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Abstract  
Automated musical accompaniment of human performers 
often requires an agent be able to follow a musical score 
with similar facility to that of a human performer. Systems 
described in the literature represent musical scores in a way 
that assumes no large-scale structural variation of the piece 
during performance. If the performer deviates from the 
expected path by skipping or repeating a section, the system 
may become lost. We describe a way to automatically 
generate a Markov model from a written score that models 
the score form, and an on-line algorithm to align a 
performance to a score. The resulting system can follow 
performances that take alternate paths through the score 
without losing its place. We compare the performance of 
our system to that of sequence-based score followers on a 
melodic corpus of 98 Jazz melodies. Results show that 
explicitly representing the branching structure of a score 
significantly improves score following when the branch a 
performer may take is unknown beforehand. 

Introduction  
Automated musical accompaniment that reacts naturally 

to the human performer is a long-standing goal of a 
number of computer-music researchers (Grubb and 
Dannenberg 1994, Dannenberg 1984; Bloch and 
Dannenberg 1985; Toiviainen 1998; Raphael 1999). The 
ideal is a peer musician that can be integrated into an 
ensemble of human players with minimal need for the 
humans to adjust their interaction styles to accommodate 
the computer performer. For many styles of music, this 
requires an agent that is able to follow a representation of a 
written score with similar facility to that of a human 
performer. Systems that perform this function are called 
score matchers or score followers. 

Figure 1 shows a simple case of score following. The 
top portion of the figure contains a simple written lead 
sheet, or score. A musician performs a score by translating 
the note, chord, key, and other symbols into a sequence of 
performance actions (depress piano key k at time t with 
velocity v, for example). These actions result in a sequence 
of events that make the performance. In computer score 
following, the performance is often encoded as MIDI 
(MIDI-Manufacturers-Association 1996). Figure 1 shows 
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an example MIDI performance of the written score. This is 
shown in piano roll notation. Here, each bar represents a 
note. The horizontal placement of the note represents the 
onset time. The vertical placement of the note represents 
the pitch. Note duration is indicated by the length of a bar.  
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Figure 1. Score Following 

Score following can be broken down into transcription 
and alignment (also known as matching). Transcription 
involves parsing the performance into a sequence of salient 
events. In Figure 1, transcription consists of encoding each 
MIDI note-on event as a simple pitch class, drawn from 
the set of twelve pitch classes used in Western music.  

Matching consists of finding the best alignment between 
the sequence of events in the performance transcription 
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and the events in the score. Typically, these events are 
single notes, although they may also be lyrics, percussion 
sounds, or groups of notes. A score follower, unless 
otherwise stated, is presumed to align the performance to 
the score in real-time as the performance takes place.  

Because of the difficulty of dealing with polyphonic 
MIDI and audio, researchers (Dannenberg 1984; 
Dannenberg and Mont-Reynaud 1987; Puckette and Lippe 
1992; Large 1993; Puckette 1995; Vantomme 1995; 
Desain, Honing et al. 1997; Grubb and Dannenberg 1997) 
generally restrict matching to a monophonic score that 
(nearly) completely specifies the pitch and ordering of 
every note. For the sake of simplicity, information in the 
score about key, meter, dynamics, and song structure is 
ignored, leaving a simple sequence of note on and off 
events.  

The standard practice for score following (Vantomme 
1995; Desain, Honing et al. 1997; Grubb and Dannenberg 
1997) is to linearize a score by removing structural branch 
points (e.g., repeats, codas, etc.) before the performance 
begins. This effectively limits the performance to a single 
path through the form that is not changeable during 
performance. 

Thus, existing score followers require fixing, a priori, 
how the repeats in a score, like that in Figure 2, would be 
handled by the musicians. The performers would have to 
agree on repeating (at the end of measure two) once and 
then going on to the end. The musicians would then be 
prohibited from altering the path during performance. 

