

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

Modeling Form for On-line Following of Musical Performances

Bryan Pardo1 and William Birmingham2

1Computer Science Department, Northwestern University, 1890 Maple Ave, Evanston, IL 60201

2Department of Math and Computer Science, Grove City College, 100 Campus Drive, Box 3123, Grove City, PA 16127
pardo@northwestern.edu, wpbirmingham@gcc.edu

Abstract
Automated musical accompaniment of human performers
often requires an agent be able to follow a musical score
with similar facility to that of a human performer. Systems
described in the literature represent musical scores in a way
that assumes no large-scale structural variation of the piece
during performance. If the performer deviates from the
expected path by skipping or repeating a section, the system
may become lost. We describe a way to automatically
generate a Markov model from a written score that models
the score form, and an on-line algorithm to align a
performance to a score. The resulting system can follow
performances that take alternate paths through the score
without losing its place. We compare the performance of
our system to that of sequence-based score followers on a
melodic corpus of 98 Jazz melodies. Results show that
explicitly representing the branching structure of a score
significantly improves score following when the branch a
performer may take is unknown beforehand.

Introduction
Automated musical accompaniment that reacts naturally

to the human performer is a long-standing goal of a
number of computer-music researchers (Grubb and
Dannenberg 1994, Dannenberg 1984; Bloch and
Dannenberg 1985; Toiviainen 1998; Raphael 1999). The
ideal is a peer musician that can be integrated into an
ensemble of human players with minimal need for the
humans to adjust their interaction styles to accommodate
the computer performer. For many styles of music, this
requires an agent that is able to follow a representation of a
written score with similar facility to that of a human
performer. Systems that perform this function are called
score matchers or score followers.

Figure 1 shows a simple case of score following. The
top portion of the figure contains a simple written lead
sheet, or score. A musician performs a score by translating
the note, chord, key, and other symbols into a sequence of
performance actions (depress piano key k at time t with
velocity v, for example). These actions result in a sequence
of events that make the performance. In computer score
following, the performance is often encoded as MIDI
(MIDI-Manufacturers-Association 1996). Figure 1 shows

 Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

an example MIDI performance of the written score. This is
shown in piano roll notation. Here, each bar represents a
note. The horizontal placement of the note represents the
onset time. The vertical placement of the note represents
the pitch. Note duration is indicated by the length of a bar.

 WRITTEN SCORE

MIDI PERFORMANCE

Pi
an

o
K

ey

CURRENT SCORE LOCATION

You are here

 C E C F D C G D

TRANSCRIPTION

ALIGNMENT

 C E C F D C G D

Figure 1. Score Following

Score following can be broken down into transcription
and alignment (also known as matching). Transcription
involves parsing the performance into a sequence of salient
events. In Figure 1, transcription consists of encoding each
MIDI note-on event as a simple pitch class, drawn from
the set of twelve pitch classes used in Western music.

Matching consists of finding the best alignment between
the sequence of events in the performance transcription

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

and the events in the score. Typically, these events are
single notes, although they may also be lyrics, percussion
sounds, or groups of notes. A score follower, unless
otherwise stated, is presumed to align the performance to
the score in real-time as the performance takes place.

Because of the difficulty of dealing with polyphonic
MIDI and audio, researchers (Dannenberg 1984;
Dannenberg and Mont-Reynaud 1987; Puckette and Lippe
1992; Large 1993; Puckette 1995; Vantomme 1995;
Desain, Honing et al. 1997; Grubb and Dannenberg 1997)
generally restrict matching to a monophonic score that
(nearly) completely specifies the pitch and ordering of
every note. For the sake of simplicity, information in the
score about key, meter, dynamics, and song structure is
ignored, leaving a simple sequence of note on and off
events.

The standard practice for score following (Vantomme
1995; Desain, Honing et al. 1997; Grubb and Dannenberg
1997) is to linearize a score by removing structural branch
points (e.g., repeats, codas, etc.) before the performance
begins. This effectively limits the performance to a single
path through the form that is not changeable during
performance.

Thus, existing score followers require fixing, a priori,
how the repeats in a score, like that in Figure 2, would be
handled by the musicians. The performers would have to
agree on repeating (at the end of measure two) once and
then going on to the end. The musicians would then be
prohibited from altering the path during performance.

In many live performance situations, musicians repeat or
skip a section in response to the needs of the moment.
Musicians often extend a piece to let dancers who are
enjoying the music continue dancing, or shorten a piece
(perhaps by skipping an introductory section) when they
are running behind schedule. In these cases, existing score
followers cannot adapt to the changing performance
situation.

