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Abstract
Fine-grained editing of speech attributes—such as prosody (i.e.,
the pitch, loudness, and phoneme durations), pronunciation,
speaker identity, and formants—is useful for fine-tuning and
fixing imperfections in human and AI-generated speech record-
ings for creation of podcasts, film dialogue, and video game
dialogue. Existing speech synthesis systems use representa-
tions that entangle two or more of these attributes, prohibiting
their use in fine-grained, disentangled editing. In this paper, we
demonstrate the first disentangled and interpretable representa-
tion of speech with comparable subjective and objective vocod-
ing reconstruction accuracy to Mel spectrograms. Our inter-
pretable representation, combined with our proposed data aug-
mentation method, enables training an existing neural vocoder
to perform fast, accurate, and high-quality editing of pitch, du-
ration, volume, timbral correlates of volume, pronunciation,
speaker identity, and spectral balance.
Index Terms: control, editing, interpretable, representation

1. Introduction
Deep generative modeling of speech is a mainstay content cre-
ation tool for podcasts, audiobooks, film dialogue, and video
game dialogue. These applications require speech that accu-
rately expresses the emotion, emphasis, and cadence of the nar-
rative context, as well as accents and dialects appropriate for
the cultural context. Speech generation and editing for these ap-
plications should permit high-quality, fine-grained, independent
control over the relevant attributes (e.g., prosody and pronunci-
ation) by a human user or machine learning model. For human
control, these parameters should be interpretable and intuitive.

If one also solves the inverse problem of producing these
interpretable, disentangled control parameters from existing
recorded speech, then editing speech becomes an analysis-
modification-synthesis process: speech is encoded in the in-
terpretable, disentangled representation; the user modifies the
representation; and the modified speech is resynthesized. In
this work, we advance an interpretable representation of speech
that can be inferred from speech recordings and used with an
off-the-shelf speech synthesis model to create a versatile speech
editor amenable to post-production for podcasts, film dialogue,
and more. We first overview existing representations for speech
generation that precede our proposed representation.
Time-frequency representations | Time-varying representa-
tions of frequencies (e.g., a Mel spectrogram) are widely-used
and interpretable speech representations that have been used in
loss functions [1], as output representations [2], and input rep-
resentations [3, 4]. However, time-frequency representations
are not disentangled: there is no simple way to edit them to in-
dependently change, e.g., the pronunciation or pitch. Wang et
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Figure 1: Our proposed speech representation | The time-
varying components of our interpretable, disentangled speech
representation applied to a recording of Arnold Schwarzeneg-
ger saying “I’ll be back” from the movie The Terminator.

al. [5] propose to disentangle pitch, energy, and speaker from
the Mel spectrogram by tuning the number of bottleneck chan-
nels to remove information. We omit the bottleneck and replace
the Mel spectrogram with an interpretable pronunciation repre-
sentation that enables fine-grained pronunciation editing [6].

Morise et al. [7] propose analysis-modification-synthesis of
speech using (1) a time-frequency representation, (2) aperiodic-
ity, and (3) pitch. Time-Domain Pitch-Synchronous Overlap-
and-Add (TD-PSOLA) [8] is a non-parametric method that
first segments the audio at the start of each repetition in the
waveform (or at equal intervals in unvoiced regions) and uses
overlap-add to combine modified (e.g., repeated) audio frames.
Both WORLD and TD-PSOLA are digital signal processing
(DSP) methods that modify formants (i.e., the relative energy
at harmonics in voiced frames) in undesirable ways.
Lexical representations | Lexical representations such as
graphemes (characters) and phonemes (discrete units of speech
sound) are inputs for text-to-speech (TTS) systems [9]. Ren
et al. [10] demonstrate TTS with phoneme duration control;
Łańcucki [11] demonstrates pitch control. However, when used
for analysis-modification-synthesis, graphemes and phonemes
induce coarse discretization, causing ambiguous pronunciation.
Further, TTS phoneme inputs are often produced from text, ig-
noring the input speech pronunciation and requiring a transcript.
Latent representations | Latent speech representations are



