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A Human-in-the-Loop System for Sound Event

Detection and Annotation

BONGJUN KIM and BRYAN PARDO, Northwestern University, USA

Labeling of audio events is essential for many tasks. However, finding sound events and labeling them within
a long audio file is tedious and time-consuming. In cases where there is very little labeled data (e.g., a single
labeled example), it is often not feasible to train an automatic labeler because many techniques (e.g., deep
learning) require a large number of human-labeled training examples. Also, fully automated labeling may
not show sufficient agreement with human labeling for many uses. To solve this issue, we present a human-
in-the-loop sound labeling system that helps a user quickly label target sound events in a long audio. It lets
a user reduce the time required to label a long audio file (e.g., 20 hours) containing target sounds that are
sparsely distributed throughout the recording (10% or less of the audio contains the target) when there are
too few labeled examples (e.g., one) to train a state-of-the-art machine audio labeling system. To evaluate the
effectiveness of our tool, we performed a human-subject study. The results show that it helped participants
label target sound events twice as fast as labeling them manually. In addition to measuring the overall per-
formance of the proposed system, we also measure interaction overhead and machine accuracy, which are
two key factors that determine the overall performance. The analysis shows that an ideal interface that does
not have interaction overhead at all could speed labeling by as much as a factor of four.
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1 INTRODUCTION

Sound event detection and annotation involves labeling of sound events and providing estimates of
their time positions (i.e., start and end) in an audio recording. Sound event detection is a key tech-
nology with applications in many areas: labeling speech recordings with speaker names [26], label-
ing music recordings by predominant instrument [11], labeling nature recordings with the species
of animals heard in the recording [19], and identifying gunshots in city recordings [33]. These
labeling tasks can be manually done by human annotators or automatically done by machine.
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Even though manual sound event annotation by human experts leads to more accurate results
than using automatic detection systems, there are many situations where hand-labeling events in
recordings is prohibitively labor-intensive. For example, speech and language pathologists often
wish to label sound and speech events in day-long (24-hour) recordings of patient environments.
One such recording can take several work days to label. Therefore, many researchers have put
significant effort into developing more accurate automatic sound recognition systems. The typi-
cal approach to building automatic sound recognition systems uses supervised machine learning.
Examples include neural networks [15, 23], Gaussian Mixture Models (GMM) [37], decision trees
[18], and Support Vector Machines (SVM) [25].

Making a general sound event detection device using these machine learning techniques typ-
ically requires a large number of labeled training examples (e.g., thousands or tens of thousands
of labeled sounds). It also may require fine-tuning the model for the specific application, usually
by machine learning experts. This is not feasible in the case where users do not have thousands
of pre-labeled examples of the target sound class. It is also not feasible when providing enough
labeled examples is equivalent to solving the task manually (e.g., the user labels the entire 24-hour
recording to give the machine enough training data to label the 24-hour recording). Even with
lots of training data and model tuning, machine labeling may not be good enough for many ap-
plications and frequently diverges from human labeling. For example, the current state-of-the-art
environmental labeling for language assessment, LENA [40], agrees with human annotators only
76% of the time on a four-way forced-choice labeling task.

We wish to address sound event labeling tasks that fall in a middle ground: There is too much
audio to be practically labeled by hand, yet there are too few training examples to train an accurate
statistical model. We want to develop an efficient way to achieve human-level accuracy with much
less human effort than is typical for manual annotation. We note that a successful method to speed
labeling for these cases would also make it possible to generate enough labeled data for a statistical
machine learner to be taught in cases where it is currently prohibitive to label enough data by hand.
This would increase the range of sound-objects that could eventually be labeled fully automatically.
This is not, however, our primary goal. The goal is to speed the labeling task at hand, rather than
to train a generalized machine learning model for later use on different data.

To achieve our goal, we apply a human-in-the-loop approach to sound event detection and ann-
otation. The idea is to engage users in an interactive process [32] to collaboratively label the audio
with the machine. Human-in-the-loop machine learning is a technique that has received attention
recently as one approach to resolving the limits of fully automated systems. It has been applied in
many areas, such as image retrieval systems [32], image foreground extraction [27], image object
labeling systems [28], biomedical image recognition [41], natural language processing [29], Net-
work Alarm Triage [2], interactive visualization [31], musical performance [9], and audio source
separation [6, 8, 22].

In this article, we present a new human-in-the-loop system for sound event detection and an-
notation. The system directs the user’s attention to the most promising regions of audio for la-
beling. The user labels these regions and gives the system feedback by labeling and adjusting
region boundaries. The system learns from this feedback and updates future recommendations
for high-interest regions. To assess the effectiveness of the proposed system for the sound event
annotation task, we build a web-based annotation tool and perform a human subject study with
potential users of the tool. We evaluate how much the proposed tool speeds up sound event detec-
tion tasks. Finally, we also present a method to quantitatively assess the machine’s performance
and the interaction design separately, as these are two key factors that determine the performance
of a human-in-the-loop system.
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2 RELATED WORKS

2.1 A Human-in-the-Loop System for Multimedia Retrieval and Annotation

A common approach to labeling large amounts of multimedia data is through crowdsourcing [35]
[36]. Even though crowdsourcing annotation is a great way to collect large-scale labeled data, it
is not appropriate in a situation where the audio data should be annotated by domain experts or
must not be distributed in public, such as audio recordings of patients for clinical purposes. We
focus on the case where crowdsourcing is not an appropriate solution.

Interactive learning frameworks that depend on users’ relevance feedback have been actively
researched in image retrieval. CueFlik [10] is a web image search application that allows users
to create and adjust rules for concepts (e.g., portraits of people) by providing the machine with
positive and negative examples. The user feedback iteratively updates the rules to obtain more
accurate image search results. Their interactive approach is aimed at training the best classifier to
retrieve images relevant to a query. Our goal is to completely label the audio easily and quickly.

