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Abstract

Sperm whales communicate in short sequences of clicks known as codas. We
present WhAM (Whale Acoustics Model), the first transformer-based model capa-
ble of generating synthetic sperm whale codas from any audio prompt. WhAM is
built by finetuning VampNet, a masked acoustic token model pretrained on musical
audio, using 10k coda recordings collected over the past two decades. Through
iterative masked token prediction, WhAM generates high-fidelity synthetic codas
that preserve key acoustic features of the source recordings. We evaluate WhAM’s
synthetic codas using Fréchet Audio Distance and through perceptual studies with
expert marine biologists. On downstream classification tasks including rhythm,
social unit, and vowel classification, WhAM’s learned representations achieve
strong performance, despite being trained for generation rather than classification.
Our code is available athttps://github.com/Project-CETI/wham

1 Introduction

Understanding the communication of sperm whales (Physeter macrocephalus) is among the most
fascinating questions in animal behavioral studies.

Sperm whales communicate using codas—short sequences of clicks that vary in number, rhythm,
and tempo [[Watkins and Schevill, 1977, |Weilgart and Whitehead, |1993} |Sharma et al.,|2024a]]. They
live in stable, female-led social units that form larger vocal clans based on dialect [Rendell and
‘Whitehead| |2003]]. That is, the dialect of a social unit determines its clan, with social units associating
exclusively with other units from their clan [Gero et al.,2016al]. Furthermore, dialects are believed
to be learned socially rather than inherited genetically [Cantor and Whitehead, 2015, Rendell et al.,
2012].

The complexity of these learned vocal patterns has motivated new computational approaches to
understanding codas and their functionality. [Leitao et al.|[2024]] modeled codas as (variable-length)
Markov chains, revealing new patterns of inter-clan social learning. Begus et al.|[2025]] study vowel-
like spectral properties of codas, which were initially suggested by interpreting the codebook of a
Generative Adversarial Network (GAN). Most recently, Sharma et al.|[2024b] trained a transformer
on click timings (inter-click intervals), which is able to predict codas in an exchange based on
long-term dependencies, as well as future diving behavior. These studies collectively highlight how

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/Project-CETI/wham

WhAM

Figure 1: Left: WhAM is trained by finetuning VampNet [Garcfa et al.| 2023]], an audio-to-audio
transformer pretrained on a large music dataset (a). Namely, we perform domain adaptation (b)
on animal vocalizations followed by species-specific finetuning (c) on a novel sperm whale coda
dataset. Right: WhAM synthesizes context-aware variations (d) of input codas and acoustically
translates (e) natural and (f) artificial audio into coda-like audio. Illustration © Alex Boersma 2025.

machine learning—particularly transformer architectures—can decode patterns imperceptible to
traditional methods.

Transformers [Vaswani et al} [2017] originated in natural language translation, where they revolution-
ized the field by enabling high-quality, context-aware machine translation. Whereas transformers
have since become ubiquitous across machine learning (e.g. [Chen et al|[2021] [Khan et al.|[2022]
Moussad et al|2023)), in this work we propose again to use transformers towards translation—of
animal communication.

While transformers have been used in settings where parallel data is nonexistent
and for translation from audio 2021]), applying these advances to animal
communication presents deep challenges. Even merely defining the problem has been the subject of
studies spanning theoretical computer science [Goldwasser et al.,2023]], biology [Yovel and Rechavi,

[2023] [Amphaeris et al,[2023]], linguistics [Berwick and Chomsky} 2016}, [Amphaeris et al., 2022], and
philosophy [Suzuki et al.l|2020, Hobaiter et al., 2022].

Existing approaches to modeling sperm whale codas have made significant advances. [Bermant
[2019] developed effective methods for coda detection and classification, while generative
models based on GANs [Begu$ et all, 2023, [Kopets et all, 2024] have shown the potential for
synthesizing coda-like audio. The aforementioned timing-based analyses of [Leitao et al. [2024],
Sharma et al.|[2024b] have yielded new insight into the social and behavioral aspects of sperm whale
communication.

Our work will address challenges left open by these works: While GAN-based models can generate
coda-like audio [Begus et al., [2023] [Kopets et al.| [2024]], they cannot easily condition on a given
context. Timing-based approaches [Leitao et al., 2024} [Sharma et al.l 2024b] capture important
temporal patterns but may miss features only present in the raw audio, such as the recently discovered
vowel-like spectral patterns 2025]]. Moreover, current methods train separate models
for classification [Bermant et al.,2019]] and generation, despite the intuition that a model capable of
realistic generation should also learn representations useful for classification. Lastly, none of these
tackled the issue of translating across acoustic domains.

To address these challenges, we introduce the Whale Acoustics Model (WhAM, Figure EI), a new
approach to modeling sperm whale codas that unifies three capabilities:

* Acoustic translation:ﬂ WhAM can translate an audio prompt (e.g. other animal vocal-
izations or even noise) into the acoustic style of sperm whale codas, acting as a form of
cross-domain style transfer.

* Generation: WhAM can generate novel “pseudocodas” that are perceptually similar to real
codas, as evaluated by expert listeners.

"'We emphasize that translation is in the acoustic sense; semantic translation remains a distinct and more
ambitious goal.



* Classification: WhAM’s learned representations are useful for a range of classification
tasks, including rhythm type [Sharma et al., |2024a]], social unit classification [Best,|1979,
Christal and Whitehead), 2001} |Gero et al.,2016b]], and the recently discovered vowel-like
spectral patterns of Begus et al.|[2025]—despite being trained primarily for generation.

Contributions. This paper presents the first unified model of sperm whale codas capable of acoustic
translation, generation, and classification. Notably, WhAM demonstrates that meaningful bioacoustic
features emerge from purely generative training, aligning with recent work on self-supervised (non-
generative) modeling of animal vocalizations [Hagiwaral 2023]].

WhAM serves as a proof of concept, applying advances in neural audio modeling to bioacoustics in
a novel and unifying way. To facilitate further research, we will release the model and its training
and evaluation code. Remarkably, WhAM achieves strong results after just five days of training on
a single GPU. While the dataset is small compared to those used for large audio models [Borsos
et al.| |2023| |Agostinell: et al., |2023]], our results suggest that scaling up could yield even greater
improvements.

Finally, WhAM was developed in close collaboration with marine biologists and underwater acous-
ticians with domain expertise in sperm whale vocalizations. The model was evaluated through
perceptual studies conducted by an interdisciplinary team of specialists. To our knowledge, this is the
first paper to evaluate the perception of experts on synthetically generated codas, igniting a crucial
discourse for validating the utility of generative models in bioacoustics research. Code, model, and
data are available at https://github.com/Project-CETI/wham

Outline. Section[2]reviews related work. Section [3details our methodological framework. Section[4]
presents experimental results and expert analysis. Section [5|discusses future work.

2 Related work

Audio Generation. The vast majority of studies on deep generative audio models focus on human
speech or music (e.g. [van den Oord et al|2016, |Dong et al.|2018| [Dhariwal et al.[|2020| [Lakhotia
et al.[2021] |Agostinelli et al.|2023). Some works are dedicated to generating the vocalizations of
animals (bioacoustics) such as birds [Bhatia and Kinnunen, 2022 |Guei et al., [2024]], mice [Reilly
et al., 2023]], cetaceans [Bergler et al.,[2022, Zhang et al., 2022, |Honghui and Lanhaol 2022} [Kim
et al.,2024]], and in particular sperm whales [Begus et al.| [2023| Kopets et al.,2024]]. However, to our
knowledge, all techniques for bioacoustic generation are based on generative adversarial networks
(GANSs). Unlike our transformer-based WhAM, GANSs do not allow for conditioning on context in
the form of an audio prompt. We emphasize that WhAM enables translation of input sounds into
the acoustic style of sperm whale vocalizations, operating purely at the signal level. This is distinct
from semantic translation between communication systems, which remains a far more ambitious goal
requiring a deep understanding of animal cognition and communication (e.g. |Goldwasser et al.[2023|
Yovel and Rechavi|2023| |Amphaeris et al.[2023).