non-interpretable and typically not disentangled. These rep-
resentations exhibit strong performance in speech reconstruc-
tion [12] and generation [13]. However, precise control of, e.g.,
pitch is difficult, as pitch is entangled within a non-interpretable
representation. Notable exceptions are representations with par-
tial speaker disentanglement [14], pitch-agnostic latents of au-
tomatic speech recognition (ASR) models [15, 16], and discrete
factorizations [17]. However, lack of interpretable pronuncia-
tion representation prohibits fine-grained pronunciation control.
Source-filter representations | Neural source filter (NSF)
methods [18, 19, 20, 21] represent speech as a periodic source
excitation and a time-varying FIR filter. NSF methods demon-
strate fast, accurate, and high-fidelity pitch-shifting. However,
the speed of analysis-modification-synthesis with existing NSF
models is constrained by slow pitch estimators and causal op-
erations at the waveform resolution. As well, no NSF model
has demonstrated pronunciation or spectral balance editing. No
model using any representation has demonstrated disentangled
control of volume from the timbral correlates of volume.
Our primary contributions are as follows.
• (Contribution 1) We are the first to show a transcript-free

speech representation (Section 2) that is interpretable, dis-
entangled, and amenable to accurate speech reconstruction
(Section 5.3) and high-quality editing (Section 5.4).

• (Contribution 2) We introduce a novel data augmentation
method (Section 3) that improves speech quality, enables
spectral balance control, allows pitch-shifting outside the
range of training data, and disentangles volume from the tim-
bral correlates of volume.

• (Contribution 3) We develop a single model capable of fast,
accurate, high-fidelity editing of pitch, duration, volume, tim-
bral correlates of volume, pronunciation, speaker, and spec-
tral balance.

We provide audio examples and open-source code on our
project website.1

2. A disentangled, interpretable
representation of speech

Our speech representation (Figure 1) can be computed directly
from a speech recording (without need of a transcript) and con-
sists of four disentangled, interpretable, time-aligned features:
sparse phonetic posteriorgrams (SPPG) (Section 2.1), Viterbi-
decoded pitch (Section 2.2), entropy-based periodicity (Sec-
tion 2.3), and multi-band A-weighted loudness (Section 2.4).

2.1. Sparse phonetic posteriorgrams (SPPGs)

A phonetic posteriorgram (PPG) is a time-varying distribution
over acoustic units of speech (e.g., phones or phonemes) [22].
We infer PPGs over the 40 phonemes of the CMU pronunciation
dictionary2 from Mel spectrograms. These PPGs allow good
independent control of pitch and pronunciation [6].

We hypothesize that noisy regions in our representation
(e.g., low-probability phoneme bins in the PPG) can be memo-
rized, inducing overfitting that harms generalization during re-
construction and editing. We address this by proposing sparse
phonetic posteriorgrams (SPPGs). We explore three meth-
ods for producing SPPGs: (1) (Top-k) set all but the k most-
probable phonemes at each frame to zero; (2) (Threshold-k)
set all phonemes with probability less than k to zero; and (3)
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(Percentile-k) sort the phonemes of each frame by descending
probability, add phoneme probabilities until the sum reaches k,
and set all remaining phoneme probabilities to zero. We renor-
malize SPPG frames to sum to one. Our hyperparameter search
over k for each method indicated Percentile-k with k = 0.85 is
best, using objective metrics defined in Section 5.1.

