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ABSTRACT

We are interested in developing a system that learns to rec-
ognize individual sound sources in an auditory scene where
multiple sources may be occurring simultaneously. We fo-
cus here on sound source recognition in music audio mix-
tures. Many researchers have made progress by using iso-
lated training examples or very strongly labeled training data.
We consider an alternative approach: the learner is presented
with a variety of weaky-labeled mixtures. Positive exam-
ples include the target instrument at some point in a mix-
ture of sounds, and negative examples are mixtures that do
not contain the target. We show that it not only possible to
learn from weakly-labeled mixtures of instruments, but that
it works significantly better (78% correct labeling compared
to 55%) than learning from isolated examples when the task
is identification of an instrument in novel mixtures.

1 INTRODUCTION

We are interested in developing a system that can learn to
recognize individual sound objects in an auditory scene where
multiple sound sources may be occurring simultaneously. A
system able to identify what particular sound sources are
present in a mixture would enable automatic tagging of au-
dio recordings with meta-data. A system capable of model-
ing sources in audio mixtures, without having to first learn
the sounds in isolation, would be useful to researchers work-
ing on separating audio mixtures into their component sources.

In a typical supervised learning paradigm, isolated in-
stances of a particular class of data are presented to a learner.
Learning in this case is mostly limited to a stage of the de-
sign process. With a more ecologically realistic set of re-
quirements, where learning can occur in an environemnt af-
ter deployment, this isolation of training instances can not be
guaranteed. While similar problems have already been stud-
ied in the field of computer vision [?], auditory data presents
its own unique problems because mixtures of sound can re-
sult in a composite of multiple sources at a given time.

In this paper, we focus on identification of musical instru-
ments in a musical mixture. Almost all systems that learn

to identify musical instruments require isolated examples of
the target instrument at some stage in the training process
(see [8] for a review). This could mean, isolated notes [11],
or more recently, solo phrases from an instrument [10]. A
number of these systems have been evaluated using poly-
phonic audio [4, 10, 14], i.e. audio with multiple simulta-
neous notes, but this work is still limited by the requirement
that instruments be learned in isolation.

We are aware of two systems that learn solely from poly-
phonic audio. However, they differ significantly from the
task we consider here. In [5] the system is trained on poly-
phonic audio, but each unique combination of instruments
must be learned individually. The authors admit this ap-
proach is only realistic when learning is done before deploy-
ment. Given n instruments, this results in 2n possible com-
binations that must be individually learned, significantly in-
creasing the number of required training examples. This ap-
proach also leaves open the question of how to recognize
individual instruments when presented in novel audio con-
texts. In addition, the training data requires labels indicating
all instruments currently playing for every two second seg-
ment of audio, a fairly intensive labeling task. This is true
even if a score is available (since it must be correctly aligned
with a particular audio recording).

Kitahara et al [9] learn from polyphonic data, avoiding
the combinatorial problems of [5]. However, they require
the user to input a musical score for the recording that ex-
actly labels every note with pitch, onset time and offset time,
i.e. perfect segmentation of each instrument into individual
notes is assumed.

What we would really like is a system that can learn from
weakly labeled mixtures. We call a label weak if only the
presence or absence of the target sound object is indicated
for some N second length of audio. A weakly labeled pos-
itive example will contain the target object at some point
in the example, but a significant portion of the time may
not contain audio from the target. A weakly labeled neg-
ative example does not contain the target sound object at
any point in the example. In this scenario a useful posi-
tive training example for the “saxophone” class would be
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an acoustic recording of a saxophone and bass duo playing
at a gallery opening. A negative example would be some
other audio clip that contains no saxophone in the record-
ing. Training could be accomplished on-line by recording
a few audio clips that contain the desired sound. Our pro-
posed input and output have important differences from that
of previous systems that learn from polyphonic audio [5, 9]
(weakly vs. strongly labeled input and multi-class vs. a
presence/absence label as output).

As a first step towards our objective, in this paper we
evaluate a system that provides presence/absence labels for
a single instrument over short time intervals (~2 seconds).
We do not require labeling all instruments in the mixtures at
short intervals, nor do we require detailed scores. Instead,
the system learns from weakly labeled examples that include
distractor sounds.