Animal Vocalization Modeling. Deep learning techniques have been applied towards other, non-
generative, ends in bioacoustics research. Learned audio representations have been used for species
recognition |Chen et al.| [2014]], [Hafemann et al.|[2014], Xu et al.| [2019]], [Kahl et al.|[2021]], Xie
et al.|[2023]] and automatic annotation (i.e., vocalization detection and classification) of bioacoustic
data Bergler et al.| [2019], |Coffey et al.[[2019]], Bermant et al.| [2019]], Premoli et al.|[2021]]. AVES
[Hagiwara, [2023]] utilizes HuBERT’s [Hsu et al., [2021] self-supervised learning framework towards
state-of-the-art performance in species classification and detection tasks. While AVES demonstrates
the power of learned audio representations, its encoder-only architecture limits it to analysis tasks, con-
trasting with WhAM’s generative capabilities. As we show in Section[d.3] while AVES outperforms
WhAM on classification tasks as expected given its specialized design, WhAM still learns meaningful
representations as a byproduct of its generative training, outperforming baseline approaches despite
having a different primary objective.

Sperm whale communication. Understanding sperm whale communication has been a central
challenge in marine biology for over six decades (Backus and Schevill||[1966, Watkins and Schevill
1977, Whitehead and Weilgart|1991} [Andreas et al.|2022; see also Appendix [B). Recent computa-
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tional approaches have focused on analyzing click timing patterns within codas and do not directly
address the acoustic properties of individual clicks within codas [Sharma et al.| [2024a, |Leitao et al.,
2024, |Sharma et al.| |2024b]. WhAM extends this computational trajectory by enabling systematic
manipulation of click acoustics, potentially allowing a quantitative analysis of acoustic variations
between clan dialects and investigation of features that make codas recognizable. While WhAM’s
synthetic codas may not yet match the quality needed for playback experiments, WhAM represents
progress towards stimuli generation in a responsible behavioral study (Tyack][1983| |Deecke|2006|
King and Jensen|[2023], see also Appendix [A).

3 Methods

3.1 Masked Acoustic Token Modeling with VampNet

VampNet |Garcia et al.|[2023] is an audio-to-audio generative model, pretrained on 797k music tracks
from thousands of artists. VampNet consists of three neural models: a tokenizer, a coarse-token
model, and a coarse-to-fine model. For simplicity of presentation we will avoid the distinction
between coarse and fine tokens, instead decomposing VampNet into an Acoustic Tokenizer and a
Masked Acoustic Token Model. The reader is referred to|Garcia et al.| [2023]] for full details of the
model, and Appendix [E.2|for a specification of hyperparameters used in training WhAM.

Acoustic Tokenizer. The tokenizer takes as input an Nge.-second audio snippet sampled at Ngam,
Hz, and outputs a sequence of ¢ discrete tokens from a finite vocabulary ¥. A jointly-trained
detokenizer will convert token sequences back into audio:

T RNVsecXNsam _y $¢
T71: B¢ — RNeeeXNeam,

VampNet uses a residual vector quantization approach known as the Descript Audio Codec (DAC,
Kumar et al.[2023). At a high level, audio is tokenized in a temporal and hierarchical fashion, such
that each interval of samples is replaced with a “stack” of tokens; this means that neighboring stacks
of tokens correspond to contiguous intervals of samples in the audio. For example, the first five token
stacks (o1, ..., 05) could correspond to the first 0.5 seconds of audio.

Masked Acoustic Token Model (MATM). A bidirectional transformer M is trained to perform
the cloze task on acoustic token sequences. That is, each audio snippet in the pretraining dataset
is tokenized, and then a bidirectional transformer is trained to predict a random subset of masked
tokens.

M: (S U {[MASK]})® — xf

A pretrained MATM can be finetuned in various ways. Following |Garcia et al.|[2023]], we finetune
using Low Rank Adaptation (LoRA, [Hu et al.[2022).

Generation. After training a tokenizer T, detokenizer 7' and a (possibly finetuned) MATM
M, VampNet can be used to generate variations of given “prompt” audio snippets. This is done
in the natural way, by randomly masking the tokenized audio; importantly, the masking scheme
used in generation time does not need to be uniformly random. For example, the scheme can
leave (classically-detected) beats unmasked, so as to preserve the rhythm of the prompt. Rather
than generating all masked tokens simultaneously (e.g. as in BERT, Devlin et al.2019), VampNet
uses iterative parallel decoding [Chang et al.,|2022]] wherein tokens are gradually “unmasked” in a
sequence of forward passes through the model.

3.2 Data
WhAM is trained by finetuning VampNet (Section[3.1)) on various datasets.

FSD. The Freesound Dataset [Font et al., 2013] consists of 50k human-labeled recordings. We used
recordings with the animal tag, which totaled 7h45m of audio.

AudioSet. A dataset of two million human-labeled audio clips taken from YouTube [[Gemmeke
et al.,[2017al]. Of these, we used audio with the animal tag, totaling at about 5 hours.
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Figure 2: Overview of VampNet’s generation pipeline. Input audio is first converted into a grid of
tokens by the Tokenizer. These tokens are then partially masked to create a prompt. The Masked
Acoustic Token Model (MATM) uses parallel iterative decoding to generate new tokens, which are
finally converted back into audio by the Detokenizer. The colored squares represent acoustic tokens,
with grey squares indicating masked positions.

WMMS. The Watkins Marine Mammal Sound Database [Sayigh et al., 2016] totaling 4h8m. It
includes audio collected over seven decades in at least 67 sites around the world. Sperm
whales are among the 51 species recorded.

BirdNET. An avian bioacoustics dataset curated for classification tasks [Rauch et al.,[2025], totalling
about 6,800 hours. Due to computational limits, we used a 110-hour subset of audio dense
with vocalizations.

DSWP. A dataset of 2507 annotated codas (1h26m) collected over thirteen years in a 2000km?
area off the coast of Dominica. It consists of codas recorded using far-field boat-based
hydrophones and noninvasive animal-borne tags.

CETI. A more recent dataset of sperm whale vocalizations consisting of 7653 annotated codas
(4h33m) collected similarly to DSWP.

The training of WhAM is split into two phases: (1) Domain adaptation, in which the base VampNet
is finetuned on FSD+AudioSet+ WMMS for 500k iterations; (2) species-specific finetuning, in which
domain-adapted VampNet is finetuned on DSWP+CETI for an additional 500k iterations. Both
phases follow the same (LoRA) finetuning procedure, but we find this split to be conceptually useful.
Additional details are deferred to Appendix [E. ]

4 Results

We evaluate WhAM through three complementary analyses. First, we assess the quality of WhAM’s
synthetic codas through quantitative metrics, specifically the Fréchet Audio Distance (FAD, Kilgour|
et al.|2019) between generated and natural codas. Second, we conduct a perceptual study with
expert marine biologists to evaluate how well our synthetic codas preserve the characteristic features
of natural sperm whale vocalizations. Finally, we evaluate WhAM'’s learned representations on
downstream classification tasks to investigate whether our model captures meaningful acoustic
features of sperm whale communication.

4.1 Fréchet Distance of Audio Translation

A key aspect of WhAM is its ability to “translate” audio inputs into the acoustic style of sperm whale
codas. To evaluate this capability quantitatively, we measure the Fréchet Audio Distance (FAD,
Kilgour et al.|[2019) between natural and WhAM-generated synthetic codas. FAD measures the
similarity between two audio datasets by comparing embeddings of the audio signals; lower FAD
indicates greater acoustic similarity between the datasets.