2.2. Viterbi-decoded pitch

We compute our pitch representation using the FCNF0++ pitch
estimator [23]. FCNF0++ produces a pitch sequence y =
y1, . . . , yT in Hz from a time-varying categorical posterior dis-
tribution D ∈ R|Q|×T inferred by a neural network over T
time frames and a set of frequency values Q. FCNF0++ uses
|Q| = 1440 frequency bins, ranging from 31-2006 Hz in 5 cent
intervals. Cents (¢) measures the pitch difference between two
frequency values yt and ŷt: ¢ (yt, ŷt) = 1200

∣∣∣log2 (yt/ŷt)∣∣∣.
By default, FCNF0++ decodes y from time-varying distribution
D using argmax in voiced frames V and linear interpolation of
the closest voiced pitch values within unvoiced frames. Voiced
frames are time frames where the periodicity h = h1, . . . , hT

(Section 2.3) exceeds a threshold: V = {t : ht > α}. We
find there is no threshold α sufficient to remove the noise in un-
voiced frames while leaving voiced frames unmodified. We use
Viterbi decoding [24], which finds the optimal path of a time-
varying distribution given initial and transition probabilities.
Our initial probabilities are uniform and our transition probabil-
ities are triangular distributions that assign maximal probability
to staying on the same pitch and zero probability to pitch jumps
greater than one octave between adjacent time frames. We could
not find an open-source Viterbi decoder fast enough to scale to
large datasets. We develop and open-source3 a Viterbi decoder
that decodes time-varying distribution D on VCTK [25] 1.62x
faster than a widely-used reference [26] on a 16-core CPU. Us-
ing a batch size of 1, our GPU implementation on an A40 GPU
is 1,760x faster than our 16-core CPU implementation. Using a
batch size of 512, our GPU implementation is 309,000x faster
than a 16-core CPU (501,000x faster than reference).

Pitch conditioning of neural networks often involves quan-
tizing pitch into equal-width bins and learning a corresponding
embedding table [27, 19, 5]. This leads to infrequently used
bins at endpoints of the pitch range of the training distribution
that cause instability and artifacts. We change the bin spacing
so each pitch bin is accessed equally often during training. This
produces a variable-width quantization that allocates more bins
to frequently used pitch regions (e.g., 100 to 200 Hz). We use
256 bins and a 64-dimensional embedding table.

2.3. Entropy-based periodicity

We use entropy-based periodicity [23] estimation. Given au-
dio frame xt, its periodicity ht ∈ [0, 1] indicates the ex-
tent to which xt contains pitch (i.e., is voiced): ht = 1 −

1
ln |Q|

∑
q∈Q Dq,t lnDq,t. Higher values indicate that xt is

likely to contain pitch. Unlike binary voiced/unvoiced (V/UV)
masks, periodicity encodes the uncertainty of V/UV decisions.

2.4. Multi-band A-weighted loudness

A-weighted loudness [28] is a frequency-average of a weighted
magnitude spectrogram, with per-channel weights derived from
human perceptual studies of loudness variation. Reconstruct-
ing speech from our representation using A-weighted loudness

3github.com/maxrmorrison/torbi



produces worse loudness reconstruction relative to Mel spectro-
grams (Table 1; w/o multi-band), but Mel spectrogram vocod-
ing entangles pitch and pronunciation. To address this trade-
off, we propose using multi-band A-weighted loudness: sorted,
real-valued FFT frequencies ω1, . . . , ω|ω|/2+1 are divided into
k bands and averaging occurs over each band. A hyperparame-
ter search over 2, 4, 8, 16, and 32 bands indicates optimal dis-
entanglement and loudness reconstruction at 8 bands.

3. Controlling spectral balance and timbre
Prior works use resampling [29] or pitch-shifting [30] to aug-
ment the pitch distribution of a training dataset of speech. How-
ever, these methods cannot be used in speaker-conditioned gen-
eration without causing artifacts such as incorrect formants. We
propose a technique that increases the range of the desired audio
feature within the training distribution and enables the artifacts
induced by data augmentation to be independently controlled.
We apply our proposed augmentation technique to disentangle
pitch (F0) from spectral balance, as well as the disentanglement
of volume from the timbral correlates of volume.
Disentangling spectral balance and pitch | Let Rf (x; a, b)
resample speech recording x from sampling rate a to sampling
rate b. Given original sampling rate s, target sampling rate t,
and random pitch shift factor rf ∼ Uniform(−1, 1), we aug-
ment training data with xf = Rf (Rf (x; 2