When a score contains repeats and particularly when the
form is variable (e.g., the form may be ABA or AABA or
any permutation depending on the whim of the performers)
a score representation that does not allow branch points is
undesirable. To account for variability in form, we need to
extend the score model to represent structural score
elements that affect the form, such as repeats and codas.

In this paper, we introduce a new method for
representing large-scale form in score following. Our
representation is based on Markov models, which allow us
to both capture the form of a piece implied by the score, as
well as reason probabilistically about how a performer is
moving through the piece. The system can then model
performances that may start anywhere in the form and
repeat or skip sections (as specified by the score) a non-
predetermined number of times. This greatly expands the
types of music amenable to automatic score following.

The remainder of this paper describes Markov models,
shows how one may follow a variable-form performance
using Markov models, and compares Markov model score
followers to string matching based followers, using a
corpus of 98 Jazz melodies.

Music Scores as Markov Models
A Markov model describes a process that goes through a

sequence of discrete states, such as notes or chords in a
lead sheet. The model is a weighted automaton that
consists of:
• A set of states, S = {s1, s2, s3,…, sn}
• SE, a subset of S containing the legal ending states. As a

default SE=S
• A set of possible emissions, E={e1, e2,…, en}
• A transition function, τ(si, sj), that specifies the

probability of a transition to sj, from si
• A function, σ(si), that defines the probability of

beginning in si
• An emission function ε(sj, ei), that defines the

probability state sj will emit ei.

C F G7 A C G7 D C 1 1 .3 1 1 1

.7

.7

.3

Figure 2. A score as a directed graph (Markov model)

Markov models are generative. A generative model
describes an underlying structure able to emit a sequence
of observed events. A musical score may be represented as
a (hidden) Markov model. The directed graph in Figure 2
shows a Markov model created from the chord labels in the
score passage in the figure. Nodes represent chords in the
score. Directed edges (arrows) represent transitions.
Repeats and skips (codas) in the score are represented by
directed edges connecting distant portions of the score
model. Transition probabilities are indicated by a value
associated with each edge.

An observation sequence, O = o1, o2,…, on, is a
sequence of events drawn from the emission alphabet, E.
Relating this to music, the sequence of musical events
(notes, chords, etc.) generated by the performer is the
observation sequence generated in response to the score.

The emission function ε(sj, ei) defines the probability
that state sj will emit ei. For a music performance, this is
equivalent to the probability the jth item in the score (a
chord symbol) would elicit the ith performance event (a
chord voicing on the piano). A Markov model is called a
hidden Markov model, or HMM, when it has at least one
state whose emission function is non-zero for multiple
elements of the emission alphabet. An example would be a
chord symbol that maps onto multiple chord voicings.

In our approach, the emission function is determined
beforehand through an empirical study of the likelihood of
performance events, given each score state. Good
estimation of the emission function lets a system model a
variety of possible causes for variable performance output
in response to score states, including production errors

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

(cracked notes, poor pitch control), transcription errors,
and intentional variation (alternate voicings).

For example, we calculate a note-based emission
probability function ε(sj, ei) for an alto saxophonist by
recording the musician and automatically transcribing his
performance of an assigned set of chromatic scales and
chord arpeggios. The resulting count of associations
between performed pitch and transcribed pitch is used to
estimate ε(sj, ei) (Pardo and Birmingham 2002). In another
study (Pardo 2005), we estimate the likelihood a set of
performance notes mapping onto a chord symbol in the
score through empirical study of the performances of a
Jazz pianist on a known sequence of chord symbols. The
associations learned in this training phase can then be used
to estimate ε(sj, ei) where the score element is a chord
name and the performance emission is a set of notes.

Using state transition values derived from the score and
emission probabilities based on prior training allows the
construction of score models without the need to train the
model on a set of performances of that score prior to use.
This lets the system function on performances of scores it
has never “heard” before.

Finding the current state in the model
For score following, we want to know the most likely

current state in the score model, given the observation
sequence. To find the most likely current state, we modify
the Forward-Backward algorithm (Rabiner and Juang
1993) for real-time score following. Our approach is
distinct from the standard algorithm, in that it is designed
to work on an in-progress sequence (a live performance),
rather than a completed sequence. Thus, we use only
causal information.