Recognizing objects in images (e.g., circle the cat in this image) is much faster than identifying
sound events in audio. The images are viewable all at once. It is easy to scan one’s eyes in any
direction. However, since audio is time-based media, one listens start-to-finish at a fixed rate. This
is typically much slower than scanning a still image, and the user cannot instantly direct her
attention to any part of the audio file and perceive it. Another difference is that audio events are
often fully overlapped (e.g., a cough is concurrent with television noise and the sound of a blender).
This is not occlusion. This is simultaneous overlapped sounds, much more similar to observing
something through a reflective glass window where two overlapping images occur. In general,
interactive image annotation/retrieval systems provide a user interface where a user can look at
sets of images and give the system feedback by clicking the images [1] or selecting sub-regions of
the images [34]. The interface design for our sound detection tool focuses on directing the user’s
attention to promising sub-sections (i.e., the machine’s recommendations) of a long audio track
for labeling.

2.2 Sound Annotation Tools

Several audio editing applications such as Audacity [20] and Sonic Visualizer [7] provide an an-
notation environment where a user manually selects a sub-section of an audio track and labels it.
Sonic Visualizer, AudioSculpt [3], Audio Brush [5], and ASAnnoatation [4] also provide low-level
feature information (e.g., pitch content, repeated structure labeling) by using audio signal process-
ing techniques, but they do not use high-level semantic labels (e.g., Bob’s voice) and do not allow
user-defined labels.

TotalRecall [17] is a semi-automatic multimedia annotation tool. It automatically detects speech
regions on an audio track (speech or non-speech) for audio segments. It helps a user to find speech
sections of an audio track easily, but is hard-coded to find speech and cannot be on-the-fly re-
purposed for detecting other kinds of events.

SoundsLike [13] is a tool to detect user-selected sound events in a movie. It provides a similarity
graph that visualizes which audio segments are similar to the user-selected segment as an aid for
easier navigation. The system does not update its similarity estimates based on user feedback.
Therefore, if the system thinks two segments are similar and the user doesn’t, there is no way to
correct the system. They also did not evaluate how much the similarity graph helps the annotation
process. Finally, the interface does not provide any machine prediction to speed up the labeling
process.

Gulluni [14] suggested an interactive approach to analyze electroacoustic music by interactive
machine/human labeling of sound objects within a music track. While Gulluni’s system does not

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 13. Publication date: June 2018.



13:4 B. Kim and B. Pardo

allow a user to change the boundaries of segmented regions, our system utilizes boundary adjust-
ment of segments as user feedback to retrain a model. Moreover, their approach uses clustering
techniques that require a user to listen to the audio multiple times to determine the best segmen-
tation level. Multiple listenings can be problematic for long audio files (hours long). They also did
not conduct human subject studies to evaluate the effectiveness of the system and only tested their
system in simulation. In contrast, we performed a human-subject study where participants used
our tool and a manual editor to label audio, letting us observe the effectiveness of our approach for
speeding labeling. Furthermore, they did not provide a publicly available system. We implemented
a web-based sound annotator that anyone can use or build on.

The interactive sound event annotation described in this article has been introduced in our
previous work [16]. The work briefly presented the interactive labeling approach and a preliminary
analysis of user logs from the human-subject study. The current article is an extended version of
the previous work. We describe each component in the human-in-the-loop system in significantly
greater detail, particularity focusing more on the user interaction. In the evaluation, we explain
the experimental design protocol in more detail than we did in the previous work so that readers
can clearly understand how effectively the experiment is designed to evaluate the effectiveness of
the proposed tool. We analyze the user log with additional performance measures and conditions,
and we measure the interaction overhead that is one of main factors determining the performance
of the interface. Furthermore, while the previous work only conducted quantitative analysis, in
this article we additionally perform qualitative analysis to understand user satisfaction with our
tool.

3 INTERACTIVE SOUND EVENT DETECTION AND ANNOTATION

We now describe an interactive system that lets a single user greatly reduce the time required to
label audio that is tediously long for a human (e.g., 20 hours), has target sounds that are sparsely
distributed throughout a long-duration recording (10% or less of the audio contains the target),
and has too few prior labeled examples (e.g., one) to train a state-of-the-art machine audio labeling
system.

3.1 System Overview

Figure 1 shows how our system works with the user to label target sound events. First, a user
uploads an audio track into the system and provides an example of the kind of sound she seeks
(e.g., someone knocking on a door). This can be done either by selecting a region on the audio
track containing a good example sound or by uploading a short example audio file containing an
example target sound (e.g., someone knocking on a door). Note that the goal is not to find exact
copies of the target sound in the audio file to be labeled. The goal is to find other sounds of the
same category (e.g., other door knocking sounds) in the audio file.

The system segments the track into small regions whose length is the same as the initial example
and measures features of the audio file (see Section 3.2). It then finds the n regions with features
most similar to the example and directs user attention to them by showing them as candidates. The
user labels the candidate regions as positive or negative (see Section 3.4), and adjusts the start/stop
times of positive examples. Based on this user feedback, the importance of audio features is re-
weighted to move positive examples closer together and further from the negative examples. Given
this new feature space, the system selects a new set of n relevant regions (see Section 3.3) for the
user to evaluate. This process of selecting candidate regions for human evaluation is repeated for
some number of rounds. As more examples are labeled by the user and the features are reweighted
every round, the system’s ability to suggest good regions improves.
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Fig. 1. System overview of the human-in-the-loop sound event annotation.