In many live performance situations, musicians repeat or 
skip a section in response to the needs of the moment. 
Musicians often extend a piece to let dancers who are 
enjoying the music continue dancing, or shorten a piece 
(perhaps by skipping an introductory section) when they 
are running behind schedule. In these cases, existing score 
followers cannot adapt to the changing performance 
situation.  

When a score contains repeats and particularly when the 
form is variable (e.g., the form may be ABA or AABA or 
any permutation depending on the whim of the performers) 
a score representation that does not allow branch points is 
undesirable. To account for variability in form, we need to 
extend the score model to represent structural score 
elements that affect the form, such as repeats and codas.  

In this paper, we introduce a new method for 
representing large-scale form in score following. Our 
representation is based on Markov models, which allow us 
to both capture the form of a piece implied by the score, as 
well as reason probabilistically about how a performer is 
moving through the piece. The system can then model 
performances that may start anywhere in the form and 
repeat or skip sections (as specified by the score) a non-
predetermined number of times. This greatly expands the 
types of music amenable to automatic score following.  

The remainder of this paper describes Markov models, 
shows how one may follow a variable-form performance 
using Markov models, and compares Markov model score 
followers to string matching based followers, using a 
corpus of 98 Jazz melodies. 

Music Scores as Markov Models 
A Markov model describes a process that goes through a 

sequence of discrete states, such as notes or chords in a 
lead sheet. The model is a weighted automaton that 
consists of: 
• A set of states, S = {s1, s2, s3,…, sn} 
• SE, a subset of S containing the legal ending states. As a 

default SE=S 
• A set of possible emissions, E={e1, e2,…, en} 
• A transition function, τ(si, sj), that specifies the 

probability of a transition to sj, from si 
• A function, σ(si), that defines the probability of 

beginning in si 
• An emission function ε(sj, ei), that defines the 

probability state sj will emit ei. 
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Figure 2. A score as a directed graph (Markov model) 

Markov models are generative. A generative model 
describes an underlying structure able to emit a sequence 
of observed events. A musical score may be represented as 
a (hidden) Markov model. The directed graph in Figure 2 
shows a Markov model created from the chord labels in the 
score passage in the figure. Nodes represent chords in the 
score. Directed edges (arrows) represent transitions. 
Repeats and skips (codas) in the score are represented by 
directed edges connecting distant portions of the score 
model. Transition probabilities are indicated by a value 
associated with each edge.  

An observation sequence, O = o1, o2,…, on, is a 
sequence of events drawn from the emission alphabet, E. 
Relating this to music, the sequence of musical events 
(notes, chords, etc.) generated by the performer is the 
observation sequence generated in response to the score. 

The emission function ε(sj, ei) defines the probability 
that state sj will emit ei. For a music performance, this is 
equivalent to the probability the jth item in the score (a 
chord symbol) would elicit the ith performance event (a 
chord voicing on the piano). A Markov model is called a 
hidden Markov model, or HMM, when it has at least one 
state whose emission function is non-zero for multiple 
elements of the emission alphabet. An example would be a 
chord symbol that maps onto multiple chord voicings. 

In our approach, the emission function is determined 
beforehand through an empirical study of the likelihood of 
performance events, given each score state. Good 
estimation of the emission function lets a system model a 
variety of possible causes for variable performance output 
in response to score states, including production errors 
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(cracked notes, poor pitch control), transcription errors, 
and intentional variation (alternate voicings).  

For example, we calculate a note-based emission 
probability function ε(sj, ei) for an alto saxophonist by 
recording the musician and automatically transcribing his 
performance of an assigned set of chromatic scales and 
chord arpeggios. The resulting count of associations 
between performed pitch and transcribed pitch is used to 
estimate ε(sj, ei) (Pardo and Birmingham 2002). In another 
study (Pardo 2005), we estimate the likelihood a set of 
performance notes mapping onto a chord symbol in the 
score through empirical study of the performances of a 
Jazz pianist on a known sequence of chord symbols. The 
associations learned in this training phase can then be used 
to estimate ε(sj, ei) where the score element is a chord 
name and the performance emission is a set of notes. 