Our instrument classes are learned independently of the
background sounds: the classifier can be trained in one back-
ground environment and used in another. Although all the
tools we use to accomplish this task already exist (as de-
scibed in Section 2), we are not aware of anyone who has
yet put these pieces together the way we do. In our exper-
iments (in Section 4), we show that it is not only possible
to learn from a mixture of instruments (constructed as in
Section 3), but that it works significantly better than learn-
ing from isolated examples when identifying instruments in
novel mixtures.

2 CLASSIFICATION METHOD

We use the segment-and-combine [6] framework for our clas-
sification system, defined below.

1. Segment each example Xi by selecting n potentially
overlapping segments {xi1,xi2, . . . ,xin} ∈ Xi at
random (as per [6]), using the piece extraction opera-
tor described below.

2. Learn a classifier function f(x) ∈ [0, 1] which re-
turns higher values for segments more likely to be part
of the target object.

3. Classify segments with the learned function f(x).

4. Combine each of the classifications of f(x), F (Xi) =
C[f(xi1), f(xi2), · · · , f(xin)] ∈ {0, 1}. The combi-
nator C[·] returns a positive result if the average of
f(x) for all segments is greater than 0.5 (as per [6]).

We chose this approach because it has shown promise, even
compared to more sophisticated approaches, in similar prob-
lems, such as learning to recognize visual objects from clut-
tered data [6]. We describe the extraction operator in Sec-
tion 2.1 and the segment classifiers f(x) in Section 2.2.

Feature Description/Details
MFCCs Mel frequency cepatral coefficients
Brightnes Ratio of energy above 1500Hz to energy

below.
Spectral Stats First four statistical moments of

spectrum
Flatness Ratio of geometric to arithmetic mean of

spectrum
Pitch Calculated using first peak of

autocorrelation function.
Amplitude Root mean squared average.
Flux Difference of spectrum between

subsequent frames.
Inharmoncity The strength of the pitch: amount of

energy far from f0 · n

Table 1. The features used to represent each audio segment.

2.1 Extraction Operator

Our extraction operator to select possibly overlapping audio
segments in Step 1 selects a sub-portion of the audio, based
on two parameters: time(t) and length(l). The range of pos-
sible values for our start time (t) is from 0 to the length of
the file in frames. The length of the extracted segment (l)
ranges from 0.1 seconds to 0.5 seconds. Given an audio ex-
ample Xi, we select 5 segments per second of audio in the
example. Thus, for a 10 second example there would be 50
segments. We randomly select these segments, picking val-
ues for t and l using a uniform probability distribution over
time.

The jth segment drawn from example i is represented as a
vector of features xij ∈ Rd.In this case d = 22 (13 MFCCs,
4 spectral statistics, plus the other 6 features). We choose
to use a set of features found to be commonly useful in past
work on musical instrument identification. All features used
are listed in Table 1.

2.2 Segment Classifiers

We compare three classifiers: Extra Trees [7], which, as we
will explain, should be fairly appropriate for this task, to
a very simple classifier, the K-nearest neighbors algorithm
[3], and a fairly sophisticated classifier, the Support Vector
Machine [1] with a radial basis kernel. This comparison is
detailed in Section 4.

It is important to recognize the noisy nature of the label-
ing data: it is possible that a segment from a positive exam-
ple, which would be labeled positively, contains no energey
from the target instrument. Since labels are weak, a positive
example for “saxophone” could be a jazz recording contain-
ing many portions where the saxophone is silent.

The results in [2] suggest that methods such as bagging
or randomization work well under such noisy labeling con-
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ditions. The Extra Tree algorithm [7] is an ensemble method
that uses randomized decision trees. It differes from other
randomized decision trees, in that, with the lowest parameter
setting, the algorithm would completely randomize both the
split and the attribute selected at each decision node, yield-
ing a tree completely independent of training data (Extra
Tree is short for extremley randomized tree). The construc-
tion of a single Extra Tree is summarized below.

1. Let the subset of training examples be S, the feature-
split pool size be K and the minimum subset be nm.

2. If |S| < nm or if all features values are constant, or
all examples in S share the same label.

(a) Define this tree’s output f(x) as the value of the
most frequent label in S.