Active Learning refers to the case where the learner selects the examples to learn from, rather
than passively receiving examples chosen by the teacher. This interaction between the user and
the system can be thought of as a kind of active learning where the system is learning the feature
weights for audio examples by presenting the unlabeled segments it currently estimates to be most
similar to the set of positively labeled segments. We show the user the top n results and not the
most ambiguous examples because our purpose is to help the user complete the annotation quickly
by directing her attention to high-likelihood regions, not to train a machine learning model to fine-
tune a decision boundary. When one has a long audio file and only a few target examples, showing
the top n results lets users label them more quickly. This is a better strategy to speed up the labeling
task at hand.

3.2 Segmentation and Feature Extraction

Once a user provides the initial example to the system (e.g., a 3-second region containing a bird
call), the entire track is split into segments whose length is the same as the length of the initial
example (e.g., 3 seconds). In the initial phase, all segments have the same length. However, once the
user starts labeling the suggested regions, the length of user-labeled segments will vary because
the user is allowed to adjust the boundaries of the regions. Given the possibility of varied-length
segments, we need a way to measure distance between segments, regardless of segment length.

To measure distances between the segments including the initial example, audio features are
extracted over each fixed-length segment. Our system extracts the first 13 Mel Frequency Cepstral
Coefficients (MFCCs). MFCCs are widely used in a variety of sound recognition tasks [24]. As
shown in Figure 2, each segment is split into a sequence of short frames (e.g., a frame size of
90ms with 50% overlap between adjacent frames), and MFCCs are computed on each frame. The
MFCC features extracted frame-wise are pooled over each segment (e.g., 3 seconds) using mean
and variance of instantaneous and delta values. The delta values are the difference between feature
values of two consecutive frames. These represent basic temporal characteristics of the feature
vectors in one segment. As a result, a 52-dimnesional feature vector is built for each segment (13
MFCC averages, 13 MFCC variances, 13 MFCC average delta, 13 MFCC average delta variance).
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Fig. 2. Audio feature extraction for all segments of an audio file. MFCCs are extracted frame-wise and pooled

over each segment using the means and variances of both the instantaneous and delta values.

Using this feature extraction method, varied length segments can be represented as a fixed-length
of vector (i.e., 52 dimensions) so that distances between the segments are easily measured in the
feature space.

3.3 Relevance Score

In each round, the system measures the distance between each unlabeled segment and the set of
positively labeled segments (initially, this set contains only the original target example). Using this
distance, it ranks them by decreasing level of relevance and presents the top n segments to a user.
To compute the relevance score, we apply a simple nearest neighbor method [12]. The relevance
score of an unlabeled audio segment s can be computed as

Rel (s ) =
d (s, sn )

d (s, sn ) + d (s, sp )
, (1)

where sp is the nearest positively labeled segment to s and sn is the nearest negatively labeled
segment to s . Function d (a,b) is the weighted Euclidean distance between two segments in the
feature space. When there is no negative segment (there is always at least one positive example,
which is the initial query), the relevance score is computed as

Rel (s ) =
1

d (s, sp )
if |neд | = 0, (2)

where |neд | means the number of negative segments.
To obtain a more accurate relevance score in each round, the system reweights features using

Fisher’s criterion [39]. The weight of ith feature is computed as

w (i ) =
(avд( f

p
i ) − avд( f n

i ))2

std ( f
p

i )2 + std ( f n
i )2
, (3)

where f
p

i and f n
i are vectors whose elements are ith feature values in the 52 dimensional (MFCC-

based) feature vectors of all positive and negative examples respectively.avд(x ) and std (x ) indicate
the mean and standard deviation of elements in a vector x .

As the ith feature contributes more to better discrimination between positive and negative ex-
amples, its Fisher score will increase. The system reweights each feature with the Fisher score
based on the current labeled segments (positive and negative) in each round, and the relevance
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Fig. 3. As feedback, a user labels regions positive (blue)/negative (red) or changes the time position and size.

Fig. 4. The region A and C (gray) are the machine’s suggestions. A user listened to them, changed the tem-

poral location of A and adjusted boundaries of C, and labeled them positive (A* and C*). Then the system

automatically labels the region B and D as negative since it is clear that they do not contain the target sound

events.

scores (Equation (1)) over all segments are computed in the updated feature space. We expect that
as more labeled segments are collected, the relevance score would become more accurate.

3.4 User Relevance Feedback

The system presents n segments to be labeled every round, and the user adjusts segment bound-
aries and labels them. Labeling segments plays an important role as feedback for the future rounds
because the machine’s suggestions for each round depend on the user feedback in past rounds.

A user can provide two types of feedback to the system, as shown in Figure 3. One is to apply
positive or negative labels to each candidate example. This type of feedback has been widely used
in interactive image retrieval systems [38]. The other type is to adjust boundaries of the suggested
region when the region does not cover the whole duration of a target sound event. This type of
feedback is typically not used in document or image retrieval systems but is useful for improving
retrieval of regions of audio files.

Our system automatically collects additional negative examples from the user’s boundary ad-
justments. As shown in Figure 4, for example, suppose the user changes the position of the region
(A) and labels it as positive. In this case, we can obtain not only one positive example, but also
one negative example, which is the region (B) that the user did not select after listening to it. In
the same way, adjusting boundaries of region (C) generates negative examples (D). This automatic
negative labeling is beneficial in two ways: (i) A user implicitly labels more regions in one itera-
tion, speeding interaction, and (ii) since our system presents the most relevant examples to a user
every round, the pool of labeled examples tends to skew toward positive, which could make mea-
suring the relevance score problematic. Therefore, adding negative examples automatically helps
in computing more accurate relevance scores of unlabeled examples.
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Fig. 5. Screenshot of the interactive sound annotator.

