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ABSTRACT

We showcase a method that repurposes deep models trained for mu-
sic generation and music tagging for audio source separation, with-
out any retraining. An audio generation model is conditioned on
an input mixture, producing a latent encoding of the audio used to
generate audio. This generated audio is fed to a pretrained music
tagger that creates source labels. The cross-entropy loss between the
tag distribution for the generated audio and a predefined distribution
for an isolated source is used to guide gradient ascent in the (un-
changing) latent space of the generative model. This system does
not update the weights of the generative model or the tagger, and
only relies on moving through the generative model’s latent space to
produce separated sources. We use OpenAl’s JUKEBOX as the pre-
trained generative model, and we couple it with four kinds of pre-
trained music taggers (two architectures and two tagging datasets).
Experimental results on two source separation datasets, show this
approach can produce separation estimates for a wider variety of
sources than any tested system. This work points to the vast and
heretofore untapped potential of large pretrained music models for
audio-to-audio tasks like source separation.

Index Terms— music source separation, generative music mod-
els, automatic music tagging, gradient ascent

1. INTRODUCTION

The research area of Music Information Retrieval (MIR) is con-
strained by a lack of labeled data sets, which limits our ability to
train robust systems and evaluate them well. Specifically, the task
of musical source separation has been hindered by a dearth of well-
labeled data [1]]. This leads to severe shortcoming in terms of the
range of instrument source classes that current systems can separate.
Many systems, in fact, only separate the four classes (voice, bass,
drums and “other”) in the widely-used MUSDB18 [2] dataset, mak-
ing them unsuitable for separating most musical instruments.

Simultaneously, the recent availability of large pretrained mod-
els has revolutionized generative and discriminative tasks in the do-
mains of computer vision and natural language processing. The
combination of VQGAN (3] and CLIP [4] has captured the attention
of many artists, who have been captivated by the system’s ability to
use natural language to create generative art. Similarly, researchers
have shown how to steer large pretrained language models for down-
stream discriminative tasks either using transfer learning [5] or so-
called few-shot “prompt engineering” [6]. Recent work has taken
this ethos to the MIR domain, leveraging the representations learned
by the large training regime of a generative music model for down-
stream MIR tasks, like key detection and music tagging [7].

In this work, we further this ethos by exploring how large, pre-
trained music models can be used for musical source separation,
leveraging the vast amounts of unlabeled or weakly labeled data that
these models see during training. We combine the VQ-VAE from
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Fig. 1. Our system performs gradient ascent in the JUKEBOX VQ-
VAE embedding space such that when the audio is input into a music
tagger it matches a predefined set of tags. The weights of VQ-VAE
and the Music Tagger are frozen. With this setup we can perform
source separation.

OpenAl’s JUKEBOX, a generative model of musical audio, with a
music tagger. We task JUKEBOX with producing audio that matches
a predefined set of tags that correspond with the musical source we
wish to separate. To do this, we perform gradient ascent in the em-
bedding space of the VQ-VAE and use the decoded audio as a mask
on the input mixture. We demonstrate experimentally that this setup
is able to separate a wider variety of sources than previous purpose-
built separation systems consider, all without updating the weights of
JUKEBOX or the tagger. We provide additional demos and runnable
code on our demo site

2. PRIOR WORK

Recently, many source separation researchers have focused on meth-
ods that produce high-quality results on the datasets for which there
is sufficient ground truth source data. For instance, the website
Papers with Code shows a steady increase in the best performing
separation systems on the MUSDB18 [2] dataset over the past few
yearsﬂ Similarly, the recent Music Demixing Challenge [8] invited
people to compete to determine the best performing system on a test
set that had the same source definitions as MUSDB18. As a re-
sult, the community has produced a large number of deep learning-
based supervised separation systems that are purpose-built to sepa-
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rate sources as defined by MUSDB18. However, the source defini-
tions in MUSDBI18 are limiting, [1] including isolated source data
for only Vocals, Bass, Drums, and a catchall “Other” source for all
other source types. Furthermore, MUSDBI1S8 is relatively small, to-
talling 150 songs, which leads the authors of many state-of-the-art
systems [8} 19, [10] to collect additional data or lean heavily on aug-
mentation.