FAD is computed using a given audio embedding model. We chose BirdNET [Kabhl et al., 2021]]
based on a principled calibration experiment that compared the sensitivity of five embedding models
to the rhythmic patterns crucial to coda structure (Appendix [D.1I). We normalize FAD values by
dividing by the maximum distance, scaling all values to [0, 1]. Figure [3| portrays WhAM’s translation
ability using audio prompts from three domains:

1. Natural codas (S. Whale): A disjoint set of codas produced by sperm whales. The FAD
between disjoint sets of natural codas is 0.21 (rather than zero) due to variance in recording
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Figure 3: Normalized Fréchet Audio Distance between sperm whale codas and various audio sources,
before and after translation through WhAM. Lower FAD indicates greater acoustic similarity to
natural codas. The horizontal line at 0.21 represents the baseline FAD between disjoint sets of natural
codas. Full names of animals along with the number of samples from each can be found in Table 3]

conditions, individual whales, and coda types. This establishes a baseline below which FAD
fails to distinguish audio sources from natural variation: We therefore say that generated
outputs are FAD-indistinguishable when their FAD falls below 0.21. When passing natural
codas through WhAM, we expect a slight decrease in FAD as WhAM regularizes inputs
toward the mean embedding of its training distribution (a large dataset of diverse codas).

2. Animal sounds: Vocalizations from 12 species of marine mammals. Figure [3|shows that
WhAM consistently reduces the acoustic distance to natural codas, effectively translating
these diverse inputs into the acoustic style of sperm whale codas. WhAM-generated outputs
of four species are FAD-indistinguishable from natural codas.

3. Digital “beeps”: Atrtificial audio generated by initializing an array of zeros and randomly
selecting points to assign a peak amplitude of 1. Remarkably, beeps and natural codas have
approximately the same post-WhAM FAD. This may be because beeps’ sparse structure
(mostly silence with isolated peaks) gives WhAM freedom to infill patterns close to the
mean embedding of codas, while natural codas with minimal silence constrain the model’s
regularization but start closer to the target distribution.

The results demonstrate WhAM’s remarkable translation capability: five diverse audio sources (four
non-whale species and digital beeps) become FAD-indistinguishable from natural sperm whale
codas after processing. This success across varied inputs suggests that WhAM has learned a robust
representation of the essential acoustic properties that define sperm whale communication.

4.2 Expert Perceptual Study

To evaluate the perceptual quality of WhAM'’s synthetic codas, we conducted a comprehensive
study with domain experts to assess how well our generated outputs match natural sperm whale
vocalizations with respect to a human-expert distinguisher. This study measures both audio-only and
spectrogram-based discrimination, while also gathering qualitative insights about specific acoustic
features that distinguish synthetic from natural codas. Additional details are deferred to Appendix [E.5]

Expert backgrounds. Five academic experts participated in the perceptual study. Three identified
as marine biologists, and two as underwater acoustics specialists. They listed between 3 and 20 years
of experience working with coda audio (field recordings), manual detection and classification, and
the development of automatic detection systems. All experts had experience analyzing coda audio
and spectrograms, which are the two media through which the experiment was carried out.

Experiment design. We designed a four-task study to be completed sequentially by each expert:
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Figure 4: Expert performance on audio-only
2AFC (Task 1), mixed classification (Task 2),
and spectrogram-assisted 2AFC (Task 3). Er-
ror bars show standard deviation across ex-
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Figure 5: Accuracy in mixed classification (Task
2) for different input domains. Natural codas
(left) were misclassified as synthetic 36% of
the time. The remaining columns depict perfor-
mance on synthetic codas generated by WhAM
from walrus vocalizations, non-coda acoustic im-
pulses, and codas (respectively). There were five
synthetic codas from each domain, plus ten natu-

2 had a collection of 25 samples. ral codas for a total of 25 items.

1. Audio-only two-alternative forced choice (2AFC): Experts compared pairs of codas (one
natural, one synthetic) in audio-only conditions, and were asked to identify the synthetic
coda. Synthetic codas were generated by WhAM using the paired natural coda as input.

2. Mixed Collection Classification: Experts classified clips as natural or synthetic. Clips
were either natural codas, or synthetic codas generated from different sources: natural
codas, digital beepsE] or walrus vocalizations [Sayigh et al.,[2016|]. False positives (natural
misclassified) and false negatives (synthetic undetected) were measured.

3. Spectrogram-assisted 2AFC: Experts repeated the first task while visualizing audio with
software of their choice. The experts were given the exact same samples as in the first task,
ensuring direct comparability between audio-only and spectrogram-aided performance. This
task mirrored real-world analysis workflows while quantifying the perceptual “advantage”
of multimodal inspection.

4. Qualitative assessment: Experts were given five representative samples of synthetic codas.
They were then asked questions about how well synthetic codas captured / missed character-
istics of natural codas, whether any non-natural patterns appeared in synthetic codas, and
which features did they use to distinguish between codas in each of the previous tasks.

Fleiss’s « quantified inter-expert agreement [Fleiss| [1971]], and accuracy was calculated relative to
ground-truth labels. Task order was chosen towards minimizing bias (audio-first to avoid visual prim-
ing), with background information collected in a final section. The samples used in the experiment
are attached to this submission as supplementary material. Experimental details are in Appendix

Quantitative analysis. Experts achieved 81% accuracy (k = 0.41), in audio-only 2AFC (Task 1),
rising marginally to 83% (x = 0.41) with spectrograms visualized (Task 3). This 2% improvement
suggests WhAM'’s synthetic codas lack glaring spectro-temporal artifacts detectable by trained
analysts. As expected, accuracy with spectrograms was generally better per-expert, with one expert’s
performance dramatically increasing from 66% to 93% (another expert even achieved a perfect score).
Surprisingly, one expert’s performance decreased from 83% in Task 1 to 66% in Task 3; comments
in the qualitative section did not suggest an explanation.

Performance varied substantially across tasks and among experts (Figure ). The most experienced
expert ranked highest in both 2AFC tasks, but not in mixed classification. These variations reflect

%i.e., an artificial sequence of clicks



diverging expert strategies—some focused on inter-click patterns, others on spectral properties:
“rhythm” to quote one expert, versus “DC offsets” and “inter-pulse structures” [Mghl et al., 2003 to
quote others.

Misclassification rates in Task 2 (Figure [5) revealed WhAM’s efficacy in acoustic translation: on
average, experts correctly flagged walrus-to-coda audio only 75% of the time—Iless than digital beeps
or coda-to-coda outputs of WhAM. For one expert, walrus-to-coda audio was detected only 50% of
the time (random chance).

Fleiss’s k values (0.41-0.44) indicated moderate agreement across tasks, with experts showing greatest
consensus on mixed classification (v = 0.44). Performance on spectrogram-aided 2AFC performance
was the most diverse—one expert achieved perfect performance while another approached chance
(60%).

Qualitative feedback. Synthetic codas successfully replicated key acoustic features of natural
codas. Most experts noted preservation of rhythm, referred to as inter-click intervals (ICI); that is,
clicks occur “at the right time” in synthetic codas. Additionally, one expert answered that “spectral
components” were overall preserved in synthetic codas.

That said, experts identified missing components which can be partitioned into three categories:

» Within a single click: Some clicks “came on and disappeared too strongly,” had “varying
amplitude [within a single coda],” and “inverted peaks.” On a spectral level, an expert
answered that clicks were too “broadband” compared to natural clicks which have a low-
frequency bias.

* Rhythmic/temporal: One expert noted that the timing of clicks fit echolocation moreso than
codas. (See Appendix [B]for how they differ.)