4 INTERFACE DESIGN AND IMPLEMENTATION

We implemented a web-based interactive annotator as a client–server application. The back-
end server is written in Python and deployed as a Flask server. The frontend user interface is
written in Javascript. Readers can watch the demo video and try the application out at http://
www.bongjunkim.com/ised/.

Figure 5 shows the main workspace of our annotation tool. It consists of these main sections:
Navigation Map, Annotation Track, Listen and Label These, and Already Labeled. The Navigation

Map displays a waveform of an entire track and the currently labeled regions so that a user nav-
igates and listens to them easily. The Annotation Track is a zoomed-in version of Navigation Map

where a user can select or adjust regions and label them by clicking and dragging a mouse. The
Listen and Label These displays the top n candidate regions identified by the machine. These are to
be labeled by the user every round.

Figure 6 describes how a user performs the labeling task in each round. The user listens to new
regions by clicking the items in the Listen and Label These section. If a region does not contain an
example of the target sound class, the user labels it as negative by clicking the Negative button.
If the region has the target sound, the user first adjusts the boundaries of the region so that it
fully covers one instance of the target sound class and labels it as positive by clicking the Positive

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 13. Publication date: June 2018.
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Fig. 6. User interaction flowchart of the interactive annotator.

button. The user labels all the regions in each round and clicks on the Find Similar Regions button
to submit the feedback to the system and obtain a new set of candidate regions from the system.

The Already Labeled section shows regions labeled positive during past rounds. A user can listen
to them by clicking each item in the list. Clicking on the Export Results button saves the annotation
results to text file containing start and stop times of all positive regions.

5 EVALUATION

We conducted a user study to validate the effectiveness of the proposed interactive annotation ap-
proach compared to manual annotation. The experiment seeks to answer the following questions:

• Which interface enables participants to label the given audio track faster?
• How accurately did participants label the target sound events using each interface?
• How satisfied are participants with each interface?
• Do participants prefer the proposed interactive annotation to manual annotation?
• What user-interface overhead does the interactive annotation approach impose, compared

to manual annotation?

5.1 The Two Interfaces We Compared

The two interfaces we compared were the interactive annotator proposed in this article and a
manual annotator, similar to the standard interfaces currently used for manual annotation. In the
interactive annotation tasks, a participant submits a file containing an initial target sound event to
the system, and then the system presents the five most relevant regions to the user at each round. If
the participant thinks a suggested region contains the target sound events, the participant labels it
as positive. If the suggested region contains only some portion of the target sound, the participant
adjusts the position of the candidate regions and labels it as positive. If it does not contain the
target sound at all, it is labeled as negative. The participant keeps labeling in this manner for the
given amount of time in each task (15 minutes).
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In the manual annotation tasks, participants use an identical interface to the interactive anno-
tator except for the removal of the recommendations from the system. They find target events by
listening to the track sequentially (from the beginning to the end) or accessing any time position
on the track. If they find the target sound event, they drag a mouse over the region containing the
target sound. They keep finding as many sound events as they can for the given amount of time
in a task (i.e., 15 minutes).

Both interfaces also provided a control for the user to adjust playback speed (1x, 2x, and 3x).
Speeding playback is an alternative way to speed up the search that is commonly available in many
multimedia players or annotators such as Youtube, Quicktime Player, or Audacity. It is also known
that increasing up to double the rate produces no significant loss in comprehension of speech, but
higher playback rates produce a loss in comprehension [21].

To navigate an audio track, one might use a scrubbing function that is available in modern Dig-
ital Audio Workstaion (DAWs), where a user drags a cursor on a waveform and the audio samples
that the cursor is passing over are played. In our interfaces, the scrubbing feature was not provided
because it is mostly useful to find a precise spot where sound characteristics dramatically change
(e.g., silence between noisy sections), and it is not useful for recognizing relatively short sound
events overlapping each other in a long audio track; therefore, we did not include a scrubbing
feature in either interface.

5.2 The Audio Dataset

To evaluate our system we used the dataset from the IEEE Audio and Acoustic Signal Processing
Technical Committee challenge on Detection and Classification of Acoustic Scenes and Events
(DCASE) [30]. The DCASE dataset is one of a few public datasets for computational analysis of
sound events and scene analysis. Moreover, since it has been used in a public challenge, it is well-
designed enough to test submitted algorithms properly in various situations. Using a public dataset
also allows future systems to compare to our approach under the same conditions.

To generate testing tracks for this experiments, we chose files used for the Office Synthetic (OS)
Event Detection Task of the DCASE 2016 challenge.1 These consist of 2-minute duration mono
recordings of sequences containing overlapping acoustic events in an office environment (e.g.,
coughing, drawer, door knock, speech, etc.).

We anticipate 10 minutes as the minimal length of track where someone might wish to speed
search. Therefore, we created two different 12-minute-long audio tracks by concatenating six short
tracks in the DCASE dataset to create each track. Each track contains 11 different sound classes
with 18 examples of each class in the track. All sound events are randomly distributed over a
track. The two tracks, while containing similar sound events, order these events differently. This
prevents the learning of ordering details of one track influencing performance on the other.

The sound classes in the two tracks include the following 11 sound events: door knock, door slam,

speech, human laughter, clearing throat, coughing, drawer, keyboard typing, keys, phone ringing, page

turning. The DCASE dataset provides audio files with three different levels (-6, 0, and 6 dB) of the
average Signal-to-Noise Ratio (SNR) of events over the background texture. Readers can find more
detailed information about the dataset in Stowell et al. [30]. We chose audio files with -6 dB SNR
(i.e., the target sound is 6 dB softer than intruding background noises) when generating the testing
tracks. This reduces chances that users could obtain additional information about the sound events
by looking at the shape of waveform displayed on the screen, as the waveform is not noticeably
larger when the target sound class is present if the target class is 6 dB softer than the background.