Using state transition values derived from the score and 
emission probabilities based on prior training allows the 
construction of score models without the need to train the 
model on a set of performances of that score prior to use. 
This lets the system function on performances of scores it 
has never “heard” before. 

Finding the current state in the model 
For score following, we want to know the most likely 

current state in the score model, given the observation 
sequence. To find the most likely current state, we modify 
the Forward-Backward algorithm (Rabiner and Juang 
1993) for real-time score following. Our approach is 
distinct from the standard algorithm, in that it is designed 
to work on an in-progress sequence (a live performance), 
rather than a completed sequence. Thus, we use only 
causal information. 

The emission function ε(sj, ei) gives the probability that 
state sj will emit ei. We define the observation function, 
φ(sj, ei) as the probability of being in sj when observing ei. 
Equation 1 follows directly from Bayes’ theorem. Here, 
P(ei) is the prior expected probability of the ith 
performance event and P(sj) is the prior probability of the 
jth score state. 

( ) ( , )
( , )

( )
j j i

j i
i

P s s e
s e

P e
ε

φ =            (1) 

For some music styles or performers, it may make sense 
to develop estimates of performance events and score state 
likelihood, especially if the style tends to use a subset of 
the possible pitches. It may, however, be impractical to 
collect meaningful statistics for the full alphabets of score 
states and performance events. In this case, one can save 
significant training time by assuming all emissions in E 
have equal prior probability and all states in S have equal 
prior probability. Given this assumption, the ratio of their 
probabilities is a constant, k, as follows: 

( , ) ( , )j i j is e k s eφ ε=       (2) 

Given an observation sequence, O = o1, o2,…, on, and a 
starting probability distribution σ(sj), we define the alpha 
function for the first as follows: 

1 1( , ) ( , ) ( )j j js o s o sα φ σ=     (3) 
This captures the probability of starting in any given 

state in the model. The alpha function for each subsequent 
observation may be calculated recursively using Equation 
4. Here, the summation captures the likelihood of arriving 
in state sj over all routes through the Markov model of 
length i. 

( )1( , ) ( , ) ( , ) ( , )
k

j i j i k j k i
s S

s o s o s s s oα φ τ α −
∈

= ∑  (4) 

Equation 4, when implemented, will often generate 
underflow errors, as the length of the observation sequence 
increases. We are not interested in the likelihood of the 
overall sequence up to the current observation. We are 
only interested in finding the most likely state when we 
have reached the ith observation in the sequence. Given 
this, we create a state-value function that normalizes state 
probabilities at each observation, avoiding underflow, as 
given in Equation 5.  
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Equation 5 requires that we make an adjustment to 
Equation 4, resulting in Equation 6.  

( )1( , ) ( , ) ( , ) ( , )
k

j i j i k j k i
s S

s o s o s s v s oα φ τ −
∈

= ∑  (6) 

The state with maximal value is then taken to be the 
current location, l, in the model. Thus, the current score 
location is given by Equation 7. 

arg max( ( , ))i i
s S

l v s o
∈

=      (7) 

The normalization in Equation 5 is not possible if the 
observation sequence cannot be generated by the Markov 
model and the probability of being in any state in the 
model is zero. If, for some observation oi, all states have an 
observation probability of zero, the presumption is that the 
performer has played something not in the score. The score 
follower then resets and oi+1 is treated as the initial 
observation, Equation 3 is applied, and score following 
proceeds again from that point. 