The emission function ε(sj, ei) gives the probability that
state sj will emit ei. We define the observation function,
φ(sj, ei) as the probability of being in sj when observing ei.
Equation 1 follows directly from Bayes’ theorem. Here,
P(ei) is the prior expected probability of the ith
performance event and P(sj) is the prior probability of the
jth score state.

() (,)
(,)

()
j j i

j i
i

P s s e
s e

P e
ε

φ = (1)

For some music styles or performers, it may make sense
to develop estimates of performance events and score state
likelihood, especially if the style tends to use a subset of
the possible pitches. It may, however, be impractical to
collect meaningful statistics for the full alphabets of score
states and performance events. In this case, one can save
significant training time by assuming all emissions in E
have equal prior probability and all states in S have equal
prior probability. Given this assumption, the ratio of their
probabilities is a constant, k, as follows:

(,) (,)j i j is e k s eφ ε= (2)

Given an observation sequence, O = o1, o2,…, on, and a
starting probability distribution σ(sj), we define the alpha
function for the first as follows:

1 1(,) (,) ()j j js o s o sα φ σ= (3)
This captures the probability of starting in any given

state in the model. The alpha function for each subsequent
observation may be calculated recursively using Equation
4. Here, the summation captures the likelihood of arriving
in state sj over all routes through the Markov model of
length i.

()1(,) (,) (,) (,)
k

j i j i k j k i
s S

s o s o s s s oα φ τ α −
∈

= ∑ (4)

Equation 4, when implemented, will often generate
underflow errors, as the length of the observation sequence
increases. We are not interested in the likelihood of the
overall sequence up to the current observation. We are
only interested in finding the most likely state when we
have reached the ith observation in the sequence. Given
this, we create a state-value function that normalizes state
probabilities at each observation, avoiding underflow, as
given in Equation 5.

(,)
(,)

(,)
k

j i
j i

k i
s S

s o
v s o

s o
α

α
∈

=
∑ (5)

Equation 5 requires that we make an adjustment to
Equation 4, resulting in Equation 6.

()1(,) (,) (,) (,)
k

j i j i k j k i
s S

s o s o s s v s oα φ τ −
∈

= ∑ (6)

The state with maximal value is then taken to be the
current location, l, in the model. Thus, the current score
location is given by Equation 7.

arg max((,))i i
s S

l v s o
∈

= (7)

The normalization in Equation 5 is not possible if the
observation sequence cannot be generated by the Markov
model and the probability of being in any state in the
model is zero. If, for some observation oi, all states have an
observation probability of zero, the presumption is that the
performer has played something not in the score. The score
follower then resets and oi+1 is treated as the initial
observation, Equation 3 is applied, and score following
proceeds again from that point.

The Viterbi algorithm (Rabiner and Juang 1993) is a
commonly-used alternative to the Forward algorithm.
Instead of calculating the likelihood of sj given all the
paths through the model, the Viterbi algorithm estimates
the probability of only the most likely path through the
model. Our method can use a Viterbi-style estimation by
replacing the summation in Equation 6 with the
maximization in the Equation 8.

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

()1(,) (,) max (,) (,)
k

j i j i k j k is S
s o s o s s v s oα φ τ −∈

= ⋅ (8)

While it is often better to favor the most likely path,
since it gives the alignment output continuity, there are
subtle differences. For score following, Viterbi must be
adapted for on-line use, where the best current state may
be asked for at any time. In the on-line case, Viterbi may
be more susceptible to "garden-path" errors, where what
initially appears to be the correct path proves to be
incorrect only after several additional observations have
been made. Later in this paper, we compare the on-line
performance of the Viterbi and Forward methods on the
corpus.

The current model architecture
We wish to create a single model that handles small-

scale formal variation (e.g., the performer skips or repeats
a note) and large-scale formal variation (e.g., the performer
skips or repeats a section of the music). By introducing
specific topological features into our Markov model, we
cover both situations.

Consider the following, if the performer skips a single
score event, this may be modeled with skips in the Markov
model. Figure 3 shows a hidden Markov model for the first
eight beats of a written score. This model admits skipped
or repeated states, as well as allowing for repeats as shown
in the written score. Here, each state represents a beat. The
arrows represent allowable transitions between states. This
model also allows for self loops on every state. The loop
from the eighth state back to the first state corresponds to
the repeat sign shown after the eighth beat of the written
score.