* Recording-level anomalies: One expert noted a “DC offset” which they described as the
unrealistic background noise on synthetic codas. Similarly, another noted that background
noise in synthetic codas oscillated too much.

Based on this assessment, we present in Appendix [C| a guide to the similarities and differences
between natural and synthetic codas, supplemented by annotated spectrograms.

4.3 Utility of embeddings for downstream tasks

We test whether WhAM’s internal representations capture meaningful features of sperm whale
vocalizations through three downstream classification tasks. For each task, we train a small (two-layer)
classifier head that takes coda embeddings as input. We compare WhAM to naive random-embedding
and majority-class baselines, as well as AVES [Hagiwaral, |2023|, a self-supervised model achieving
state-of-the-art performance on bioacoustic classification tasks. Full details of the experimental setup
are deferred to Appendix

The downstream tasks are:

1. Coda detection: Given a snippet of audio, determine whether it contains a coda. The classifier
is trained on positive (coda) and negative (no coda) snippets, with negative examples drawn
from the same recording conditions to ensure the model learns coda features rather than
recording artifacts.

2. Rhythm type: Given a snippet of audio, classify its temporal pattern. Rhythm of inter-click
intervals serves as a key axis for classification of sperm whale codas in cetacean research
Schulz et al.|[2011]], Bermant et al. [2019]],|\Sharma et al.|[2024al].

3. Social unit classification: The lowest level of sperm whale social structure are called social
units (SU) and have stable, matrilineally-related membership of females and their young
[Christal et al.l [1998]]. Importantly, all SUs in DSWP+CETI belong to the same vocal
clan and thus share a common repertoire of coda types, making this more of a speaker
identification task than dialect classification

3By analogy to human language, consider the task of classifying speakers by city of origin. It would be easier
to distinguish between speakers from cities that use different dialects (simply classify the dialect). Importantly,
in our data, all speakers use the same dialect.



Table 1: Classification accuracies (%) of different audio embeddings. Each classifier head was
trained using three different random seeds, with mean=+stderr reported. The Random baseline uses
a randomly initialized AVES model (training only the classifier), while Majority predicts the most
common class.

TASK WHAM AVES BIRDNET CLAP BASELINE
RAND. MaAI.
DETECTION 91.3+0.2 92.8+£0.1 93+1.0w 96.8 +1.41 60.9 60.9

RHYTHM 87.4%+1.6 90.4+1.6  88.6%0.15 92.4+2.4 66.3 60.9
SociAaL UNIT  70.5+£5.6 92.0+0.7 93.2+0.1 85.51%1.43 42.5 35.1
VOWEL 85.242.5 91.8+£2.9 85.94+4.6 84.3£0.93 66.3 66.3

4. Vowel type: Given a coda recording, classify its vowel-like pattern [Begus et al., 2025].

Table [T] shows classification accuracies for each task. As expected, non-generative embeddings
specifically designed for acoustic classification tasks outperform outperform WhAM. We view those
as a ceiling “sanity check” than a baseline. AVES and BirdNET perform particularly well on more
specialized bio-acoustic tasks, due to the fact that they were both trained on large amounts of animal
vocalizations. Notably, WhAM’s representations are useful despite being trained only for generation,
outperforming both naive baselines. This suggests that meaningful acoustic features emerge naturally
from training for coda generation, even without explicit supervision for these tasks.

We conducted an ablation study to assess how fine-tuning affects embedding quality by evaluating
different WhAM variants with specific components removed (detailed in Appendix [D.2). The results
reveal that fine-tuning did not significantly alter WhAM’s downstream utility compared to base
VampNet embeddings, despite WhAM’s specialization on whale codas. However, as shown in
Appendix [D.3] species-specific fine-tuning was essential for enabling WhAM’s core capability of
translating audio into sperm whale vocalization acoustics.

5 Limitations and Future Work

The most immediate technical limitation concerns the audio codec architecture. Our current imple-
mentation only finetunes the MATM while keeping the codec fixed (see Section [3.1). This design
choice, while computationally efficient, may limit the model’s ability to capture nuanced acoustic
features specific to sperm whale vocalizations. For instance, the recently discovered vowel-like
patterns in the 3.7-5.7kHz band [Begus et al., 2025]] may be inadequately represented by a codec
primarily trained on human music. Future work could explore either finetuning the entire codec or
developing specialized codecs for bioacoustic signals.

Expert feedback (Section[d.2)) highlighted specific limitations in click generation: unnatural onset and
decay patterns, inconsistent background noise, and click properties more reminiscent of echolocation
than communication codas. These limitations might be addressed through architectural modifications,
such as incorporating adversarial components [Begus et al.| [2023]] or introducing specialized modules
that leverage domain knowledge about sperm whale click structure. Notably, the observation about
echolocation-like properties led to an unexpected finding in our dataset preparation: the presence of
echolocation sequences in datasets intended for communication codas. This discovery highlights a
broader challenge in bioacoustics research—the difficulty of building clean, well-labeled datasets at
scale. Future work should focus on developing robust methods for distinguishing between different
types of vocalizations, perhaps by leveraging existing detection systems [Bermant et al.,2019].

These data quality challenges underscore the importance of thorough evaluation protocols. Expanding
the expert panel would provide more robust perceptual assessments, though we acknowledge the
practical challenges in recruiting specialists in sperm whale vocalizations. Additionally, developing
more principled evaluation methods—and meta-evaluating these—would help establish standardized
benchmarks for bioacoustic generation tasks.

While our results demonstrate impressive performance with relatively small datasets—orders of
magnitude smaller than typical in modern acoustic model training—scaling up the training data could
yield substantial improvements. This would require significant effort in aggregating and preprocessing



additional sperm whale datasets, as our experience with DSWP+CETT highlighted the technical
challenges involved in preparing bioacoustic data for machine learning pipelines.

Looking beyond technical improvements, future work could explore unsupervised learning approaches
to uncover new coda features, following the success of similar approaches in bioacoustics [Begus
et al., 2025]]. This could lead to discoveries about sperm whale communication that complement
traditional analytical methods while providing new directions for improving generative models of
animal vocalizations.

Our methodological framework—from the two-phase training approach to the expert evaluation
protocol—could be adapted for studying other animal communication systems. Our experience
suggests that success will require careful attention to species-specific acoustic features and close col-
laboration with domain experts who can identify subtle but important characteristics of vocalizations.

The gap between generating vocalizations and understanding their meaning remains vast. While
WhAM represents the first attempt at acoustic translation in the context of sperm whale commu-
nication, future work should explore ways to bridge this semantic gap while maintaining minimal
assumptions about the underlying communication system.
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tual studies with expert marine biologists can be found in Section 4.2] Experiments on
downstream classification are reported in Section .3}
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, in Section[3]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: N/A.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details on model training are in Appendix [E] Details on the experimental setup
are in Appendix [E.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release the model weights, and the code used for training and evaluating
the model upon publication. We will attempt to release as much of the data as possible,
however we note that the data was collected by a large collaboration of marine biologists over
several decades, and so we cannot commit to getting their consent to publish by publication
time.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: Yes, in Appendices [E]and[E.3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All figures depict error bars or standard error figures, with the exception of
Figures [3|and [I2]and table 2] For Figures [3]and[I2]repeating the experiments with multiple
seeds would have been computationally prohibitive due to the amount of categories in each
experiment. For Table [2] this is a minor, supplementary used to justify an experimental
design choice, rather than a main component of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to train and finetune the model are reported in
Appendix [E.Z] The resources needed to conduct the experiments (after training the model)
are reported in Appendix [E.3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adhere to the license of all external code we use. The data used was either
collected by us (the authors), or is used in accordance to the license of the dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide as much data as appropriate and possible of the new datasets
we used, without de-anonymizing ourselves. The training method and model are properly
documented in Appendix

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: In Appendix
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The perceptual listening study presented no risk to participants. Participants
were asked to evaluate audio similar to those they regularly analyze in their professional work.
No personal data was collected beyond coarse background questions and the assessment
itself (see Appendix [E.3)), and no compensation was provided. The task falls within the
participants’ scope of their normal research activities and expertise.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Broader impacts

Our work on modeling sperm whale communication has potential implications for both scientific
understanding and conservation efforts. Historically, advances in understanding cetacean communi-
cation have played crucial roles in conservation—notably, the discovery of humpback whale song by
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[Payne and McVay| [1971]] contributed significantly to public awareness and the subsequent “Save
the Whales” movement [Feldman) [2021] [Campagna and Guevara, 2022] [Comuzzol [2023]]. While we
maintain that sperm whales deserve protection regardless of our ability to understand their communi-
cation, we recognize that deeper scientific understanding often catalyzes public engagement with
conservation efforts.

