You Need is Love,” where the
person sang a harmony line, while the main melody line was
stored in the target. In “Here Comes the Sun” the singer left
out a number of notes, leading to a wide range in results as
the skip costs are varied. The singer sang a monotonic
portion of “Back in the USSR,” leaving only rhythm to
identify the song. Unfortunately, error model 26 is insensi-
tive to rhythm and results in poor performance on this

query.

Reality Check: Human Recognition Rates

We define the recognition rate for a system to be the
percentage of queries where the correct target was chosen as
the top pick. The highest recognition rate achieved by any of
our systems was 71% by the local-string matcher on Singer
3. The lowest rate was 21% by the Forward algorithm on
Singer 1. Without some kind of baseline, it is difficult to put
these figures into perspective. We decided to create a base-
line by presenting the sung queries to the singers who
generated the query set to see how many of them would be
recognized.

Two months after the queries were made, the three
singers were gathered into a room and presented the original
recordings of the queries in a random order. Each recording
was presented once, in its entirety. Singers were told that
each one was a sung excerpt of a piece of music performed
by the Beatles and that the task was to write down the name
of the Beatles song the person in the recording was trying to
sing. Only one answer was allowed per song and singers
were given a few (no more than 15) seconds after each
query to write down an answer.
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FIG. 13. Rank of right response, Singer 2. Error model 26: Local string matcher.
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TABLE 5. Human performance versus machine performance.
Identified by
Sung by Singer 1 Singer 2 Singer 3 Other 2 singers Forward Global Local N
Singer 1 27 (96%) 14 (50%) 20 (71%) 61% 21% 29% 36% 28
Singer 2 12 (71%) 14 (82%) 13 (76%) 74% 35% 24% 41% 17
Singer 3 22 (79%) 13 (46%) 25 (89%) 63% 68% 39% 1% 28
Average 66% 41% 31% 49%

Once all queries had been heard, responses were graded.
Recall that queries were sung with nonsense syllables and
that lyrics were not used. Because of this, we judged any
response that contained a portion of the correct title or a
quote of the lyrics of the song as a correct answer. All other
answers were considered to be wrong.

Table 5 contains the results of the human trials, along
with the results for the machine song recognition algo-
rithms, where credit was received only for selecting the
right song as the top choice. Each row contains the recog-
nition rates for queries sung by a particular singer. Each
column identifies the recognition rates when using a partic-
ular method for identifying sung queries. The column la-
beled “Other 2 Singers” in Table 5 contains the average
recognition rates of the two singers who did NOT sing a
particular set of queries. Thus, for Singer 2’s queries, the
“Other 2 Singers” value is the average of how well Singer
1 and Singer 3 recognized Singer 2’s queries.

It is interesting to note that the human listeners achieved
an average recognition rate of only 66%, when presented
with queries sung by another person. While there are many
possible explanations, this figure was lower than expected
and may provide a rough estimate as to how well one can
expect a machine system to do. Even more interesting was
the inability of Singers 2 and 3, both with graduate degrees
in music performance, to achieve even a 90% recognition
rate on their own sung queries, while Singer 1 achieved a
much higher recognition rate on his own queries.

Conclusions

Mismatch between a transcribed query and the target
musical theme in the database is common, and must be
handled by any QBH system. Error models that allow grace-
ful degradation in the face of inexact queries by explicit
error modeling outperform models that assume no singer (or
transcriber) error in our trials. Interestingly, synthetic error
models based on exponential decay provided comparable
performance to data-derived error models designed to han-
dle the errors of a particular singer. This may mean we can
avoid time-consuming training of error models for individ-
uals by using an appropriate default generic error model.

Since the best performing error model was a synthetic
one that ignored rhythm, future work involving real user
data must collect data in a way that more accurately cap-
tures the kinds of errors made in the course of singing than

was done in our study. This should have a significant impact
on the performance of QBH systems, especially when at-
tempting to correctly match rhythmic patterns.