1http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-synthetic-audio.
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It also makes the problem more challenging for the machine recommender system as sounds softer
than the background noise are more difficult for automated systems to detect.

The summed total time that all of the instances of the target class take up in a track is roughly
4% of the entire length of the track. The density of target events and distractor events are roughly
1.5 and 15 (events per minute), respectively. The average inter-onset-intervals of the 18 examples
of a sound class is 38 seconds. Since environmental recordings are usually long and have many
different kinds of sound events happening in our everyday life, we believe that the generated audio
tracks, which have sparsely distributed sound events of each class, are appropriate to evaluate the
proposed sound annotator.

5.3 Participant Recruiting

The target users of our tool are people who need to find and label sound events within an audio
track for their research activities. These groups of users include speech and language pathologists
who need to analyze relationships between children’s language development and their listening
environment by recording their everyday life. Another group of potential users are researchers
who study machine listening since building an automated sound event labeler with supervised
machine learning usually requires a number of correctly labeled audio examples of various sound
classes as training data. Therefore, we recruited people who study speech and language develop-
ment or machine learning in the audio domain. We also recruited people who have experienced
audio editing or labeling software. Even if people in this group may not be the main target user
group, we believe they are appropriate subjects to validate the efficacy of the proposed system
against manual annotation since they are familiar with critically listening to audio recordings.

To ensure participants capable of recognizing sound events for the experiments, we performed a
hearing pre-test. Participants were given a labeled target sound event to listen to (e.g., speech) and
10 different sound events (3 speech events and 7 other events) were presented. They were asked
to select all sound events that belong to the same label as the target sound (e.g., speech), and they
had to correctly label all target sound events to pass the test. We performed the hearing test twice
per subject with two different target sounds (i.e., speech and door knock). These were the target
sound classes used in the actual annotation tasks. This let the listening test also implicitly train
participants on the range of variation to expect for target sounds in the actual tasks.

We did not limit gender and age of participants as long as they belonged to the target group
mentioned, but all recruited subjects were older than 18 since we recruited people who have ex-
perienced at least college-level research activities related to sound (e.g., speech and hearing, ma-
chine listening). Subjects’ native language did not matter as long as they could understand the
experimental instructions written in English. In total, 20 subjects who met all requirements were
recruited, and each subject performed two annotation tasks using two different interfaces. All
sessions were conducted using a desktop computer and headphones in a quiet room.

5.4 Task Procedure

Each subject participated in one session. One session included a hearing test, training on the in-
terfaces, two annotation tasks (one on the proposed interface and one on the manual interface),
and survey questions about their experience. Each session lasted about 1 hour.

To reduce the chances that the order of presentation of interfaces would influence the results,
half of the participants tested the proposed interface first and the other half tested the manual
interface first. As with interfaces, half of the participants were presented Task 1 (the first audio
file) first, and half were presented Task 2 (the second audio file) first. As a result, 20 participants
were divided into four groups so that task and interface order was balanced:
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• Group1: Manual, Task 1→ Interactive, Task 2
• Group2: Manual, Task 2→ Interactive, Task 1
• Group3: Interactive, Task 1→Manual, Task 2
• Group4: Interactive, Task 2→Manual, Task 1

We selected two different sound type for users to detect: one from physical objects, door knock

and the other from human voice, human speech. Thus, participants labeled door knock in Task 1 and
human speech in Task 2. These sounds were selected to be quite different from each other, as human
speech is complex, varied, and harmonic, while door knocks are transient, percussive sounds. We
hypothesized that there might be differences in how good the system recommendations would
prove for these qualitative different sounds.

Each task includes a training session for a subject to learn how to label audio using each inter-
face. In the training session, participants were given the exact same task as in the testing phase,
except for the recording to be labeled. For training, we chose a 2-minute-long recording from
the dataset for the DCASE 2013. It contains 15 classes of sound events (including speech and door
knock sound) recorded in an office environment. Participants were required to spend at least 4 min-
utes practicing the labeling task. If they wanted to practice more, they were allowed to practice
the labeling task as long as desired. No participant, however, chose to spend more than 4 minutes
on training. Participants were also allowed to ask any questions about the task and the interface
during and after the training session.

For each task, participants were asked to find as many regions containing the target sound class
(e.g., door knock) as they could within 15 minutes. We believe that 15 minutes are enough for a
user to label a 12-minutes-long audio track even when they listen to the entire track sequentially
from beginning to end. For the interactive annotator, an example target sound file was provided
for the user to submit to the system as the initial query, which is one of two ways of submitting an
initial query to the interactive annotator, as described in Section 3.1. We chose this method because
we only wanted to measure the benefits of the interactive loop against the manual method. Time
that users would spend finding the first query in audio to be labeled would vary depending on the
position of the target sound on the audio track and how they search for it. The initial query given to
users is not one of the 18 examples of the target classes on the audio track. Therefore, regardless
of which interface (manual or interactive) was used, each participant was given 18 examples to
label in each task.

After each task, the participant was asked to identify his or her level of agreement with the
following statements:

• I had a clear understanding of the task.
• I understood how to use this interface to achieve the given goal.
• I was satisfied with using this interface.
• I was able to label target sound events easily.

To do this, the participant was given a slider for each question that was labeled as ranging from
strongly disagree (0) to strongly agree (1). After the entire session (both sound labeling tasks) was
done, participants were asked a set of questions comparing the two interfaces:

• Which interface was easier to use?
• Which interface was easier to learn?