rf s, s); s, t). This
augmentation modifies spectral balance. We pass rf to the net-
work during training, so the model learns that low rf indicates
more energy at low-frequencies and high rf indicates more en-
ergy at high-frequencies. We create one randomly pitch-shifted
copy of each training utterance.
Disentangling volume from its timbral correlates | Let
Rl(x; g) be a function that increases or decreases the volume of
speech recording x by g decibels. Given a randomly sampled
volume shift rl ∼ Uniform(−1, 1), we augment training data
with xl = Rl(x; 12rl). If any sample of xl is outside [−1, 1],
we draw a new sample for rl until xl is within [−1, 1]. We
pass rl to the network during training. We create one randomly
volume-shifted copy of each training utterance. During genera-
tion, setting rl > 0 increases volume, rl < 0 decreases volume,
and rl = 0 maintains the current volume; rl does not control the
timbral correlates. Instead, framewise edits to A-weighted loud-
ness produce audible changes in timbre corresponding to louder
or quieter speech while maintaining accurate volume control.

4. Neural speech editing model
We create a high-quality, fine-grained speech editing model by
training an off-the-shelf HiFi-GAN vocoder [1] on our proposed
distentangled, interpretable representation (Section 2), as well
as three time-invariant features: augmentation ratios rf and rl
(Section 3) and a jointly trained speaker embedding. We re-
place the multi-scale spectrogram discriminator (MSD) [1] with
the complex, multi-band spectrogram discriminator [12], which
allows the discriminator to evaluate phase.

We train for 400k steps on one A40 GPU. We use a batch
size of 64. Each item in the batch consists of 64 frames and pro-
duces 16,384 samples of synthesized audio. We use the AdamW
optimizer [31] with a learning rate of 2× 10−4.

4.1. Data

We use VCTK [25] for training and evaluation. We select five
male and five female test speakers. We select ten utterances

from each test speaker for a total of 100 test utterances. We
require all test utterances be between four and ten seconds in
length to provide adequate context for perceptual studies. We
reserve 64 random validation utterances. On our companion
website, we show our model is also capable of adaptation to
unseen speakers from the DAPS [32] dataset.

5. Evaluation
We design our evaluation to answer three questions: (1) Does
our representation permit vocoding with comparable objective
and subjective quality to Mel spectrograms? (Section 5.3), (2)
Does our representation enable accurate, high-quality prosody
control? (Section 5.4) and (3) Does our data augmentation
method (Section 3) enable disentanglement of pitch and spectral
balance, as well as disentanglement of volume from its timbral
correlates? (Section 5.5) Audio examples for all evaluations as
well as voice conversion and fine-grained pronunciation editing
are available on our project website.

5.1. Objective metrics

We use four objective metrics: (1) pitch error in cents in voiced
regions (∆¢), (2) periodicity error as RMSE (∆ϕ), (3) volume
error in non-silent frames (above -60 dBA) in decibels (∆dBA),
and (4) Jensen-Shannon divergence between sparsified PPGs
(∆PPG) [6], a pronunciation distance that strongly correlates
with word error rate using Whisper [33].

5.2. Crowdsourced subjective evaluation

For all crowdsourced evaluations, we use Reproducible Sub-
jective Evaluation (ReSEval v0.1.6) [34] to deploy Human In-
telligence Tasks (HITs) on Amazon Mechanical Turk (AMT).
For each evaluation, we recruit US participants with a minimum
99% approval rating and 1000 completed assignments. On aver-
age, we pay participants $13.35 per hour. We omit participants
who fail a prescreening listening test. We use as source speech
the 100 VCTK [25] test utterances (Section 4.1).