3. Otherwise:

(a) Select K randomly uniform split si and feature
fi pairs.

(b) Select the best split-feature pair smax, fmax by
entropy measures.

(c) Let the output f(x) be the output of the right
tree if fmax < smax for x and the output of the
left tree if fmax ≥ smax.

(d) Create the right tree, with S equal to the subset
of examples with fmax < smax.

(e) Create the left tree, with S equal to the subset of
examples with fmax ≥ smax.

Results in [7] suggest that with appropriate parameter set-
tings, as detailed in Section 4.1.1, the Extra Tree ensemble
outperforms other random tree ensemble methods.

3 DATA

For our initial tests we wanted to tightly control the diffi-
culty of our examples, allowing us to observe how each of
our classifiers degrades as the data becomes more challeng-
ing. So, rather than use commercial recordings, we trained
and tested on synthesized mixtures of randomly selected
notes from four instruments. Each positive example con-
tains a mixture of instruments, one of which corresponds
to the label the system should learn. Thus, a positive ex-
ample for “Cello” might contain a Cello, Violin and Oboe.
The four instrument classes used for our source sounds were
Cello, Violin, Oboe, and Bb Clarinet. Instrument recordings
were taken from a set of instrument samples made available
by the University of Iowa 1 . The ranges of pitches used in
our experiments for the instruments were as follows: for
Cello we used notes from C2 to C7, for Violin from G3 to

1 http://theremin.music.uiowa.edu/index.html

Db7, for Clarinet from D3 to B6, and for Oboe from Bb3
to C6. These were played at three different dynamic lev-
els, pp, mf and ff. All samples were encoded as linear PCM
16bit wav files at a sampling rate of 44100Hz. The Iowa
recordings were segmented into individual notes. Training
and testing examples were constructed as follows.

1. Select a set of instruments

2. For each instrument, create a melody by randomly
picking a series of note recordings from the database

3. For each instrument melody, intersperse the notes with
silences of random length from 0 to some maximum
value.

4. Adjust instrument volumes to obfuscate the target in-
strument to the desired level.

5. Sum the melodies to create a mixture.

Examples were a minimum of 10 seconds long. The aver-
age length of an example was 11.5 seconds and the longest
example was 17.3 seconds. To vary the a level of target ob-
fuscation we varied the maximum spacing between notes in
the target instrument melody (st) and notes in the distrac-
tor instrument melodies(sd), as well as the relative ampli-
tude of the distractors notes (ad) across three target obfus-
cation conditions. These values were selected so that we
would obtain a range of target to mixture ratios, as defined
in Section 4.2. For easy obfuscation, st = 0.5, sd = 1
and ad = 1; for medium obfuscation, st = 1.5, sd = 1
and ad = 1; and for hard obfuscation st = 1.5, sd = 0.5,
and ad = 1.5. Thus, for easy obfuscation, target instrument
notes were more frequent than distractors and of equal am-
plitude. For hard obfuscation, distractors were significantly
more frequent and louder than targets.

Conditions varied along three dimensions: target instru-
ment (one of the four instruments), ensemble of distractor
instruments (one to two of the other instruments in all pos-
sible combinations), and target obfuscation (from easy to
hard): this resulted in a total of 4 × 6 × 3 = 72 data con-
ditions. We created 10 positive examples and 10 negative
examples for each of the conditions, yielding a total of 1440
example audio files.

Some examples of typical correctly and incorrectly clas-
sified examples for the mixed condition (from Section 4.1)
can be found at the following URL:
http://www.cs.northwestern.edu/~dfl909/ismir2008sounds

4 EVALUATION

In our evaluation we sought to answer to the following ques-
tions.

1. What effect does training on mixtures, rather than iso-
lated notes have on accuracy when identifying instru-
ments in novel mixtures of sound?
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2. How does accuracy degrade across our three segment
classifiers as the target class is increasingly obfus-
cated by the distractors in the mixture?

3. How does performance using weak labels compare to
performance using stronger labels?

We begin our evaluation by addressing questions 1 and 2 in
Section 4.1. Questions 3 is addressed in Section 4.2.