Additionally, they were provided a free-form comment box where they could leave any feedback
about interfaces or tasks.
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5.5 Performance Measures

The machine’s role in our proposed system is to direct the human’s attention to the most likely
portions of the audio, not to determine whether something is a member of the target class or not.
The human makes the final determination. One can think of this system as an attention model in-
stead of a classifier. Therefore, we sought to measure how quickly a user found regions containing
target sound events within a recording. How classification accuracy of a machine learning model
changes over time is not our focus.

As participants labeled audio, the system recorded the positions of labeled regions whenever
labeled regions were added or updated. Based on the recorded log, we evaluated a user’s labeling
performance by measuring the proportion of sound events correctly detected by a user as a func-
tion of time spent on the task (0 to 15 minutes). We considered a sound event correctly labeled if
the temporal position of user-labeled region overlaps sufficiently with the temporal position of its
ground truth with 1-second tolerance.

5.6 Results

Log data and answers to questionnaires were collected from 20 participants. The participants re-
ported having an average of 42 months of experience using audio editing or labeling software.
Moreover, 13 out of the 20 participants have used audio editing software for longer than 1 year,
and 7 of them have prior experience using software to label sound events.

5.6.1 The Absolute Performance from Log Data. Each participant was asked to find as many
target sounds as they could for 15 minutes within a 12-minute recording using two different inter-
faces, a manual and an interactive annotator. Figure 7 shows how quickly the participants labeled
target sound events over time. Figure 7(a) shows the proportion of the target sound events detected
by the 20 participants as a function of time they spent. Figure 7(b) and (c) shows the performance
of the two different tasks respectively (labeling door knock and speech). Figure 7(d) shows the
performance from two different group of participants (7 people who have prior experience using
software to label sound events and the 13 who do not have this experience). In Figure 7(a), (b), and
(c), lines indicates median, and the dark and light bands of each color show the 75th and 25th per-
centiles. Lines in Figure 7(d) indicate the median value of a pair of each user group and interface.
The median user of the proposed interface labeled all target examples within the time given.

Overall, it took an average of 517 seconds for participants to label all target sound events using
the interactive annotator (15 rounds per user). This is roughly half the time it took the manual la-
belers. Specifically, Figure 7(a) shows that our interactive annotator lets one find about 80% of the
target sound events in about 350 seconds. To achieve the same performance using the manual an-
notator, it takes 720 seconds (1-second tolerance). Therefore, we can conclude that the interactive
annotator helped participants find sound events roughly twice as fast as did the manual annotator.

Figure 7(b) and (c) shows which task took participants more time in labeling each target sound.
It turned out that labeling speech events took less time than labeling door knock events regardless
of which interface they used. This difference probably came from the acoustic characteristics of
the two sound events. One instance of knocking sound consists of multiple nonharmonic and short
sound events (e.g., knock-knock-knock). So, participants had to listen to the audio to find the exact
start and end positions of one instance of a knocking sound event. On the other hand, recognizing
the start and end positions of speech is relatively easy.

We also examine the difference between participants who have prior experience using software
to label sound events and participants who do not. As shown in Figure 7(d), there is no big differ-
ence between them in terms of how quickly they found the target sound events. We can conclude
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Fig. 7. The proportion of target sound instances found as a function of time spent on the task (quantized

every 5 seconds) using two different interfaces: the proposed interactive interface and the manual annotator.

Here, N = 20, as each of 20 participants tried both interfaces in a session. (a)-(c): The proportion of examples

found as a function of time spent labeling for all classes (a), knock only (b), and speech only (c). Lines indicates

median, and dark and light bands of each color show 75th and 25th percentile. (d): The performance of two

different participant groups: experienced and nonexperienced. Lines indicates median value of a pair of each

user group and interface.

that our interface speeds labeling by roughly the same amount regardless of a user’s prior experi-
ence with labeling audio.

5.6.2 Self-Reported Performance. Figure 8 shows participants’ level of agreement (0 to 1.0) with
statements about their experience with each interface. We performed statistical tests to validate
whether there is a significant difference between mean responses to questions about experiences
with the interactive and manual annotator. We used Wilcoxon signed-rank since the data are not
normally distributed.

The responses range from 0 (strongly disagree) to 1 (strongly agree). For statement 1 (“I had
a clear understanding of the task” and statement 2 (“I understood how to use this interface to
achieve the given goal”), there is no significant difference between the two interfaces. This means
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Fig. 8. User responses to questions about experience with each interface. Responses range from 0 (strongly

disagree) to 1 (strongly agree). N = 20 for each box plot.

that most of the participants clearly understood how to use both interfaces in the tasks. On the
other hand, for statements 3 and 4, there is a significant difference between their mean responses.
The mean responses to statement 3 (“I was satisfied using this interface”) are 0.588 (manual) and
0.785 (interactive), and they are significantly different (p < 0.05). The mean responses to statement
4 (“I was able to label target sound events easily”) are 0.667 (manual) and 0.878 (interactive) and
they are also significantly different (p < 0.005). This indicates that participants felt the annotation
task was easier using the interactive annotator.

We also compared responses from the two groups (7 experienced and 13 nonexperienced par-
ticipants). As shown in Figure 9, in the nonexperienced group, the mean responses to statement
3 are 0.578 (manual) and 0.798 (interactive). The mean responses to statement 4 are 0.657 (man-
ual) and 0.889 (interactive). In the experienced group, the mean responses to statement 3 are 0.579
(manual) and 0.797 (interactive). The mean responses to statement 4 are 0.620 (manual) and 0.857
(interactive). Based on this analysis, we can conclude that the interactive annotator was preferred
regardless of users’ prior experience using labeling software.

5.6.3 Participants Comments. Participants wrote comments about their experience with each
interface in the free-form response box. Many people liked the effectiveness of the recommenda-
tion feature of the interactive annotator compared to the manual annotator. Representative quotes
include:

“Using the manual annotator, I could not listen to the entire sound signal in the given time. It
seems the only way of finding all the target moments is to listen to all the signals, which includes
a lot of irrelevant sound samples.”