2 1 3 4 5 6 7 8

E note

C C# D D# E F F# G G# A A# B

Figure 3. An HMM model allowing skips and repetitions

The histogram in Figure 3 shows the emission
probability function for the third state in the model, which
corresponds to the “E” in the written score. Here, the
height of the bar corresponds to the relative likelihood of
observing the given pitch class when in the third state of
the model. The emission probability function for each
element in the alphabet of possible score states is
developed before constructing the score model, by analysis
of a corpus of music performances in the style of the piece
to be performed (Pardo and Birmingham 2002).

The following section describes a simple score
following experiment that compares the use of an HMM
like that in Figure 3 with the typical string alignment
algorithms, commonly used for score following.

A Simple Experiment
We have asserted that using a Markov model to

explicitly model branch points in the written score
improves score following where a performer repeats a
section an unpredictable number of times. The following
experiment illustrates this point.

We created a synthetic corpus, based on well-known
Jazz pieces, designed to emphasize the effect of adequate
score-structure representation on the ability of a score
follower to handle alternate paths through the score that
are chosen at run-time. The corpus consists of melodic
lines from 98 Jazz pieces. These range from Bossa Nova
(Corcovado), to Ballad (What’s New) to Blues (Blue
Monk), to Swing (Back Home in Indiana), to Jazz Waltz
(Alice in Wonderland) to modal pieces (Footprints).

For each piece, the score consisted of the full written
melody of the piece as shown in the Real Book1, truncated
to the first 64 beats and encoded as scores in the format of
the popular music notation program Sibelius. A repeat
mark was inserted at the end of the 32nd beat of each score.
This, effectively made each score have form AB, where
the A section could be repeated an unspecified number of
times.

A Markov model with the graph connectivity shown in
Figure 3 was automatically generated from each score. All
states in the model were set to an equal initial starting
probability. Each state represented a single beat. At each
beat, the Markov model could either repeat the state, move
on to the next state, or skip forward two states. For this
experiment, the transition probability for moving forward a
single state was 0.5, while those of repeating and skipping
forward two states were each 0.25. At the end of state 32
(the 32nd beat), there was an additional connection back to
the first state (the repeat of the A section).

For each score, we created four MIDI performances: one
that performed the A section once, another that performed
it twice, a third that performed it three times and a final
performance that skips the section entirely. We then
followed the performance using the on-line modification of
the Forward algorithm, the on-line modification of the
Viterbi algorithm, an on-line local string matcher, and an
on-line global string matcher used by a variety of
researchers (Dannenberg 1984; Dannenberg and Mont-
Reynaud 1987; Puckette 1995; Desain, Honing et al.
1997).

String matchers find the best alignment between two
strings (sequences) by finding the lowest cost
transformation of one into the other, in terms of operations

1 The Real Book is a standard, albeit illegal (with no publisher or author
information), compendium of Jazz lead sheets, used by professional Jazz
musicians.

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

(insertion or deletion of characters). Such matchers are all
based on similar techniques and are the “classic” score
following approach. Dynamic-programming based
implementations that search for a good alignment of two
strings have been used for over 30 years to align gene
sequences based on a common ancestor (Needleman and
Wunsch 1970). Global String alignment requires every
element of the performance to be accounted for in an
alignment to the full score. Local string alignment allows
matching of a substring of the performance to any portion
of the score (Pardo and Birmingham 2002).

The string matchers were unable to use the repeat
information in the score file and thus always expected a
performance with no repeat. Given this, one would expect
the performance of both string matchers to degrade
whenever the A section was presented an unexpected
number of times, while the Markov models should
maintain roughly similar performance, regardless of the
number of repeats. The case where the initial section is
skipped entirely should favor both Markov model
approaches and the local string matcher.

F V L G F V L G F V L G F V L G

0

5

10

15

20

25

30

35

40

45

M
ea

n
er

ro
r i

n
be

at
s

Alignment algorithm

skip 1st section play once play twice play thrice

3 3.2 4.3 33.7 0.7 0.2 0 0 1.7 1 13.2 16 2.1 1.5 20.2 24.1

Figure 4. Mean score-follower error, by algorithm

Figure 4 shows the score tracking errors generated in
this experiment. Within each group, “F” stands for the
Forward algorithm, “V” stands for the Viterbi algorithm,
“L” stands for local string alignment, and “G” stands for
global string alignment. Each column shows a box plot
with lines at the lower quartile, median, and upper quartile
values. The whiskers are lines extending from each end of
the box to show the extent of the rest of the data. Outliers
are indicated by plus symbols beyond the ends of the
whiskers. All values indicate mean distance (in beats)
between the correct location in the score and the location

reported by the score follower over the course of a
performance, or group of performances. Below each box
plot is the mean error for all cases.