Prior to the deep learning era, one of the most popular algo-
rithms was Non-negative Matrix Factorization (NMF) [11]]. While
NMEF is theoretically flexible enough to separate any source, it of-
ten required hand-designed algorithms to determine how to cluster
spectral templates into coherent sources. Musical priors, such as rep-
etition [12] or harmonicity vs. percussiveness [13], have also been
used to create separation algorithms, however such algorithms are
limited to separating sources that match the prior (e.g., a backing
band) vs those that do not (e.g., a singing voice), and have been
surpassed by deep learning-based methods. Although some recent
neural network-based systems leverage the built-in priors of older
algorithms for training [[14}[15], our method does not rely on hand-
designed priors, instead using the biases learned by generative music
models and music taggers.

Recent work in speech and environmental sound separation
has explored unsupervised deep learning to eliminate the need for
isolated source examples for training. Mixture Invariant Training
(MixIT) [16] is a technique which creates mixtures of mixtures
(MoMs) and tasks a network with overseparating each MoM such
that when sources are recombined, a mixture reconstruction loss can
be used, forgoing the need for isolated source data altogether. While
we are unaware of anyone using MixIT for music separation, MixIT
makes an implicit presumption that any two sources in a mix are
independent [16]], an assumption that may not hold for music. Sim-
ilarly, Neri et. al [17] propose a technique for training a variational
auto-encoder (VAE) for unsupervised source separation, however
in our work we do not train networks at all, rather we use frozen,
pretrained models for separation.

Similar to this paper is work by Jayaram and Thickstun [18],
in which they propose a fast way to sample from autoregressive au-
dio models, leading them to leverage the priors learned by a source-
specific generative model to effectively denoise a mixture signal. To
separate a new source, their work requires access to a large corpora
of single-source audio to train a source-specific generative model. In
contrast, our work separates new sources by simply changing the a
set of tag labels corresponding to a desired source.

Previous works have explored using additional networks for sep-
aration instead of directly optimizing a separation net on ground
truth sources. For instance, the work of Pishdadian et. al. [19] is
most similar to ours; they explore using a pretrained sound event
detection (SED) system and the goal of the separator network is to
maximize estimated SED labels during training. Similarly, Hung et.
al [20] use a pretrained transcription network to train a separator.
Our work differs from Pishdadian et. al. and Huang et. al. in that
we do not not train any networks, instead we repurpose oft-the-shelf
networks that have never been trained for source separation.

3. BACKGROUND

3.1. OpenAI’s JUKEBOX

OpenAl recently released JUKEBOX [21]], a generative audio model
that creates music. JUKEBOX is composed of two components: a
hierarchical VQ-VAE [22] that learns to turn raw waveforms into to-
kens and back, and a language model that learns how to generate new

Algorithm 1 Our Method

€ < Vencoder () Encode the input mixture.
X < STFT(x)
repeat
J  Viecoder(€) Decode the embedding.
J <« STFT(5)
M + LJ] Build the mask.

S < M ® X Mask the mixture.
Ts + Tagger(ISTFT(S)) Get the probability over tags.
€ < OV L(Ts, Tiarget; ) Update the embedding.

until max steps

Sout +— x — ISTFT(S)
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tokens which can be passed through the decoder to create musical
audio. In this work, we are interested in the VQ-VAE, specifically.

JUKEBOX’s VQ-VAE is a three-level hierarchical VQ-VAE that
generates discrete tokens at different sample rates, compressing
the 44.1kHz input audio to tokens with sample rates of 5.51kHz,
1.37kHz, and 344Hz for each level, respectively. Each level has a
codebook size of 2048 with each code having 64 dimensions. All
levels are trained to reconstruct the input waveform and are opti-
mized with a multi-scale spectral loss. The VQ-VAE also uses a
codebook loss to ensure that non-discretized latent vectors are close
to their nearest neighbor discretized token vectors and a commit-
ment loss, which stabilizes the encoder. The VQ-VAE is trained on
1.2 million songs scraped from the web. We refer the reader to the
JUKEBOX paper for further training details [21]. Because we are in-
terested in producing the highest-quality separation results possible,
we only focus on the “Bottom” level, which compresses the input
audio to tokens at a sample rate of 5.51kHz.

3.2. Automatic Music Tagging

Music tagging is the task of labeling musical audio clips with se-
mantic labels called “tags” [24} 25]. These tags are useful for music
search and recommendation systems, enabling automatic labelling
of large music corpora. The content that the tags represent can vary,
sometimes indicating information about a song’s genre, the song’s
mood or theme, or whether particular instruments are audible.