4.1 Experiment 1

In this experiment, we wanted to compare performance across
isolated and mixture training conditions, across our three
different segment classifiers (ExtraTrees, K-nearest neigh-
bor and SVM).

We constructed the various ensembles of instruments as
described in Section 3. We then ran an experiment under
two conditions, mixed and isolated training , using the segment-
and-combine algorithm descibed in Section 2 with f(x) learned
using one of the three segment classifiers (Section 2.2).

4.1.1 Parameter Settings

To select parameters for our K-nearest-neighbor (KNN) and
the radial basis kernel SVM classifiers we evaluated a range
of parameters using the data for our most challenging tar-
get obfuscation condition (the hard obfuscation condition
as described in Section 3). We evaluated the KNN classi-
fier with K = 1, 2, 5, 10, 20, or 50, of which 5 was the
best K we found. For the parameters of the SVM, γ (vari-
ance of the Gaussian in the radial basis kernel) and C (the
error penality), we considered γ= 0.001, 0.01, 0.1, 1, 10,
100, or 1000, and C=0.001,0.01,1,10,100, or 1000 (yield-
ing 6 × 6 = 36 possible parameters settings for the SVM),
we found γ = 0.1 and C = 100 was the best setting.

For our ensemble of ExtraTree’s we used the recomended
parameters, as described in [7]: thus K =

√
N where N

is the number of features (22), and nmin = 5. Generally
the more trees in the ensemble the better this algorithm, so
we chose a large number that did not unduely compromise
speed (100).

We extracted segments from the audio files at a rate of
5 segments per second. This value was chosen based on a
run of the Extra Tree algorithm using the hard obfuscation
condition.

4.1.2 Procedure

In the first (mixed) training condition, we used the following
procedure for each target instrument class T and each target
obfuscation condition.

1. Train the learner on the example from 5 of the 6 pos-
sible ensembles of distractors using target T , totaling
50 positive and 50 negative examples.

2. Test on the remaining 20 examples from the final en-
semble condition.

3. Repeat steps 1-2, excluding a different condition each
time.

In the second (isolated) training condition, we used this pro-
cedure for each target instrument class T and each target
obfuscation condition:

1. Train the learner on all isolated notes of an instru-
ment. For negative examples, we use an equal number
of randomly selected notes from the remaining instru-
ments.

2. Test on the 10 negative and 10 positive mixture exam-
ples with target T , for each of the 6 ensemble condi-
tions, for a total of 120 examples tested.

This condition included from 138-170 unique isolated notes
(depending on the instrument) during training: this is as
many or more notes than used in the mixed training con-
dition.

Thus for each classifier we had a total of 24 × 3 = 72
trials of our system (24 mixture conditions× 3 target obfus-
cation conditions).

4.1.3 Results

We calculated system accuracy in each trial based on how
well the system could identify approximately every two sec-
onds of audio: each example being tested was divided into
sixths: for every sixth (or about two seconds) of an example
given a correct label we noted that as a success. Successes
were then tallied across all examples in a trial. Note that
for all obfuscation conditions there was no more than 1.5
second silence between target notes.

Since this is a balanced binary labeling task, random chance
performance for a given condition is 50%. Overall perfor-
mance for the systems across the various target obfuscation
conditions is shown in Figure 1.

We performed a 2 × 3 × 3 repeated measures ANOVA
within the 24 mixture conditions, across the training condi-
tion, segment classification method, and target obfuscation
condition. This analysis showed main effects for training
condition (F = 124.90, p < 0.001), classification method
(F = 48.51, p < 0.001), and target obfuscation condition
(F = 57.48, p < 0.001), as well as interactions between
training condition with classification method (F = 12.27,
p < 0.001) and training condition with target obfuscation
(F = 7.72, p = 0.006). Since results were poor for the
isolated conditions, it is not surprising that the other main
effects should interact with the training condition.