The “play once” group in Figure 4 corresponds to the
case where the number of repetitions is known beforehand.
In this case, both string alignment approaches work
perfectly (assuming one begins at the start of the piece),
while the Markov models occasionally make a wrong
choice at a repeat and take some time to recover, with the
Forward algorithm performing worse than Viterbi.

Once the number of repeats increases, the benefits of
explicit representation of score structure become clear.
Both the string matching methods get lost for extended
periods in the “play twice” and “play thrice” conditions,
resulting in average position estimates that are many beats
away from the correct location. Both the Forward and
Viterbi-based followers stay within an average of two
beats under all conditions, with the Viterbi performing
slightly better, on average.

When the first section is skipped entirely, the global
string alignment method fails. Both methods based on the
HMM and the local string alignment method do
significantly better, with methods based on the Markov
model doing better than local string alignment.

Summary and Conclusions
We have described a score representation designed to

handle the large-scale form variation often found in live
performances of many styles of music. Our representation
explicitly models those elements of a musical score that
indicate repeats and jumps to different sections (coda
symbols), and thus possible changes in form. From these
elements, we induce a Markov model that allows us to
accurately follow a live performance, using the on-line
modification of either the Forward or the Viterbi
algorithm. The model is generated automatically from the
score, and can be used without training on a corpus of
performances of the score in question. This is a significant
advance in score following technology.

The experimental results in this paper show that
explicitly representing branch points in a score
significantly improves score following when the form a
performer may take is not known beforehand and that the
on-line Viterbi algorithm performs best on the
performance corpus assembled for this paper.

Acknowledgments
The majority of this research was conducted at The

University of Michigan, Ann Arbor, with partial support
from the National Science Foundation under grant IIS-
0085945. The opinions in this paper are solely those of the
authors and do not necessarily reflect the opinions of the
funding agency. We also thank Roger Dannenberg for
comments on various sections of this work.

Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, July 9-13, 2005

References

Bloch, J. and R. D. Dannenberg (1985). Real-Time
Computer Accompaniment of Keyboard Performances.
International Computer Music Conference.

Dannenberg, R. (1984). An On-Line Algorithm for Real-
Time Accompaniment. International Computer Music
Conference.

Dannenberg, R. and B. Mont-Reynaud (1987). Following
an Improvisation in Real Time. International Computer
Music Conference.

Desain, P., H. Honing, et al. (1997). Robust Score-
Performance Matching: Taking Advantage of Structural
Information. International Computer Music Conference.

Grubb, L. and R. Dannenberg (1994), Automated
Accompaniment of Musical Ensembles. Proceedings of the
Twelfth National Conference on Artificial Intelligence,
AAAI, pp. 94-99

Grubb, L. and R. Dannenberg (1997). A Stochastic
Method of Tracking a Vocal Performer. International
Computer Music Conference.

Large, E. W. (1993), Dynamic Programming for the
Analysis of Serial Behaviors. Behavior Research Methods,
Instruments and Computers 25(2): 238-241.

MIDI-Manufacturers-Association (1996). The Complete
MIDI 1.0 Detailed Specification. Los Angeles, CA, The
MIDI Manufacturers Association.

Needleman, S. B. and C. D. Wunsch (1970). A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular
Biology 48: 443-453.

Pardo, B. (2005). Probabilistic Sequence Alignment
Methods for On-line Score Following of Music
Performances, Doctoral Dissertation, Electrical
Engineering and Computer Science. University of
Michigan: Ann Arbor, MI.

Pardo, B. and W. Birmingham (2002). Improved Score
Following for Acoustic Performances. International
Computer Music Conference (ICMC), Goteborg, Sweden.

Puckette, M. (1995). Score following using the sung voice.
International Computer Music Conference.

Puckette, M. and C. Lippe (1992). Score Following In
Practice. International Computer Music Conference.

Rabiner, L. and B.-H. Juang (1993). Fundamentals of
Speech Recognition. Englewood Cliffs, New Jersey,
Prentice-Hall.

Raphael, C. (1999). Automatic Segmentation of Acoustic
Musical Signals Using Hidden Markov Models. IEEE
Transactions on Pattern Analysis and Machine
Intelligence 21(4): 360-370.

Toiviainen, P. (1998). An Interactive MIDI Accompanist.
Computer Music Journal 22(4): 63-75.

Vantomme, J. (1995). Score Following by Temporal
Pattern. Computer Music Journal 19(3): 50-59.