Music tagging systems are designed to predict a set of multi-
hot, binary labels (i.e., tags) based on the acoustic contents of an
input signal. Many recent works use convolutional neural networks
at their core, varying the convolutional filter size and input repre-
sentation of the audio [26]. Common datasets for music tagging
are an order of magnitude larger than source separation datasets:
MagnaTagATune (MTAT) [24] contains 25,877 30-second labeled
audio clips (=21x more hours of audio than MUSDB18) and MTG-
Jamendo (MTG) [25] contains 55,701 labeled audio clips with a
minimum song length of 30 seconds (> 46x more hours of audio
than MUSDB18). We refer the reader to Won et. al. for an overview
of recent advances in music tagging [26].

In this work, we use pretrained music taggers provided by Won
et. al [26]. We examine using two pretrained music tagging systems,
with each having a different input representation: FCN [27] with Mel
spectrogram inputs, and HarmonicCNN [28]], which inputs a variant
of a constant-Q transform that has learnable filters. We also explore
using taggers trained on different datasets, namely MagnaTagATune
(MTAT) [24] and MTG-Jamendo (MTG) [235].



Method # Trainable Neural MUSDBIS [2] Slakh2100 [T]]
Parameters Network? Vocals Bass Drums Bass Drums Guitar Piano  Strings
Open-Unmix [10] 400M v 15.0 11.9 11.6 9.8 14.4 - - -
Demucs [9] 50M 4 15,5  13.1 12.7 10.8 15.5 - - -
Cerberus [23] 75M v - 8.3 7.5 10.8 15.4 10.2 10.5 12.5
HPSS [13] 0 - - -0.1 - 0.3 - - -
REPET-SIM [12] 0 7.8 - = = = — - -
TAGBOX (Ours) 1 v 74 7.1 5.9 6.9 7.3 9.3 8.7 10.5

Table 1. Comparison of source separation systems in terms of mean
indicate that the system is unable to separate that source type. TAGBOX

4. PROPOSED SYSTEM

At the heart of our proposed system are two components: a pre-
trained generative music model (i.e., JUKEBOX) and a pretrained
music tagging model. Because our system combines music taggers
and JUKEBOX, we call our system TAGBOX. The core of the idea
is simple, given an input audio clip, the generative model iteratively
alters that input audio such that, when the altered audio is given to a
tagger, the tagger’s output increasingly matches a target set of tags
that describe the desired set of sources. An illustration of the pro-
posed approach is shown in Figure [I] Algorithm 1 outlines the ap-
proach in pseudocode. We now describe the steps in our method.

We first create a target tag distribution T}qrget by setting the tags
that correspond to the desired instrument sources to 1 (e.g., “guitar”
or “drums”) and all other tags to 0. We then use Vencoder, the en-
coder portion of an autoencoder (in this case, the one in JUKEBOX),
to produce an embedding e from the input audio mixture x. This em-
bedding is then decoded into a waveform j by the decoder Vgecoder-

Rather than pass j directly to the T'agger, we use it as a mask
on the input mixture. In this way, the embedding e essentially de-
termines what information must be removed from the input mix to
produce the desired source as defined by the tags. For an input mix-
ture waveform = € R? and a JUKEBOX-decoded waveform j € R?,
both with length ¢ samples, we convert both to a spectrogram repre-
sentation, X € RT*F and J € RT*¥, with T time frames and F’
frequency bins. We then compute a real-valued mask, M € RT*F
as follows:

y /]

M = ax(LIXD) T )
where max() is an element-wise max function between each time-
frequency bin in a pair of spectrograms and a small epsilon, e.g
e = le — 8, prevents division by zero. This mask M is multiplied
by the mixture spectrogram to get an estimate of the audio data that
should be removed from the mix like S = M ® X, where © indicates
element-wise multiplication. S is then converted to a waveform of
the source estimate 5 € R* using an inverse STFT. This waveform,
3, is then put into the music tagger to determine the estimated tags. A
binary cross-entropy loss VL(Tg, Tiarget; €) is computed between
the estimate tags and the predetermined instrument tags. This loss
is used to perform gradient ascent step in the JUKEBOX embedding
space, where § governs the step size. This approach is similar to ad-
versarial example generation [29]], where the goal is also to optimize
the input to produce a desired label. Because the mask made by the
JUKEBOX-decoded audio determines what should be removed from
the mix, the final estimate for a target source, 3, is the difference

SDR improvement (dB) over the unprocessed mixture. Grey cells
is the only system that is able to separate all of the sources we test.

between the input mixture waveform « and the final 5 produced by
gradient ascent. The final source estimate is therefore s, = * — 5.