“The interactive annotator did a great job at quickly finding the relevant regions. I even had
time to go back and adjust the boundaries of some of the regions.”
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Fig. 9. Comparison between survey responses from two different participant groups. (a): Response about the

manual annotator. (b): Response about the interactive annotator. Responses range from 0 (strongly disagree)

to 1 (strongly agree). N =13 for nonexperienced participants and N = 7 for experienced participants.

“It is hard to say with 100% certainty that I was able to label the audio more accurately with the
interactive annotator, but I spent the last 9–10 minutes not even hearing any human voices, which
is assuring.”

While their log data showed they could find sound events more quickly, some participants felt
the interactive annotator was inefficient or boring because it started to suggest only irrelevant
regions after all target events were labeled. Representative quotes about this issue include:

“The interactive one gave me many negative parts.”
“I found that, at the beginning of the test, the software found the target sound correctly, but

at the end, accuracy decreased. I guess this happened since, at the end, there are not many door
knock sounds left, so the software recommends any sound even though it is not like a door knock
sound. Even in this case, the software should not recommend wrong target sounds.”

“Toward the end of the task, I had established for myself that I had found all the target sounds
in the last 5 minutes of the recording. While it was nice not to have to listen to the entire track, it
was frustrating each time the system suggested a sound that was not the target sound.”

From this set of feedback, it is obvious that, for future work, the interactive annotator needs to
have features where a user can be informed of the confidence of current recommendations or can
determine when to stop the iterations.

Some participants were not satisfied with the interactive annotator because it was sometimes
difficult to figure out sound events only by listening to small snippets of audio, so they often had to
make the suggested regions longer and listen to them. From this feedback, it seems that suggesting
longer snippets of audio to users than actual prediction may be a good approach.

5.7 Interaction Overhead

Our interactive approach speeds up the labeling task by a factor of two in our user study. Can we
make it even faster? There are two primary ways to speed labeling further. The first is to increase
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Fig. 10. Total time a participant (one participant is selected as an example) spent on the task as a function of

the total amount of audio verified/labeled. The interactive system requires more time to label a fixed amount

of audio than the manual system. This interaction overhead partially offsets the speedup of the overall task

the interactive system provides by having the users label the most promising segments of audio first.

the accuracy/relevance of the system’s predictions. The second is to lessen the overhead imposed
on the user by interaction with the system. In this section, we address the issue of interaction
overhead.

Recall that the interactive system presents users specific audio segments to listen to and label.
Large portions of the audio were never listened to by users of the interactive system as the system
deemed them irrelevant for the labeling task. To quantify the amount of interaction overhead, we
analyzed how long it took the average participant to label the audio they did listen to and compared
it to how long it took them to label a similar duration of audio using the manual approach.

Figure 10 shows how long it took one participant to evaluate (i.e., labeling either positive or
negative) a fixed amount of audio. Two different colored solid lines (red and blue) indicate the
actual experiment data, and the dotted lines are their linear regression lines. For this particular
participant, the slopes of the two regression line are 4.07 for the interactive annotator and 1.22 for
the manual annotator. The slope value 4.07 means that it takes 4.07 seconds to verify 1 second of
audio.

To quantify the extra interaction overhead caused by the interactive approach compared to the
manual approach, we use the ratio of the two slopes (i.e., overheadinter active/overheadmanual ). For
the participant shown in Figure 10, this ratio is 3.62 to 1. We collected the interaction overhead
values for 14 participants (we do not have interaction overhead data for the other 6 participants
because we started collecting the log for computing the interaction overhead from the 7th partic-
ipant). As shown in Figure 11, this ratio ranges from 2.95 to 7.69. The mean is 4.68 (median: 4.22),
which means that the interactive system has 4.68 (mean) times more interaction overhead than
the manual system. Despite this ratio, the interactive approach still doubles the speed at which
users completed the overall annotation task by having the user to label the most promising seg-
ments of audio first. It is, however, obvious that reducing the interaction overhead would improve
the speedup even further. This way of quantifying interaction overhead is useful when various
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Fig. 11. Overhead ratio (interactive/manual) for 14 participants (Median: 4.22, mean: 4.68).

human-in-the-loop systems need to be compared because it separates out the influence of the
recommendation system and the interface for the user to do labeling.

5.8 Machine Accuracy

In addition to reducing interaction overhead, increasing machine accuracy is also a key way to
further speed up labeling. So, it is important to measure the performance of the human-in-the-loop
system without considering the interaction overhead. Assuming there is no interaction bottleneck
in the interactive annotator, we simulated the labeling tasks of a perfect simulated oracle. We
measured what proportion of the audio would need to be verified to find all target sounds if the
verification were done by the perfect oracle instead of a human without any interaction overhead.
The user (i.e., the Oracle) submits one sound target event as the initial query, and then the system
presents the five most relevant regions to the Oracle at each round. If each suggested region is
matched to one in the ground truth with 200ms tolerance, the region is labeled as positive. If they
are partially overlapping each other, the Oracle adjusts the position of the candidate regions and
labels it as positive. If they are not overlapping at all, the Oracle labels the region as negative. The
Oracle keeps labeling until all sound events are labeled.

We ran this Oracle simulation with the same audio and target sounds (i.e., speech and door
knock) as in the user study. Figure 12 shows the proportion of detected sound events as a function
of the proportion of audio verified by the Oracle. As shown in Figure 12, the oracle found all sound
events of the two classes by evaluating less than 126 seconds of the audio (17.5% of the audio).

