
VAMPNET: MUSIC GENERATION VIA
MASKED ACOUSTIC TOKEN MODELING

Hugo Flores García1,2 Prem Seetharaman1 Rithesh Kumar1 Bryan Pardo2

1 Descript Inc.
2 Northwestern University
hugofg@u.northwestern.edu

ABSTRACT

We introduce VampNet, a masked acoustic token mod-
eling approach to music synthesis, compression, inpaint-
ing, and variation. We use a variable masking schedule
during training which allows us to sample coherent mu-
sic from the model by applying a variety of masking ap-
proaches (called prompts) during inference. VampNet is
non-autoregressive, leveraging a bidirectional transformer
architecture that attends to all tokens in a forward pass.
With just 36 sampling passes, VampNet can generate co-
herent high-fidelity musical waveforms. We show that by
prompting VampNet in various ways, we can apply it to
tasks like music compression, inpainting, outpainting, con-
tinuation, and looping with variation (vamping). Appropri-
ately prompted, VampNet is capable of maintaining style,
genre, instrumentation, and other high-level aspects of the
music. This flexible prompting capability makes VampNet
a powerful music co-creation tool. Code 3 and audio sam-
ples 4 are available online.

1. INTRODUCTION

In recent years, advances in discrete acoustic token mod-
eling have resulted in significant leaps in autoregressive
generation of speech [1, 2] and music [3]. Meanwhile, ap-
proaches that use non-autoregressive parallel iterative de-
coding have been developed for efficient image synthe-
sis [4, 5]. Parallel iterative decoding promises to allow
faster inference than autoregressive methods and is more
suited to tasks like infill, which require conditioning on
both past and future sequence elements.

In this work, we combine parallel iterative decoding
with acoustic token modeling, and apply them to music
audio synthesis. To the best of our knowledge, ours is the
first 1 extension of parallel iterative decoding to neural au-
dio music generation. Our model, called VampNet, can be

1 While our work was under peer review, Google released SoundStorm
[6], which leverages a similar parallel iterative decoding approach to ours.

© H. Flores García, P. Seetharaman, R. Kumar, and B.
Pardo. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: H. Flores García, P. Seetharaman,
R. Kumar, and B. Pardo, “VampNet: Music Generation via Masked
Acoustic Token Modeling”, in Proc. of the 24th Int. Society for Music
Information Retrieval Conf., Milan, Italy, 2023.

Figure 1. VampNet overview. We first convert audio into
a sequence of discrete tokens using an audio tokenizer. To-
kens are masked, and then passed to a masked generative
model, which predicts values for masked tokens via an effi-
cient iterative parallel decoding sampling procedure at two
levels. We then decode the result back to audio.

flexibly applied to a variety of applications via token-based
prompting. We show that we can guide VampNet’s gener-
ation with selectively masked music token sequences, ask-
ing it to fill in the blanks. The outputs of this procedure can
range from a high-quality audio compression technique to
variations on the original input music that match the orig-
inal input music in terms of style, genre, beat and instru-
mentation, while varying specifics of timbre and rhythm.

Unlike auto-regressive music models [2, 3], which can
only perform music continuations – using some prefix au-
dio as a prompt, and having the model generate music that
could plausibly come after it – our approach allows the
prompts to be placed anywhere. We explore a variety of
prompt designs, including periodic, compression, and mu-
sically informed ones (e.g. masking on the beat). We find
that our model responds well to prompts to make loops and
variations, thus the name VampNet 2 . We make our code
open source 3 and highly encourage readers to listen to our
audio samples 4 .

2 To vamp is to repeat a short passage of music with variation.
3 https://github.com/hugofloresgarcia/vampnet
4 audio samples: https://tinyurl.com/bdfj7rdx

2. BACKGROUND

Two-stage approaches to generative modeling have gained
traction in image [4, 5, 7, 8] and audio [2, 3, 6, 9] synthe-
sis, largely in part due to their computational efficiency. In
the first stage, a discrete vocabulary of “tokens” is learned
for the domain of interest. The input is put through an en-
coder to obtain these tokens, which can be converted back
into the input domain via a corresponding decoder. In the
second stage, a model is trained to generate tokens, and is
optionally given some conditioning (e.g. previous tokens,
a text description, a class label) to guide generation.