We note that neither the generative model nor the music tagger
were trained for source separation and that no additional training or
alteration of the weights of either model happens at any point. These
models were, however, trained on datasets with a wider range of
audio than is typical for deep models trained specifically for source
separation.

Our system is able to produce separation results for a larger set
of sources than any previous deep learning system that we are aware
of. This system is limited only by the tags of the music tagging sys-
tem, of which there are 12 distinct instrument tags in MTG-Jamendo
(MTG). MagnaTagATune (MTAT) has 31 tags that could be inter-
preted as instrument tags, although the tags conceptually overlap
somewhat (e.g., MTAT contains distinct tags for “vocals”, “voice”,
“male vocals”, etc). Additionally, separating different source types
does not require any changes to the system setup other than altering a
set of predefined tags. Compare this to typical music separation net-
works like Open-Unmix [[10] which would require training a whole
model for each new source or Demucs [9] which would require al-
tering the network architecture to add a new source output.

5. EXPERIMENTAL VALIDATION

We conduct a series of experiments to validate our system, aimed at
answering two questions. The first and main experiment is intended
to compare the proposed system to existing systems, taking special
care to try to understand TAGBOX’s ability to separate many types
of sources. The second experiment is designed to determine how
the choice of the pretrained, frozen Tagger model affects separation
quality.

In our main experiment, we compare our system to existing
systems on two established test sets for source separation, namely
MUSDBI18 [2] and Slakh2100 [[1]. In this experiment we compare
our proposed system against recent deep learning-based supervised
separation systems as well separations based on musical priors. We
compare our system on a wide variety of source types across both of
these datasets.

The first dataset we examine is MUSDB18. MUSDB 18 contains
150 mixtures and corresponding sources from real live recording ses-
sions, 100 of these are reserved for training and the remaining 50
are used for testing. For this experiment, we exclude MUSDB18’s
“other” source because it could map to many possible tags using
TAGBOX. The supervised systems that we compare against, namely
Open-Unmix [10] and Demucs [9], are trained using the MUSDB18
training set. Contrast this to HPSS [13]] and REPET-SIM [12], which



Tagger Settings MUSDBI18 [2] Slakh [1]]
Dataset Architecture  Vox Bass Drums Bass Drums Guitar Piano  Strings
FCN 7.9 - 5.7 - 7.3 9.6 8.6 10.4
MagnaTagATune oy 66 - 50 - 65 88 T3 85
FCN 7.4 7.1 5.9 6.9 7.3 9.3 8.7 10.5
MTG-Jamendo  yony 68 67 58 67 73 83 81 90

Table 2. Comparison of using different pretrained, frozen taggers for gradient ascent with TAGBOX in terms of mean SDR improvement (dB)
over the unprocessed mixture. Note the MagnaTagATune taggers have no “bass” tag.

are run on the test set without any training. Our proposed system
falls into this second camp; it is also does not have a prior training
phase.

The main experiment also uses the Slakh2100 [1] dataset.
Slakh2100 contains 2100 mixtures with corresponding sources that
were synthesized using professional-grade sample-based synthesis
engines. We chose 50 songs from the test set to evaluate on. We
chose songs that have source data for following five source types:
bass, drums, guitar, piano, strings. We select mixes where all 5
sources are active, and we say a source is active if it has 100 or more
note onsets throughout the entirety of the song, as determined by
the corresponding MIDI data. We create mixes by instantaneously
mixing together the sources and use these mixtures as input to the
systems. With this setup we compare against Cerberus [23]], which
was trained to separate these five instruments, specifically.

For TAGBOX, we use a pretrained FCN [27]] tagger trained on
the MagnaTagATune (MTAT) [24]] dataset. We run gradient ascent
with a learning rate of 5.0 using the Adam optimizer for 10 steps (in
the interest of brevity), and use a spectrogram with 1024 FFT bins
for the mask. Additionally, we use the “foreground” from REPET-
SIM as the vocals estimate, following prior work [12]], and use the
“percussion” output from HPSS as the drums estimate. We omit the
other source outputs of these systems because they are ill-defined
(e.g., HPSS’s “harmonic” could be many possible sources).