Our model’s capabilities might naturally suggest applications in behavioral experiments through
playback studies. This is particularly tempting given that sperm whales often produce codas
simultaneously—a behavior that our bidirectional model could theoretically capture by conditioning
on one whale’s clicks while generating the overlapping clicks of another. However, we strongly
caution against such applications at this stage. Without a deeper understanding of coda semantics
and functionality, playback experiments using synthetic vocalizations could have unintended and
potentially harmful consequences for these social marine mammals. Instead, we propose that this
work demonstrates the potential of learning from passive acoustic observation—studying these re-
markable animals through careful listening rather than active intervention. With this approach, this
work could potentially play a role in assisting efforts to reinforce existing protections or create new
legal protections for whales [Rodriguez-Garavito et al.l 2025]].

As noted in Section 5] our methodological framework could extend beyond sperm whales, potentially
benefiting research on other marine mammals and, more broadly, any species that communicates
acoustically. This scalability is particularly relevant as biodiversity monitoring becomes increasingly
critical in the face of environmental changes. However, our experience underscores the importance of
deep collaboration with domain experts—the success of this work relied on guidance from marine
biologists and acousticians with decades of experience studying sperm whales. We encourage future
work in this direction to similarly prioritize partnerships with species-specific domain experts, as
their insights are crucial for both model development and responsible deployment.

B Preliminaries on sperm whale codas

Figure 6: The sperm whale head contains the spermaceti organ (c), a cavity filled with almost 2kL of
wax-like liquid, and the junk compartment (f), comprising a series of wafer-like bodies believed to
act as acoustic lenses. The spermaceti organ and junk act as two connected tubes, forming a bent,
conical horn of about 10m in length and 0.8m aperture in large mature males. The sound emitted by
the phonic lips (i) in the front of the head is focused by traveling through the bent horn, producing a
flat wavefront at the exit surface. Reproduced with permission (Andreas et al.|2022, © Alex Boersma
2021).

Sperm whales have evolved remarkable acoustic capabilities. Figure|[§illustrates the key anatomical
and acoustic aspects of these capabilities, which form the basis for their complex communication
system.
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Figure 7: Left: Typical temporal structure of sperm whale echolocation and coda clicks. Echolo-
cation signals are produced with consistent inter-click intervals (of approximately 0.4s) while coda
clicks are arranged in stereotypical sequences called “codas” lasting less than 2s. Codas are character-
ized by the different number of constituent clicks and the intervals between them (called inter-click
intervals). Codas are typically produced in multi-party exchanges that can last from about 10s to
over half an hour. Each click, in turn, presents itself as a sequence of equally spaced pulses, with
inter-pulse interval of an order of 3—4ms in an adult female, which is the result of the sound reflecting
within the spermaceti organ. Right: Typical structure of echolocation (dark blue, left) and coda
clicks (light blue, right). When observed as a waveform zoomed into a single click the type types
of clicks differ observably in structure. There is far greater attenuation between the first and second
pulse of an echolocation click, then the coda clicks. Further, the coda clicks resonate more in the
nose of the sperm whale creating additional pulses after the first one for coda clicks. Reproduced
with permission (Andreas et al.[2022, © Alex Boersma 2021).
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Sperm whales live in a multileveled social structure with female lines living together in "units’ with
stable membership [Whitehead, 2003|]. Early acoustic research proposed that codas might serve as
individual signatures [Watkins and Schevill, |1977], but subsequent studies instead suggested that
different coda types may have distinct functions [Antunes et al.,2011]], and that variation of coda
usage among units suggested a function in unit-level social identity [Moore et al., 1993 [Weilgart and
‘Whitehead, |1993} [1997]]. Even when living in the same waters, whales from different social units will
only associate with units which share a similar repertoire of codas. This social segregation based on
acoustic similarity was used to delineate the highest level of social organization which structures their
populations, the vocal clan; and that codas function as symbolic markers of these cultural groups
[Rendell and Whitehead, [2003] |Gero et al., [2016a, [Hersh et al., 2022[. Importantly, there is good
evidence that these distinct dialects of codas, with variation in number of clicks, as well as rhythm
and tempo, are the product of social learning, and not genetically inherited [Cantor and Whitehead,
2015/ Rendell et al., [2012]].

The clicks produced by sperm whale can be generally classified as either ecolocation or coda clicks.
Echolocation clicks which function in navigation and hunting in the dark, wherein echoes of the
clicks return and are interpreted by the whales in the darkness of the deep ocean, much like bats in
the night sky. Conversely, coda clicks are thought to function in communication between whales and
are exchanged between whales or groups of whales in social contexts at the onset of dives, during
shallow dives near the surface, and during large social interactions.

Echolocation signals are produced with consistent inter-click intervals while coda clicks are arranged
in stereotyped, rhythmic sequences called “codas” lasting less than 2 seconds. Codas are characterized
by the different number of constituent clicks and the intervals between them (called inter-click
intervals or ICIs). Rhythmic patterns and tempo of clicks define coda ‘types’, which are often given
descriptive names. For example, a 1+1+43 coda is click-pause-click-pause-click-click-click (Figure[7).
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C A listener’s guide to codas

Building on findings from our Expert Perceptual Study (Section [4.2)), we present a short guide
detailing perceivable similarities and differences between natural and synthetic codas. We note that,
unlike the Expert Study, this guide was developed by the authors under no time constraints, and with
unrestricted aid of spectrograms and familiarity with model internals. This Listener’s Guide to Codas
is structured as a unifying Theme, followed by four Variations each isolating a specific cueﬂ For a
broad-audience listener’s guide to whale (albeit humpback) vocalizations, see |Payne([1970].

Theme. Synthetic codas generated by WhAM can be evaluated both visually and acoustically,
using the same structural cues that characterize authentic sperm whale clicks. Each natural coda
click typically consists of a sequence of equally spaced pulses, with an inter-pulse interval (IPT)
of approximately 3—4 ms in adult females. This is a consequence of internal reflections within the
spermaceti organ.

Variation A: Balance. DC offset (a shift of the waveform away from being centered at zero)
does sometimes occur when recording sperm whales in the wild, particularly when using handheld
recording systems which run off batteries and a constant DC voltage. It is often consistent, while
synthetically generated clips will have quite a “wavy” offset. It is however interesting to note that
WhAM picked up on this feature of the authentic waveforms. In addition, sperm whales do not vary
the amplitude dramatically between sequential clicks within codas, while WhAM generated codas
sometimes do.