2.1 Stage 1: Tokenization

In images, visual tokenization has been leveraged for state-
of-the-art classification [10] and synthesis [4,7,8,11]. The
most popular approach is to use vector quantization on a la-
tent space. Similar approaches have been explored for au-
dio [12], but until recently such approaches have been re-
stricted to low sampling rates (e.g. 16khz), or have been re-
stricted to speech audio. The “sampling rate” of the latent
space (the number of latent vectors required every second
to represent audio) is a critical aspect of the tokenization
scheme. The lower the sampling rate of the latent space,
the easier the next stage (generation) will be to accom-
plish. Recently, methods based on residual vector quan-
tization [13,14] have been proposed for audio tokenization
at high compression rates with good reconstruction quality
of high-sample-rate audio.

The primary work we leverage for audio tokenization is
the Descript Audio Codec (DAC) [15]. With DAC, audio is
encoded into a sequence of tokens via a fully convolutional
encoder. The output of this encoder is then quantized us-
ing a hierarchical sequence of vector-quantizers [11]. Each
quantizer operates on the residual error of the quantizer be-
fore it. Because of this residual vector quantization, DAC
is able to reconstruct audio with very high quality, at a high
compression ratio. It, along with its predecessors [13, 14],
are instrumental in enabling audio language models like
AudioLM [2], MusicLM [3], and VALL-E [1]. While we
later briefly describe our tokenizer, the key contributions
of our work are applicable to the output of any audio tok-
enizer and our specific audio tokenizer is not the focus of
this work.

2.2 Stage 2: Generation

Given audio encoded as tokens, the common approach is to
use an autoregressive model [16] for generation. State-of-
the-art (SOTA) audio generation approaches like AudioLM
[2], MusicLM [3], and JukeBox [17] use this approach,
generating each acoustic token in the sequence in a step-
by-step fashion using transformer-based [18] decoder-only
models. Autoregressive sampling is slow in nature due to
the high number of steps required at inference time [4].
Further, autoregressive models inherently restrict down-
stream applications, as each generated token is only condi-
tioned on the previous tokens. For an autoregressive model

to perform tasks like inpainting (“filling in the middle”),
one must re-arrange the data during training [19].

In language, masked modeling has been used exten-
sively as a pre-training procedure for high-quality seman-
tic representations [20]. This procedure has also been ex-
tended for representation learning in images [21] and au-
dio [22]. Masked modeling for representation learning
generally has a constant mask probability. For example,
in BERT [20], tokens are masked 15% of the time during
training. It has been shown that this approach is equiva-
lent to a single-step discrete diffusion model [23], that uses
masking for its noising procedure. Therefore, we can ex-
tend masked modeling to masked generative modeling by
varying the probability of masking a token during training.
This was done for image generation in MaskGIT [4], and
in language [23]. Similar to diffusion modeling [24, 25],
which seeks to synthesize data starting from random noise
through a series of denoising steps, masked generative
modeling seeks to synthesize data starting from completely
masked data through a series of “unmasking” steps.

Key to the efficiency of MaskGIT and related ap-
proaches is a parallel iterative decoding procedure. In par-
allel iterative decoding, the model predicts every token in
the output sequence in a single forward pass. However,
after just one forward pass of the model, the output often
does not have high quality. The output of the first sam-
pling step is re-masked, with a lower masking probability,
and then put through the model again. In this way, masked
generative models can efficiently refine their output, result-
ing in high quality generation.

In unconditional generation tasks, the model is asked
to generate a realistic sample from the target data distribu-
tion from scratch, without any guidance. This is a difficult
problem, as many target data distributions are highly multi-
modal. Unconditional generative models are susceptible to
mode collapse [26], blurry samples, mode averaging, and
other issues [27]. Therefore, some conditioning is helpful
as it provides some signal for the model to resolve the mul-
timodality. Conditioning is also a commonly used method
to guide the output of the system towards desired content.