Post-hoc permutation tests [12] showed that there was no
statistically significant difference in performance between
the ExtraTree and SVM segment classifiers (p = 0.845) on
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Figure 1. Performance across the three segment classifica-
tion methods for both the isolated and mixed training con-
ditions. Chance performance is indicated by the dotted line.
Here, “obf.” stansds for “obfuscation.”

the mixture case, but performance with the KNN classifier
was worse from both SVMs and Extra Trees (p < 0.001).
The the KNN method is known to be sensitive to irrelevant
features, since we have yet to consider feature selection, this
is one possible reason the KNN method failed to work. All
three obfuscation conditions differed from each other (p <
0.02). We also confirmed the that the isolated condition was
worse than the mixed training condition (p < 0.001). We
also examined the pattern of performance across different
sorts of mixtures: not surprisingly the more similar a target
is to its distractors the worse performance is: due to space
considerations we have left the breakdown of performance
by instrument out.

Only in the mixed training condition was performance
better than chance (0.5), and then only for the SVM and
Extra Tree classifier (p < 0.001). Taken togethor, these re-
sults suggest that the SVM and the Extra Tree algorithm can
be used to classify instruments in novel mixtures using the
segment-and-combine algorithm when the training data are
mixtures of sound rather than isolated notes. As obfusca-
tion of the target became greater, accuracy dropped similarly
across the three segment classifiers.

4.2 Experiment 2

We performed a second experiment to determine how a more
exact labeling of segments would affect our results. To do

this we determined the ratio of the target instrument to the
total mixture (R) in each segment selected for classification.
This was found using the following equation:

R =
‖projtm‖2

‖m‖2
(1)

The linear projection of the target onto the mixture, projtm,
is used as an estimate of the target that remains in the mix-
ture as per [13]. An R of 0.5 means half the energy in a
segment is from the target. Given an R for each segment
our system is provided a positive label only if it is above
some threshold t. This new labeling will be more accurate
because segments from positive examples that contain no
energy from the target instrument will not be included as a
labeled segment. Using this procedure, we trained the Extra-
Tree classifier as per the mixture condition in Experiment 1
with the data from the hardest target obfuscation condition.
Thus each test at a given threshold consists of 24 trials: 4
instruments with 6 possible arrangements of distractors. Re-
sults across various values for the threshold t can be seen in
Figure 2.
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Figure 2. Classification accuracy as a function of the thresh-
oldR used to label segments. Dotted lines indicate the max-
imum and minimum; the solid line indicates the mean.

We can conclude from this that although performance
can be improved if we select a fairly inclusive t (i.e. one that
includes any segment that has even a small fraction of the
target), this will will not yield performance gains of much
more than about 4-6%. We would note that the poor perfor-
mance for high values of t may be attributable to the small
sample of segments that actually have a high enough R. For
example with t = 0.5 only about 19% of the segments from
positive examples were included.

5 CONCLUSIONS AND FUTURE WORK

Many researchers have tried to address the problem of iden-
tifying instruments in mixtures of sound by trying to miti-
gate the effect the other instruments have on the target in-
strument to be identified, through, for instance, source sepa-
ration methods [14], missing feature approaches [4] or weight-
ing of features [9]. Here we presented an alternative ap-
proach: rather than being smart about how we use isolated
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training data, we have simply used a variety of mixtures as
our training data.

This simple method makes classificiation possible in mix-
tures of random notes using only weakly labeled data, when
it is not possible to do so when trained with isolated training
data, without one of the above mentioned methods. We be-
lieve this is because the training data, in the mixed case, is
more representative of the testing data, even when the train-
ing mixtures do not use the same set of instruments as the
testing mixtures. It’s possible that the use of mixtures during
training could be used in conjuction with these other meth-
ods to further improve performance.

We found that when using more strongly labeled data,
our results did not improve much (Section 4.2). We believe
the most likely explanation of this result is that we have hit
a performance ceiling for the chosen features set. This may
also explain the similar performance of Extra Trees and the
SVM. In future work, now that we have identified a poten-
tially useful training method and learning algorithm for this
task, we will begin to explore a more effective set of fea-
tures.

We will also need to confirm these results on more mu-
sical arrangements, and more challenging recordings (e.g.
varied articualation, echoes and non-instrumental background,
etc...). Since our algorithm does not a priori depend on these
simplifications, we suspect the conclusions drawn here will
be meaningful in more challenging environments.
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