In the second experiment, we compare four different config-
urations of our proposed system, varying the architecture and
training data of the music tagger. We look at the FCN [27] and
HarmonicCNN [28] architectures, trained either MagnaTagATune
(MTAT) [24]] or MTG-Jamendo [25]. We use the same learning rate
and number of steps as the previous experiment.

We evaluate the outcome of our experiments using the source-
to-distortion ratio improvement (SDRi) over the unprocessed mix-
ture [30] using the museval toolbox [31].

6. RESULTS AND DISCUSSION

Table[T]shows the results of our main experiment. In terms of SDRi,
our system is better than or competitive with both of the hand-
designed algorithms that we test against, HPSS and REPET-SIM.
Additionally, while our system does not show as good of perfor-
mance as the purpose-built supervised separation systems (i.e.,
Open-Unmix, Demucs, and Cerberus), it still shows a considerable
SDRi boost for all sources that we test. Importantly, our system is
able to boost performance over a wider array of source types than
any other system we compare against.

The results from our second experiment are shown in Table [2}
Of the two architectures we test, using FCN always produces better
separation results. Interestingly, the opposite trend was observed
when the taggers were evaluated for music tagging performance by

Won et. al. [26]: HCNN was among the top performing systems and
FCN was towards the bottom of the pack.

In many cases, TAGBOX can leave much to be desired perceptu-
ally; in most cases its separation performance is not up to the same
level as the purpose-built separation systems we compare against.
However, when listening to the output, there is no doubt that TAG-
Box is able to separate the desired source, despite apparent artifacts.
We have informally noticed a few tricks for better perceptual perfor-
mance, like using multiple FFT sizes when making the masks (a la
a multi-scale spectral loss) and doing gradient ascent for 100 steps.
These perceptual tricks were however not reflected in the SDR eval-
uation numbers. Furthermore, because producing each output exam-
ple requires its own gradient ascent, adding more steps increases the
computation time linearly, which can be a costly process when run
on an entire dataset. However, this might be tolerable for musicians
needing a flexible source separation solution on a single song.

There are also a few other variants of the TAGBOX setup that
can lead to fun and unexpected creative results. In the first case, we
remove the masking step and allow TAGBOX to create audio freely,
without the constraint of having to only remove information from
the mix. With this setup, TAGBOX performs a kind of style trans-
fer, mapping certain features of the audio to the desired tag. In one
example, a mixture had a singer and we selected the “guitar” tag.
TAGBOX made the resultant audio sound like a guitar was perform-
ing the melody. Additionally, another variant involves selecting non-
instrument tags, like genre tags, and optimizing those.

What we find most impressive is that neither JUKEBOX nor the
music taggers were trained for source separation. Furthermore, the
weights of both networks do not change during the gradient ascent
process; only the location of the audio in the JUKEBOX embedding
space changes. The combination of JUKEBOX and the taggers have
seen up to 1.25 million songs and combined these systems are able to
leverage their shared priors about music and musical sources to iso-
late individual musical sources in a mixture. We believe that these
priors could be leveraged in many ways to overcome the data scarcity
problems endemic to many MIR tasks, as has already been investi-
gated to great effect by Castellon et. al [7]. We are excited about
future explorations in this area.

7. CONCLUSION

In this paper, we have proposed a method for source separation by
combining pretrained models, called TAGBOX. We use pretrained
music taggers to do gradient ascent in the embedding space of Ope-
nAl’s JUKEBOX with the goal of maximizing a pre-defined tag cor-
responding to the source we want to separate. The output of JUKE-
BOX is used as a mask on the input audio before being sent to the
tagger, which ensures that JUKEBOX does not generate new, unseen
data that is not present in the input mixture. Importantly, neither



the tagger nor JUKEBOX have been trained for source separation and
the weights of both models remain fixed during the gradient ascent
process. We demonstrate results showing that our system is able to
separate a wider variety of source types than many recent purpose-
built, supervised separation systems. We are excited by the promise
that pretrained systems hold for the future of MIR and source sepa-
ration research.
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