The Viterbi algorithm (Rabiner and Juang 1993) is a 
commonly-used alternative to the Forward algorithm. 
Instead of calculating the likelihood of sj given all the 
paths through the model, the Viterbi algorithm estimates 
the probability of only the most likely path through the 
model. Our method can use a Viterbi-style estimation by 
replacing the summation in Equation 6 with the 
maximization in the Equation 8.  
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( )1( , ) ( , ) max ( , ) ( , )
k

j i j i k j k is S
s o s o s s v s oα φ τ −∈

= ⋅  (8) 

While it is often better to favor the most likely path, 
since it gives the alignment output continuity, there are 
subtle differences. For score following, Viterbi must be 
adapted for on-line use, where the best current state may 
be asked for at any time. In the on-line case, Viterbi may 
be more susceptible to "garden-path" errors, where what 
initially appears to be the correct path proves to be 
incorrect only after several additional observations have 
been made. Later in this paper, we compare the on-line 
performance of the Viterbi and Forward methods on the 
corpus.  

The current model architecture 
We wish to create a single model that handles small-

scale formal variation (e.g., the performer skips or repeats 
a note) and large-scale formal variation (e.g., the performer 
skips or repeats a section of the music). By introducing 
specific topological features into our Markov model, we 
cover both situations.  

Consider the following, if the performer skips a single 
score event, this may be modeled with skips in the Markov 
model. Figure 3 shows a hidden Markov model for the first 
eight beats of a written score. This model admits skipped 
or repeated states, as well as allowing for repeats as shown 
in the written score. Here, each state represents a beat. The 
arrows represent allowable transitions between states. This 
model also allows for self loops on every state. The loop 
from the eighth state back to the first state corresponds to 
the repeat sign shown after the eighth beat of the written 
score. 

2 1 3 4 5 6 7 8 

E note 

C  C# D D# E F  F# G  G# A A# B 

Figure 3. An HMM model allowing skips and repetitions 

The histogram in Figure 3 shows the emission 
probability function for the third state in the model, which 
corresponds to the “E” in the written score. Here, the 
height of the bar corresponds to the relative likelihood of 
observing the given pitch class when in the third state of 
the model. The emission probability function for each 
element in the alphabet of possible score states is 
developed before constructing the score model, by analysis 
of a corpus of music performances in the style of the piece 
to be performed (Pardo and Birmingham 2002).  

The following section describes a simple score 
following experiment that compares the use of an HMM 
like that in Figure 3 with the typical string alignment 
algorithms, commonly used for score following. 

A Simple Experiment 
We have asserted that using a Markov model to 

explicitly model branch points in the written score 
improves score following where a performer repeats a 
section an unpredictable number of times. The following 
experiment illustrates this point. 

We created a synthetic corpus, based on well-known 
Jazz pieces, designed to emphasize the effect of adequate 
score-structure representation on the ability of a score 
follower to handle alternate paths through the score that 
are chosen at run-time. The corpus consists of melodic 
lines from 98 Jazz pieces. These range from Bossa Nova 
(Corcovado), to Ballad (What’s New) to Blues (Blue 
Monk), to Swing (Back Home in Indiana), to Jazz Waltz 
(Alice in Wonderland) to modal pieces (Footprints). 

For each piece, the score consisted of the full written 
melody of the piece as shown in the Real Book1, truncated 
to the first 64 beats and encoded as scores in the format of 
the popular music notation program Sibelius. A repeat 
mark was inserted at the end of the 32nd beat of each score. 
This, effectively made each score have form AB, where 
the A section could be repeated an unspecified number of 
times.  

A Markov model with the graph connectivity shown in 
Figure 3 was automatically generated from each score. All 
states in the model were set to an equal initial starting 
probability. Each state represented a single beat. At each 
beat, the Markov model could either repeat the state, move 
on to the next state, or skip forward two states. For this 
experiment, the transition probability for moving forward a 
single state was 0.5, while those of repeating and skipping 
forward two states were each 0.25. At the end of state 32 
(the 32nd beat), there was an additional connection back to 
the first state (the repeat of the A section). 