5.3. Evaluation of speech reconstruction

Mel spectrograms excel at speech reconstruction. We compare
our disentangled, interpretable representation to Mel spectro-
grams on speech reconstruction with HiFi-GAN [1]. We in-
clude speaker conditioning, data augmentation, and the com-
plex, multi-band discriminator [12] in our baseline Mel model.
This is for fair comparison and because these techniques im-
prove the baseline. We use objective metrics described in Sec-
tion 5.1. For subjective evaluation, we recruit 35 participants
to each perform 15 ABX comparisons of reconstruction accu-
racy. In an ABX comparison, a participant selects which of
two speech recordings (“A” or “B”) sounds more similar to a
reference recording (“X”). All participants passed the listening
test and five participants left early, giving us 450 ABX com-
parisons. Table 1 (Reconstruct) shows that participants rated
our representation more similar to ground truth audio in 212
of 450 ABX comparisons (47.1%). A two-sided Binomial test
indicates no significant preference among raters (p = 0.23);
the perceptual reconstruction accuracy of our representation is
roughly as good as Mel spectrograms. As well, our represen-
tation improves pitch and periodicity reconstruction relative to
Mel spectrograms. We next demonstrate the efficacy of our rep-
resentation on editing tasks that are challenging or impossible
with other representations (e.g., Mel spectrograms).



Task Method ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓ Subjective↑
Proposed 17.1 ± 0.88 .055 ± .003 .521 ± .039 .109 ± .008 .471 ± .046Reconstruct Mels 21.5 ± 1.44 .061 ± .003 .381 ± .019 .041 ± .003 .529 ± .046
Proposed 22.5 ± 1.41 .082 ± .003 .874 ± .066 .130 ± .007 68.9
TD-PSOLA [8] 22.4 ± 1.35 .112 ± .005 1.32 ± .066 .109 ± .006 61.1 ± 3.13Pitch-shift
WORLD [7] 18.6 ± 0.72 .113 ± .005 1.62 ± .056 .296 ± .045 45.0 ± 3.25
Proposed 19.7 ± 0.74 .068 ± .002 .720 ± .030 .142 ± .005 –

w/o SPPG 20.0 ± 0.62 .070 ± .002 .754 ± .030 .146 ± .005 –
w/o Viterbi decoding 34.2 ± 1.57 .071 ± .002 .709 ± .028 .143 ± .005 –
w/o variable-width bins 20.5 ± 0.69 .068 ± .002 .728 ± .031 .143 ± .005 –
w/o multi-band loudness 20.5 ± 0.64 .071 ± .002 .811 ± .025 .166 ± .005 –
w/o augmentation 20.2 ± 0.82 .070 ± .002 .679 ± .025 .142 ± .005 –

Ablations

w/o all (cumulative) 37.5 ± 1.65 .071 ± .002 .856 ± .030 .166 ± .006 –
Table 1: Evaluation results | (Reconstruct; Section 5.3) Results of speech reconstruction using Mel spectrograms or our disentangled,
interpretable representation. (Pitch-shift; Section 5.4) Results of pitch-shifting by ±600 cents using our proposed system and two DSP
baselines. (Ablations) Non-cumulative ablations of methods proposed in Sections 2 and 3; values are averages over pitch-shifting (by
±600 cents), time-stretching (by factors

√
2 and

√
2/2), loudness edits (by ±5 dBA), and reconstruction.

5.4. Evaluation of disentangled prosody control

We demonstrate disentanglement of pitch by modifying the
pitch by ±600 cents (i.e., one tritone) while keeping all other
features the same. We demonstrate duration control by increas-
ing or decreasing the speaking rate by a factor of

√
2 via inter-

polation. We use spherical linear interpolation (SLERP) [35]
to interpolate PPGs (prior to sparsification) and linear interpo-
lation for all other features. As is the case for human speak-
ers, we only apply time-stretching to voiced phonemes and si-
lences. We use the four objective metrics described in Sec-
tion 5.1 for pitch-shifting. We also perform subjective evalu-
ations. Participants listen to speech recordings from each con-
dition and rank their relative quality from 0 (worst) to 100 (best)
using a slider. We compare three conditions: (1) our best sys-
tem, (2) TD-PSOLA [8] and, (3) WORLD [7]. We recruit
35 participants for each evaluation (pitch-shifting and time-
stretching). Five participants failed the prescreening listening
test for the pitch-shifting and one participant left early, so we re-
ceive 435 three-way comparisons for pitch-shifting and 525 for
time-stretching. Table 1 (Pitch-shift) indicates our proposed
method demonstrates statistically significant improvements in
perceptual pitch-shifting quality using a Wilcoxon signed-rank
test (p = 5.41 × 10−6). Our time-stretching subjective eval-
uation indicates insignificant improvements in time-stretching
(p = 0.45), with a mean of 64.0 for our proposed method, 63.3
± 1.71 for TD-PSOLA, and 46.5 ± 2.20 for WORLD.