The experimental results also show that on this data set,
the string-matching systems perform slightly better than the
HMM approaches, with neither performing as well as hu-
mans. The string matchers also ran roughly 12 times faster
than the HMM classifier on the given set of queries and
targets, with the string matchers taking an average of 0.16
seconds per query and the HMM taking 1.97 seconds per
query. We conclude that the HMM architecture chosen in
our experiment (allowing loops), can have a significant
disadvantage for certain error classes. At this point, we
believe that the left-right approach, as used by the string
approaches, is superior to the “loop” model used by our
HMM. We have begun to study a comprehensive left-right
HMM architecture that accounts for various skips and in-
sertions and are preparing more extensive experiments, us-
ing a larger database and many more singers, to compare
this architecture to the string matchers.
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Appendix: Explicit Rhythm Representation Using '

IOlratios

Melody matching has, in general, concentrated on
matching pitch contour. Typically, rhythm is encoded im-
plicitly. The number of contiguous, fixed-duration frames
with the same pitch indicates note length. Figure A1 shows
three sequences as a piano roll. Vertical lines indicate the
boundaries of fixed-duration frames. A letter above each
frame indicates the pitch class present in that frame.

Given an implicit representation of timing information,
music matchers have difficulty in dealing with tempo scal-
ing. Looking at Figure Al, it is clear that S, and S, represent
the same melody performed at two different speeds and S,
while containing all the notes in §,, is another melody
entirely. Unfortunately, for many string-alignment style

" matchers, the least-cost alignment between S; and S, is the

same as the least-cost alignment between S, and S;, making
it impossible for the matcher to determine which two mel-
odies are the most closely related. Clearly, this is not a
desirable result.

Similarity between strings can be measured by the like-
lihood both were generated by the same Markov model
(Markov models are described in this article in the section
titled, “Themes as Markov Models™). In this case, the
strings are considered observation sequences and the For-
ward algorithm is used to determine how likely a given
model is to generate each string. Given a set of models, two
strings are deemed to be of the same class if both are most
likely generated by the same model.

Model A in Figure A2 illustrates a Markov model capable
of generating either S, or S,, but not S;. Here, states are labeled
with the letter they emit and transition probabilities are indi-
cated by arrows between states, labeled by values between 0
and 1. The model will generate either one or two Gs, anywhere
from one to infinite As and either one or two Bs.

This model illustrates the two basic approaches to han-
dling timing variation by varying the structure of a Markov
model: self-loops (the state that generates the As), and
repeated states (the Gs and Bs). Both approaches have their
drawbacks. Repeated states allow, at most, a fixed number
of repetitions. For example, a sequence, S, = GGG-
GAAAABBBB could not be generated by the model de-
picted in Figure A2. Self-loops permit an infinite number of
repetitions, but the probability of generating a sequence of

G,A B G G, A /A BB

SSQLLIE dNLLLL
PI 2 2 PI 2 2
I0L 1 1 Io1 1 1

IOIx 1 1

FIG. Al. Encoding of timing information.
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MODEL A

MODEL B

FIG. A2. Two Markov models.

repetitions decays exponentially with the length of the se-
quence. A model using three self loops, one for G, one for
A, and one for B would be less likely to generate S than S,
with S; being more likely than either S, or S,.

A better way to deal with such variation is to change how
rhythm is encoded, taking an example from pitch contour.
Consider the problem of aligning the song, “Happy Birth-
day” in F to “Happy Birthday” in C. If both melodies are
encoded using absolute pitch, the resulting strings look
quite different. If they are encoded as change in pitch
relative to the previous note (pitchinterval), the pitch con-
tours are identical.

A typical measure used for timing in music applications
is the inter onset interval between note events. This is the

interval between the onset of note i and the onset of note i
+ 1. Timing information is generally measured in absolute
units, such as milliseconds. This may be normalized by
dividing all /OIs in a given performance by a reference
duration, d, .

For a performed passage, such as a sung query to a music
theme-finder, d,ef would ideally be the duration of a beat, as
it is in written notation. Unfortunately, it is not always clear
what the beat is in a query and beat tracking on a relatively
short excerpt (10—15 notes) may not always be effective.
Thus, another basis for d,, must be found. A simple sub-
stitute for the beat is the duration of the previous event This
is expressed in Equation Al.

iol,
101n+ 1

IOlIratio, = (A1)

Representing the melodies in the figure as sequences of
(pitchinterval, 1OIratio) duples brings out the similarity
between the first two melodies. In fact, using this represen-
tation they are identical.

Model B in Figure A2 contains a Markov model capable
of generating both S; and S, with equal probability. In this
figure, states represent (pitchinterval, 10Iratio) duples. This
model illustrates the effect a change of encoding has upon
the Markov model needed to generate the sequences of
interest.
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