Variation B: Frequency. Using a spectrogram, one can see that the frequency content of synthetic
clicks is more uniform. In Figure one can compare the shape of spectrograms for otherwise
relatively similar clicks and note that the shape is more uniform and consistent both in time and
frequency for synthetic clicks (bottom as strong orange rectangles) compared to authentic clicks
which trail off both as frequency increases and across time (top, more pointed at top, with far less
yellow above 10kHz, and rough along the right side). In addition, you can also observe the variation
in amplitude across synthetic clicks in the waveform, but a consistent amplitude in the waveform of
the authentic clicks (as described above).

Variation C: Structure. Authentic sperm whale clicks, especially coda clicks, contain the typical
multiplulsed structure with a detectable inter-pulse-interval created by the head of the sperm whale
and the path of the sound as it is generated (outlined above). Synthetic clicks often did not have a
realistic structure either by having no pulsed structure (center of Figure [0) or an exaggerated one
(right of Figure [0). While some of these effects occur in authentic clicks based on the angle of
recording relative to the axis of the body of the whale making the sounds, the synthetic clicks rarely
had realistic structure within clicks.

Variation D: Listening alone. Taken together, these waveform- and spectrogram-based cues are
sometimes audible even without visual aids. A trained ear could identify synthetic codas based
on subtle irregularities in amplitude, spectral consistency, and the absence of realistic multipulsed
structure.

*With apologies to Britten| [[1943].
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Figure 8: Sample of a synthetic coda generated by WHAM with the variable DC offset dissimilar to
natural recordings (yellow arrow) and the dramatic variation in amplitude between sequential clicks
(orange arrows).

Authentic Synthetic Synthetic

Figure 9: Pulse structure of authentic (real) and synthetic clicks.

D Additional experiments

D.1 FAD Embedding Selection

The Fr’echet Audio Distance (FAD) measures similarity between audio datasets using embeddings
to map the audio into a feature space. The choice of embedding is crucial, as different embeddings
capture different aspects of the signal. For analyzing sperm whale codas, we sought an embedding
that prioritizes the temporal patterns critical to coda structure over background noise. This appendix
describes the calibration experiment we conducted to select the most suitable embedding for our FAD
analysis.

Let the coda recordings in DSWP+CETI be denoted by {1, ..., z, }, we:

1. Created denoised versions {1, ..., &, } as detailed in Appendix
2. Isolated the removed noise components {x1 — &1, ..., T, — &p}
3. For each candidate embedding f;, compared:

* di = FAD score between codas and their denoised versions:

* di, = FAD score between codas and their noise components:

We evaluated five audio embeddings VGGISH |Gemmeke et al.| [2017b]], Hershey et al.| [2017],
Encodec-embd |Défossez et al.| [2023]], LAION CLAP Music, LAION CLAP Audio Wu* et al.
[2023]], [Chen et al.| [2022], and BirdNET |Kahl et al.| [2021]] using the Fréchet Audio Distance
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Figure 10: Waveform and spectrograms of both authentic clicks recorded from wild sperm whales
from clip 7B (top) and from WhAM generated synthetic clicks from clip 7A (bottom). Here “7” is
because this formed the seventh pair in the expert perceptual study (Part 1).

implementation of |Gui et al.|[2024]. The ratio d3/d} indicates how much more weight embedding i
gives to background noise versus temporal structure. A larger ratio indicates stronger emphasis on
temporal patterns and better suitability for the quantitative assessment of audio translation experiment.
Table 2 shows these ratios for each embedding.

Table 2: Comparison of Audio Embeddings for Temporal Structure Sensitivity

EMBEDDING d1 (CODA VS. DENOISED)  d2 (CODA VS. NOISE) d2/d,

VGGISH 2.0844 1.5027 0.7209
ENCODEC-EMBD 25.9716 3.156 0.1215
LAION CLAP Music 0.1483 0.1080 0.7282
LAION CLAP Aubpio 0.1144 0.1098 0.9597
BIRDNET 16.7817 22.4761 1.3393

Based on these results, we selected BirdNET for our main FAD experiments, as it maximized the
ratio of distances between raw-to-noise over raw-to-signal.

D.2 Downstream Task Ablation Study
To evaluate the contributions of different components in WhAM, we conduct an ablation study by

progressively removing elements and assessing performance across the same set of downstream tasks.
The results are presented in Figure
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No finetuning. We test the effect of skipping domain-adaptation (step (b) in Figure[I)), or skipping
finetuning of VampNet altogether (steps b,c) in Figure|[I). For all tasks except Social Unit classifica-
tion, removing species-specific finetuning or domain adaptation does not have a significant impact on
the accuracy. This indicates that the inclusion of these steps in WhAM does not significantly degrade
the performance on most downstream tasks.

Tokenizer-only. We falsify the hypothesis that the neural audio codec is sufficient for capturing
semantic properties in the audio by testing downstream classification directly on the acoustic tokens
(Figure [2), without embedding them through the MATM. This causes a statistically significant
performance drop, particularly in Social Unit classification (-10.9 points, from 70.5% =+ 0.7% to
59.6% + 2.0%)
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Figure 11: Classification accuracies (%) resulting from using the output of different WhAM compo-
nents on downstream tasks. Each classifier head was trained using three different random seeds, with
mean=stderr reported.

D.3 Fréchet Audio Distance Ablation Study

To complement the ablation study of Appendix [D.2] the experiments detailed in section [d.T| were
repeated four times with marine mammal sounds. First, using only the tokenizer. Second, training
the model with only Domain Adaptation (DA, step (c) in Figure[T), skipping the Species Specific
Fine-Tuning step (SSFA, step (c) in Figure[I). Third, training only with Domain Adaptation. And
finally, using the full version of WhAM. These results (Figure[I2) show that, as expected, fine-tuning
WhAM on sperm whale data results in outputs that are more similar to sperm whale vocalizations.

D.4 Tokenizer Reconstruction Loss Study

WhAM uses the Descript Audio Codec (DAC) as its tokenizer [Kumar et al.}[2023]].DAC is tailored
towards speech, music, and environmental sounds. To test possible degradation in encoding sperm
whale coda audio, we conducted the following experiment.

Let each individual coda recording in the DSWP+CETI datasets be denoted by 1, zs...x,,
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Figure 12: The effect of ablating components of the model on FAD

1. For each recording x;, a reconstructed version, 2; was created by passing z; into the
tokenizer to generate tokens, then passing the tokens through the decoder to recover the
audio recording.

2. Each z; and z; was then sliced into chunks of length C' to calculate their respective short
term fourier transforms. The transform is represented by the arrays {%; 1, Z; 2...%; m } and
{Zi1,%i2...%im}. Each &; ; represents the magnitude all frequencies over the jth chunk of
the recording x;

3. The mean reconstruction accuracy, denoted by £ is now given by taking the average normal-

i T e usi .1 T A N2 /(3 )2
ized error between all 7; ; and #; ; using the formula: —— 37, (% ; — %i7)*/(7: ;)

The mean error is shown in fig. [I3]for a chunk size of 2.27 ms and 22.7 ms. With a smaller chunk
size, F indicates which pitches the tokenizer accurately reconstructs and which pitches it does not.
Using a larger chunk size, E/ gives an indication of what type of general noise patterns the tokenizer
fails to include in its reconstruction.

As can be seen with a chunk size of 22.7 ms, the error is wave-like. Since sinusoidal waves in the
frequency domain correspond to impulses in the time domain, this suggests a tendency to misrepresent
impulse-like sounds in the time domain. On the other hand, using a chunk size of 2.27 ms provides an
indication as to what pitches the tokenizer prioritizes. The spikes in the bands 1-6 kHz and 8-10 kHz
suggest that, in general, the tokenizer tends to perform relatively poorly in those frequencies. However,
this degradation is not severe enough to prevent our model from generating natural-sounding codas
(Section4.2), nor from its embeddings to “capture” vowels (Section {.3).
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Figure 13: Tokenizer reconstruction loss study. Normalized mean squared error (y-axis) by frequency
(x-axis).