For each score, we created four MIDI performances: one 
that performed the A section once, another that performed 
it twice, a third that performed it three times and a final 
performance that skips the section entirely. We then 
followed the performance using the on-line modification of 
the Forward algorithm, the on-line modification of the 
Viterbi algorithm, an on-line local string matcher, and an 
on-line global string matcher used by a variety of 
researchers (Dannenberg 1984; Dannenberg and Mont-
Reynaud 1987; Puckette 1995; Desain, Honing et al. 
1997). 

String matchers find the best alignment between two 
strings (sequences) by finding the lowest cost 
transformation of one into the other, in terms of operations 
                                                 
1 The Real Book is a standard, albeit illegal (with no publisher or author 
information), compendium of Jazz lead sheets, used by professional Jazz 
musicians. 
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(insertion or deletion of characters). Such matchers are all 
based on similar techniques and are the “classic” score 
following approach. Dynamic-programming based 
implementations that search for a good alignment of two 
strings have been used for over 30 years to align gene 
sequences based on a common ancestor (Needleman and 
Wunsch 1970). Global String alignment requires every 
element of the performance to be accounted for in an 
alignment to the full score. Local string alignment allows 
matching of a substring of the performance to any portion 
of the score (Pardo and Birmingham 2002). 

The string matchers were unable to use the repeat 
information in the score file and thus always expected a 
performance with no repeat. Given this, one would expect 
the performance of both string matchers to degrade 
whenever the A section was presented an unexpected 
number of times, while the Markov models should 
maintain roughly similar performance, regardless of the 
number of repeats. The case where the initial section is 
skipped entirely should favor both Markov model 
approaches and the local string matcher. 
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Figure 4. Mean score-follower error, by algorithm  

Figure 4 shows the score tracking errors generated in 
this experiment. Within each group, “F” stands for the 
Forward algorithm, “V” stands for the Viterbi algorithm, 
“L” stands for local string alignment, and “G” stands for 
global string alignment. Each column shows a box plot 
with lines at the lower quartile, median, and upper quartile 
values. The whiskers are lines extending from each end of 
the box to show the extent of the rest of the data. Outliers 
are indicated by plus symbols beyond the ends of the 
whiskers. All values indicate mean distance (in beats) 
between the correct location in the score and the location 

reported by the score follower over the course of a 
performance, or group of performances. Below each box 
plot is the mean error for all cases. 

The “play once” group in Figure 4 corresponds to the 
case where the number of repetitions is known beforehand. 
In this case, both string alignment approaches work 
perfectly (assuming one begins at the start of the piece), 
while the Markov models occasionally make a wrong 
choice at a repeat and take some time to recover, with the 
Forward algorithm performing worse than Viterbi.  

Once the number of repeats increases, the benefits of 
explicit representation of score structure become clear. 
Both the string matching methods get lost for extended 
periods in the “play twice” and “play thrice” conditions, 
resulting in average position estimates that are many beats 
away from the correct location. Both the Forward and 
Viterbi-based followers stay within an average of two 
beats under all conditions, with the Viterbi performing 
slightly better, on average. 

When the first section is skipped entirely, the global 
string alignment method fails. Both methods based on the 
HMM and the local string alignment method do 
significantly better, with methods based on the Markov 
model doing better than local string alignment. 

Summary and Conclusions 
We have described a score representation designed to 

handle the large-scale form variation often found in live 
performances of many styles of music. Our representation 
explicitly models those elements of a musical score that 
indicate repeats and jumps to different sections (coda 
symbols), and thus possible changes in form. From these 
elements, we induce a Markov model that allows us to 
accurately follow a live performance, using the on-line 
modification of either the Forward or the Viterbi 
algorithm. The model is generated automatically from the 
score, and can be used without training on a corpus of 
performances of the score in question. This is a significant 
advance in score following technology. 

The experimental results in this paper show that 
explicitly representing branch points in a score 
significantly improves score following when the form a 
performer may take is not known beforehand and that the 
on-line Viterbi algorithm performs best on the 
performance corpus assembled for this paper.  
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