We demonstrate that our design choices (Sections 2 and 3)
improve editing accuracy via ablations. We report the aver-
age objective metrics over a set of modifications: pitch-shifting,
time-stretching, loudness adjustments, and reconstruction. Ta-
ble 1 (Ablations) shows that each of our design decisions con-
tributes to the efficacy of our proposed system, with Viterbi-
decoded pitch (Section 2.2) and multi-band A-weighted loud-
ness (Section 2.4) being particularly impactful.

5.5. Evaluation of data augmentation

We now demonstrate that our proposed data augmentation (Sec-
tion 3) permits disentangling spectral balance from pitch, as
well as disentangling volume from its timbral correlates. We
perform vocoding using two spectral balance editing ratios:
rf =

√
2 and rf =

√
2/2. We perform estimation of F0

and its first two harmonics (H1 and H2) and measure the dis-
placement of F0, H1, and H2 reconstruction in cents in voiced
regions. We also measure the change in spectral centroid be-

tween ground-truth and edited audio. Low displacement error
with a change in spectral centroid in the direction of rf in-
dicates disentangled control of spectral balance. Prior meth-
ods such as peak-picking [36], Viterbi decoding [37], or neural
methods [38] exhibit significant noise. No prior work has com-
bined neural networks and Viterbi-based harmonic estimation.
We propose using our pitch representation (Section 2.2) as F0
and performing Viterbi decoding on the log magnitude spectro-
gram in bands, where Hi is restricted to band (i + w) × F0 <
Fi < (i+1/w)×F0 and w = 4/5 is tuned by visual inspection
on training data to prevent octave errors. Our proposed estima-
tion method reconstructs F0 with an average error of 18.73 cents
and H1 and H2 with an average error of 5.60 cents. The change
in framewise spectral centroid has Pearson correlation of .853
with rf , indicating strong, disentangled control of spectral bal-
ance. Qualitatively, this produces a similar effect as, e.g., Alvin
from Alvin and the Chipmunks, but without requiring voice ac-
tors to sing/speak unnaturally slowly.

For disentangling volume from its timbral correlates, we
perform vocoding using A-weighted loudness contours mod-
ified by ±10 dBA. We then use simple gain scaling to per-
form framewise A-weighted volume matching between our
loudness-edited speech recordings and corresponding original
speech. This produces pairs of original and loudness-edited
speech recordings with equal volume. We perform an A/B
subjective evaluation in which we ask 35 participants to se-
lect which of two speech recordings “sounds like the speaker
is speaking louder”. Six participants failed the prescreen-
ing listening test, so we receive 435 perceptual A/B compar-
isons. In 290 comparisons (66.7 ± 4.6%), participants’ selec-
tion matches our intended modification on volume-matched au-
dio (p = 3.20× 10−12).

6. Conclusion

We demonstrate an interpretable, disentangled speech represen-
tation (Section 2) with reconstruction accuracy comparable to
Mel spectrograms (Section 5.3). Our representation and data
augmentation method (Section 3) enable off-the-shelf vocoders
to perform accurate, high-quality control over pitch, duration,
volume, timbral correlates of volume, pronunciation, speaker,
and spectral balance (Sections 5.4-5.5). Future work includes
one-shot disentangled voice conversion [14]; generating our
representation from lexical features; and framewise formant
control using our proposed harmonic estimation (Section 5.5).
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