E Methodology Details

E.1 Data

FSD. The FSD50k dataset includes 3,159 audio recordings labeled with the “animal” tag, amounting
to a total duration of 7 hours and 45 minutes. Noisy segments were retained to preserve real-world
variability in training data.

AudioSet. The AudioSet dataset was used to supplement training with additional animal vocaliza-
tions. It contains 5h8m hours of audio.

Birdset. Consists of 6,800 total hours of recordings containing bird vocalizations [Rauch et al.|
2025|. Due to space constraints and to avoid training WhAM on audio that did not contain any
vocalizations, only a subset of the entire dataset was used, containing a total of 110 hours of data.

WMMS. The Watkins Marine Mammal Sound Database consists of raw, unlabeled audio recordings.
The dataset contains a total of 4 hours and 8 minutes of audio. Each recording was segmented into 10-
second snippets for training. No additional denoising was applied. The dataset contained vocalizations
from the following mammals (names as listed on the WMMS website):

Atlantic Spotted Dolphin Bearded Seal Beluga (White Whale)
Bottlenose Dolphin Boutu (Amazon River Bowhead Whale
Dolphin)
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Clymene Dolphin

Dall’s Porpoise

Fin, Finback Whale
Grampus (Risso’s Dolphin)
Harbor Porpoise
Heaviside’s Dolphin
Irrawaddy Dolphin
Leopard Seal

Melon-Headed Whale
New Zealand Fur Seal

Ribbon Seal
Rough-Toothed Dolphin

Southern Right Whale
Spotted Seal
Tucuxi Dolphin

West Indian Manatee

Commerson’s Dolphin
Dusky Dolphin

Finless Porpoise

Gray Seal

Harbour Seal

Hooded Seal

Juan Fernandez Fur Seal

Long-Beaked (Pacific)
Common Dolphin

Minke Whale
Northern Right Whale

Ringed Seal
Sea Otter

Sperm Whale

Steller Sea Lion
Walrus

White-beaked Dolphin

Common Dolphin

False Killer Whale
Fraser’s Dolphin

Gray Whale

Harp Seal

Humpback Whale

Killer Whale
Long-Finned Pilot Whale

Narwhal

Pantropical
Dolphin

Ross Seal

Short-Finned (Pacific) Pilot
Whale

Spotted

Spinner Dolphin
Striped Dolphin
Weddell Seal
White-sided Dolphin

DSWP. The dataset consists of codas collected between 2005-2018 in a 2000km? area off the coast
of Dominica. Codas were recorded using various recording systems including far-field boat-based
hydrophones and animal-borne tags. Recording setups were as follows:

2005: A Fostex VF-160 multitrack recorder (44.1kHz sampling rate) and a custom built towed
hydrophone (Benthos AQ-4 elements, frequency response: 0.1-30kHz) with a filter box with
high-pass filters up to 1 kHz resulting in a recording chain with a flat frequency response
across a minimum of 2-20kHz.

2006: No recordings during this short season.

2007,2009,2011: A Zoom H4 portable field recorder (48kHz sampling rate) and a Cetacean Research
Technology C55 hydrophone (frequency response: 0.02-44kHz) and no filters.

2008,2010,2012,2015: A custom-built towed hydrophone (Benthos AQ-4 elements, frequency re-
sponse: 0.1-30kHz) with a filter box with high-pass filters up to 1 kHz resulting in a
recording chain with a flat frequency response across a minimum of 2-20 kHz. This was
connected to a computer based recording system as a part of the International Fund for Ani-
mal Welfare’s (IFAW) LOGGER software package (48kHz sampling rate) or PAMGUARD
(minimum 48 kHz sampling rate). In addition, recordings were also made through the
deployment of animal-borne sound and movement tags (DTag generation 3, Johnson and
Tyack|2003).

CETI. All systems were sampling above 96kHz with a 16bit resolution with a minimum flat (2dB)
frequency response within 1-45kHz.

The DSWP and CETI dataset contain background noise such as water sounds. To improve model
performance, we denoise datasets before training on the model. A noise profile of each recording in
the frequency domain was generated by sampling sections which did not contain codas. Then, we
perform spectral subtraction to remove noise in the frequency domain, and transform back to the time
domain of the audio signal.

All audio samples were downsampled to 16 kHz and normalized to have zero mean and unit variance
when passed into VampNet.
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Table 3: Quantitative Assessment Data Summary

FuLL NAME SHORTENED NAME  NUM. SAMPLES
ATLANTIC DOLPHIN A. DOLPHIN 58
BEARDED SEAL B. SEAL 37
BOWHEAD WHALE B. WHALE 60
BELUGA WHALE, WHITE WHALE BELUGA 50
WALRUS WALRUS 38
CLYMENE DOLPHIN C. DOLPHIN 63
NARWHAL NARWHAL 50
LEOPARD SEAL L. SEAL 10
LONG-FINNED WHALE L. WHALE 10
KILLER WHALE (ORCA) ORCA 35
ROSS SEAL RoOSs SEAL 50
R1SS0O’s DOLPHIN Risso 67

Table 4: Prompt settings for each input type.

INPUT PERIODIC ONSET NUM. OF TYPICAL SAMPLE
PROMPT MASK WIDTH STEPS MASS CUTOFF
CODAS 12 21 50 0.102 0.17
BEEPS 12 21 50 0.102 0.17
A. DOLPHIN 16 5 74 0.15 0.39
B. SEAL 7 1 70 0.15 0.44
B. WHALE 7 1 70 0.15 0.44
BELUGA 13 13 85 0.15 0.39
WALRUS 18 1 107 0.15 0.33
C.DOLPHINE 12 14 72 0.15 0.25
NARWHAL 6 4 39 0.15 0.21
L. SEAL 6 4 46 0.15 0.39
L. WHALE 15 19 57 0.15 0.42
ORCA 13 2 46 0.15 0.39
ROsSs SEAL 18 3 66 0.15 0.49
RissoO 13 13 85 0.15 0.39

Note that, as with any self-supervised training setup that relies on random masking, the effective
number of unique training examples far exceeds the raw audio hours. In our case: First, each 2-second
audio snippet becomes a 14 x 120 token array. Columns correspond to time steps, and rows represent
acoustic granularity During training, entire columns (i.e., time steps) are masked at random; with
120 columns, there are 2'2% possible masking patterns per snippet. So, for example a 20 hour dataset
yields 36,000 snippets, which result in = 10%" possible masked training inputs.

E.1.1 Generating data for Sections[4.1)and [4.2]

Three different input sources were used to generate samples for both the Quantitative Assessment
of Audio Translation and the Expert Perceptual Evaluation. The prompt settings for each input
type are summarized in Table

Watkins Marine Mammals. Eleven species were selected from the “Best of Watkins Marine
Mammals” dataset. Due to variations in vocalization characteristics and recording conditions, prompt
settings were manually optimized for each species. These species and prompt settings can be found
in Table

Digital “beeps”. Five digital beep sequences were generated. Each snippet was initialized as a
zero-filled array at a 44.1 kHz sample rate. Clicks were simulated by selecting random indices and
setting them to a peak amplitude of 1. To ensure realistic timing and rhythm, real coda sequences were
prepended to each generated sample before synthesis. These prepended codas were then removed
after generation.
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E.2 Model Training

The model training procedure consisted of two phases: domain adaptation and species-specific
fine-tuning.

Acoustic Tokenizer Settings. Discrete token vocabulary size (3) = 1024. Frequency of Input
Audio Ng,p, = 16kHz. Tokenizer input length Ny = 10.