5.9 Estimating Actual Annotation Time Using User Simulation

and Interaction Overhead

The user simulation is a good way of measuring a machine’s accuracy. We can run the simulation
on many different kinds of audio tracks easily (which costs a lot for the actual user study). However,
this is not a proper method for evaluating the overall performance of our interface. We are not able
to measure the actual time that a user would spend to achieve the goal. The result of user simulation
is always too optimistic because the interaction overhead is not considered in the simulation.

To solve this issue, we can use the quantified interaction overhead introduced in Section 5.7. In
the previous section, we figured out that the interaction overhead of our interactive annotator is
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Fig. 12. The user simulation. The proportion of examples found according to the proportion of audio the

Oracle evaluated. All sound events are detected by evaluating less than 126 seconds of the audio (17.5% of

the audio).

Fig. 13. The machine-estimated user performance overlayed on the actual user data from Figure 7(b) and

(c).

4.68. We can apply this value to the simulation result by stretching the graph by 4.68 times on the
x-axis. Figure 13 shows that applying this scaling factor makes the estimated graph very similar
to the result from the actual user study.

6 DISCUSSION

In this section, we discuss limitations of the proposed system in terms of user interaction. As
presented in Section 5.7, the interactive approach causes some amount of interaction overhead
compared to a fully automated system or manual labeling. One piece of future work will be to
redesign the interface to reduce the interaction overhead. We recognized two bottlenecks in the
interaction of our tool by analyzing the log of users’ behavior and their comments from the survey.

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 13. Publication date: June 2018.



13:20 B. Kim and B. Pardo

Fig. 14. There are two bottlenecks (Loop 1 and Loop 2) in the interaction flowchart of the interactive

annotation.

Figure 14 highlights the two closed loops in the interaction flowchart presented in Section 4. In
the experiment, users spent most of their time in these two loops during the annotation task.

Loop 1 is a process where a user verifies negative examples. In the case where the length of the
initial query (i.e., a target sound example) is short and target sounds are sparse in the audio (e.g.,
5% of the audio), the user loops the process many times to verify negative examples. In manual
annotation, the process that verifies negative examples takes just as much time as it takes to listen
to the audio. In our annotation tool, a user has to click the short regions to listen to them at most
5 times per round. In our experiment, it took an average of 15 rounds for participants to label all
target sound events. Based on this analysis, one possible design choice for future work would be to
let a user listen to all 5 suggested regions just by clicking a button once, instead of selecting each
of selected regions to listen to them. It would help users verify negative regions more quickly.

In Loop 2, users keep adjusting boundaries of the suggested region while repeatedly listening to
it. Some participants commented that even if a suggested region covers one instance of the target
sound, they had to listen to the audio before and after the suggested region to understand the
context and make sure that the start and end of the selected region are correctly positioned. In
other words, verifying if there is no target sound around the suggested region causes one or more
unnecessary listens. Based on this feedback, one solution to this issue for the next version of our
tool would be to present a longer region to a user than the actual length of the initial target sound.

Implementing these changes on the two bottlenecks in the interaction loop, Loop 1 and Loop 2,

should reduce interaction overhead, allowing an even greater speedup of the annotation process.

7 CONCLUSION AND FUTURE WORK

We presented a human-in-the-loop interface for sound event detection and annotation that helps a
user quickly label target sound events in a long audio file. The machine incrementally learns about
the target sound event through user’s relevance feedback. We performed a human-subject study
to evaluate its effectiveness. The result showed that the proposed system lets users find sparsely
distributed target sounds roughly twice as fast as manually labeling the target sounds. The survey
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response and free-form comments showed that most participants were more satisfied with the
interactive annotator than with the manual annotator.

We also presented methods to measure interaction overhead and machine accuracy of the pro-
posed system. Since reducing the interaction overhead and increasing the machine accuracy are
two primary ways to speed labeling further, it is important to measure them separately to evaluate
the interface. We discussed the limitations of user interaction in our tool and suggested a future
direction for the interface design.

In addition to the new interface design, there are a couple of ways to improve the proposed tool.
First, we should be able to improve this speedup by exploring alternate feature representations,
feature reweighting techniques, and search techniques. The nearest-neighbor searching and the
Fisher-criterion-based feature reweighting used in this article assume that sound events of the
same class are placed together in the feature space. If examples of the target class form multiple
clusters apart from each other in the feature space, the nearest-neighbor search would show poor
performance. Since the main focus of this work is not to improve machine accuracy, we did not
explore other advanced techniques. However, speeding up labeling performance by applying ad-
vanced techniques is one area for future work. Second, to prevent users listening to unnecessary
negative regions after all sound events are detected, it is very important to inform users when
to stop labeling. Therefore, developing a systematic stopping criterion is another area for future
work.

One other key factor that might affect the performance of users’ labeling is visualization. For fu-
ture work, we could explore alternate visualizations, not just waveforms. For example, the system
could emphasize transient sounds or stationary noise in an audio sample in a way that general
users can understand and allow them to get help to label sound events quickly. Finally, in this
article, we did not focus on human error. The problem we are trying to solve is one where the
human can easily label the audio if they have enough time, but have they so much audio to be
scanned that they cannot complete the task. The tasks we chose were designed to be easy enough
so that human labeling error was negligible (e.g., recognize human speech vs. non speech and
door knocks vs. other sounds). Therefore the current system accepts all human feedback as valid.
However, humans make mistakes in other circumstances. The implicit negative labeling occurring
with users’ erroneous behavior could lead to false-negative labels being fed into the system. Al-
though the current interface does not have a perfect solution for this issue, it has a panel where
users can quickly review regions they have labeled up to the current round, and they can fix it at
any time. The system updates its model with the corrected labels every round. For future work,
we will develop strategies to control or filter out human error.
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