Domain Adaptation. In the first phase, the model was pretrained on a mixture of general animal
vocalizations, including data from FSD and AudioSet. This step aimed to establish a broad under-
standing of bioacoustic patterns. The model was trained for 500,000 iterations using the AdamW
optimizer with a learning rate of 0.0001. A batch size of 6 was used, and gradient clipping was
applied to stabilize training. The model took 123 hours to train using an AWS EC2 g5.2xlarge
instance (NVIDIA A10 GPU, 8 vCPUs, 32 GB of memory).

Species-Specific Fine-Tuning. Following domain adaptation, the model was fine-tuned on whale-
specific data from DSWP+CETI to adapt its representations to sperm whale vocalizations. The
fine-tuning process used the same optimizer and learning rate as the pretraining phase and a batch
size of 6. Training continued for another 500,000 iterations. This took 39 hours to run using an AWS
EC2 g5.2xlarge.

E.3 Computational costs

All experiments were run on an AWS EC2 g5.2xlarge (NVIDIA A10 GPU, 8 vCPUs, 32 GB of
memory). A full run of FAD experiments took 3 hours with a full version of Vampnet, and 1.5 hours
using a Tokenizer-only model, therefore Section .T]and appendix took approximately 7.5 hours
in total. Appendix took approximately 1.5 hours. For downstream classification, training the
linear probe took at most 5.5 hours; thus, Section @] and appendix @]took about 16.5 hours in total.

E.4 Utility of Embeddings for Downstream Tasks

Model Details. We run a forward pass through WhAM and AVES to obtain embeddings from the
audio. Both WhAM and AVES output varying embeddings over time, so we average the embeddings
over time to obtain 1 unified embedding for 1 audio snippet. After the embedding is obtained,
we attach a two-layer feed-forward neural network as a classifier. The network consists of a fully
connected layer that projects the embedding into a 128-dimensional hidden layer, followed by a
ReLU activation. A second fully connected layer then generates class probabilities.

We evaluate embeddings from WhAM and AVES, comparing their performance against a random
embedding baseline as well as a majority baseline classifier.

Training Data. For downstream task evaluation, we leveraged annotations in the DSWP+CETI
datasets. Using human-annotated timestamps, we identified and extracted audio segments containing
codas, each spanning 1-2 seconds. Each coda was labeled for one of the following classification
tasks:

* Coda Detection: Determine whether a given audio snippet contains a whale coda.

* Rhythm Type Classification: Classify codas according to their rhythmic patterns. For this
task, we choose to include samples whose rhythm types are among the 5 most common,
because the remaining ones appear too infrequently for classifiers to be accurate.

* Social Unit Classification: Identify the social unit associated with each coda.

* Vowel Classification: Detect vowel-like patterns within whale vocalizations.

Table |5l summarizes dataset sizes for each task.

Training Process. We split the dataset into 80% training and 20% testing, using stratified sampling
of labels to ensure consistent label distribution. The embedding model is frozen, and only the classifier
parameters are trained. Training is performed on an NVIDIA A10G GPU for 10 epochs, using a
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Table 5: Dataset sizes for downstream classification tasks.

TASK NUMBER OF SAMPLES
CODA DETECTION 3,100
RHYTHM TYPE CLASSIFICATION 916

SocIAL UNIT CLASSIFICATION 2,659

VOWEL CLASSIFICATION 486

learning rate of 10~* and a batch size of 32. Model checkpoints are saved at each epoch, and the
best-performing model is selected based on test set performance.

E.5 Expert Perceptual Evaluation

Five domain experts in sperm whale bioacoustics participated in the evaluation. Given the highly
specialized nature of sperm whale vocalization analysis, the pool of qualified experts with years of
direct experience analyzing and annotating these vocalizations is notably small. All participants were
recruited from an established research collaboration studying cetacean communication, and each had
at least three years of experience working with sperm whale codas. No compensation was given to
participants.

The evaluation was conducted via Google Form. The form began with the following introduction:

Welcome

Thank you for participating in this study. Your expertise in analyzing sperm whale vocaliza-
tions is invaluable for evaluating our model.

The study consists of four parts, to be completed in order. A final section includes three short
questions about your background.

Technical Setup

* Download and extract the 1istener_evaluation.zip file from a provided link
* Use headphones for all listening tasks

» Complete the experiment in a quiet environment

* You can take breaks between sections as needed

If you encounter any technical difficulties or have questions about the procedure, please
contact [omitted].

Participant Identification
Name (used for tracking responses only):

E.5.1 Audio-Only Two-Alternative Forced Choice (2AFC)

Listeners were presented with 30 pairs of codas. Each pair contained an original, denoised coda and
a model-generated counterpart. Participants were asked to identify which sample was the original
and which was generated.
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Task Instructions

In this section, you will listen to pairs of codas. For each pair, one is a natural recording and
one is synthetic. Please indicate which one you believe is synthetic.
The audio files are located in the ***section1/*** folder. Each pair consists of two files:

e *la.wav* + *1b.wav*
e *Da.wav* + *2b.wav*
* etc.

Please listen to each file **at most three times**. Base your decision only on the provided
audio. Do not visualize the audio.

E.5.2 Mixed Two-Alternative Forced Choice (2AFC)

Listeners were presented with 25 individual samples: 10 real codas, 5 generated from real codas, 5
generated from walrus vocalizations, and 5 generated from digital beeps. Each listener classified each
sample as either real or generated.

Task Instructions

In this section, you will listen to individual codas and classify each as either natural or
synthetic.
The audio files are located in the ***section2*** folder:

e *] . wav*
e *2 wav*
* eftc.

Please listen to each file at most three times. **Base your decision only on the provided
audio. Do not visualize the audio.**

E.5.3 Visualized Two-Alternative Forced Choice (2AFC)

This experiment was identical to the Audio-Only 2AFC condition, except participants were allowed
to inspect the spectrograms of each recording using their preferred software before making their
decision. Marine biologists preferred Adobe Auditions, while underwater acoustics experts used
Matlab.

Task Instructions

Once again, you will listen to pairs of codas (a.wav and b.wav). For each pair, one is a natural
recording and one is synthetic. Please indicate which one you believe is synthetic.
The audio files are located in the ***section3/*** folder. Each pair consists of two files:

e *la.wav* + *1b.wav*
e *2a.wav* + *2b.wav*
* etc.

Please listen to each file at most three times. **You may now visualize the audio using any
software you are familiar with.**
What software will you use to visualize the audio?
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E.5.4 Qualitative Assessment

Task Instructions

For this final section, please first listen to the reference synthetic codas provided in the
section4 folder. These examples were chosen to represent typical outputs of our model. Then,
based on these examples and your experience with all parts of the experiment, please answer
the following questions

What characteristics of natural codas are well represented in the synthetic ones?

What characteristics of natural codas are missing or different in the synthetic ones?

Did you observe any patterns in the synthetic codas that do not occur in natural ones?
When **only listening** to the audio (sections 1 and 2), what helped you distinguish between
natural and synthetic codas?

When **visualizing** the audio pairs (section 3), what helped you distinguish between
natural and synthetic codas?

E.5.5 Background Information

Task Instructions

To help contextualize the evaluations, please tell us about your experience working with
sperm whale codas.

How many years have you spent professionally analyzing sperm whale codas (e.g., in research,
conservation, or educational contexts)?

What types of coda work have you performed?

* *Recording of codas in the field*
* *Development of recording methods for codas*
* *Manual detection, classification or annotation of codas*
* *Development of automatic detection, classification or annotation systems*
* *Meta-analysis (e.g. methodology development, literature review)*
* *QOther...*
In what contexts have you worked with coda recordings?
* *Academic research*
* *Conservation work*
* *Industry/commercial projects*
* *Educational/training contexts*
* *Government/regulatory work*

What is your primary field of expertise?
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