Conditioning can take the form of a class label, a genre
tag or lyrics [17], or an associated text description [3,8,28].
Conditioning can also be applied at every timestep, like
the semantic tokens of AudioLM [2], or aligned text or
phonemes for text-to-speech generation [1].

In this work,we adopt a masked generative modeling
approach with a parallel iterative decoding procedure, in-
spired by work in vision such as MaskGIT [4] and Paella
[5], as illustrated in Figure 1. We do not apply any con-
ditioning beyond that provided by the unmasked tokens in
our encoded audio. As we show later, different approaches
to masking, applied at inference time, can be used to steer
generation in useful and artistic ways.

In training, tokens are masked randomly throughout the
sequence. The model is then asked to predict the value of
each of the masked tokens in a single forward pass, but it
is conditioned on all of the unmasked tokens, both in the
future as well as in the past. We vary the number of tokens

Figure 2. Training, sampling, and prompting VampNet. Training: we train VampNet using Masked Acoustic Token
Modeling, where we randomly mask a portion of a set of input acoustic tokens and learn to predict the masked set of
tokens, using a variable masking schedule. Coarse model training masks coarse tokens. Coarse-to-fine training only masks
fine tokens. Sampling: we sample new sequences of acoustic tokens from VampNet using parallel iterative decoding,
where we sample a subset of the most confident predicted tokens each iteration. Prompting: VampNet can be prompted in
a number of ways to generate music. For example, it can be prompted periodically, where every P th timestep in an input
sequence is unmasked, or in a beat-driven fashion, where the timesteps around beat markings in a song are unmasked.

that are masked during training, allowing us to generate
audio at inference time through a sampling procedure. We
now describe our method in more detail.

3. METHOD

We adapt the procedure of Masked Visual Token Modeling,
proposed in MaskGIT [4] to audio, accounting for several
key differences between the vision and audio domain. We
call our approach Masked Acoustic Token Modeling.

3.1 Masked Acoustic Token Modeling

We first train an audio tokenizer based on the techniques
described in DAC [15]. Unlike the visual tokens of
MaskGIT, our acoustic tokens are hierarchical in nature
due to residual vector quantization. As a first step, the au-
dio signal x is encoded at each time step t as a a D di-
mensional latent vector Z. We then quantize Z using N
vector quantizers. Quantizer 1 produces Ẑ1, a quantized
approximation of Z that has residual error R1 = Z − Ẑ1.
Thereafter, the residual from each quantizer i is passed to
the next quantizer i + 1, which produces a quantized ap-
proximation of the remaining residual error: Ri ≈ ˆZi+1.
Vector Z is reconstructed by summing the output of the N
quantizers: Z =

∑N
i=1 Ẑi.

Since the encoded signal is represented as a quantized
vector of N discrete tokens at each timestep, we have N
tokens that can be masked or unmasked at each timestep.
Rather than attempt to generate all tokens at once, we in-
stead split the N tokens into Nc “coarse” tokens, and Nf

“fine” tokens, as in AudioLM. We then train two generative
models: one that generates the fine tokens given the coarse
tokens as conditioning, and one that generates the coarse
tokens given a sequence of coarse tokens. To generate a

sample (Figure 1), we chain the two models together. First,
we apply the coarse model to generate a sequence of coarse
tokens. Then, we apply the coarse-to-fine model to gener-
ate the fine tokens. We decode the tokens to a 44.1khz
waveform using the decoder of our audio tokenizer.

3.2 Training procedure

Let Y ∈ RT×N be a matrix representing the output of the
encoder for some audio segment. Each element yt,n in Y
is a token from the nth level codebook at timestep t. Let
YM be the set of all masked tokens in Y and YU be the
set of all unmasked tokens in Y. The model generates a
probability distribution over the set of possible codebook
values for each token y ∈ YM , given the unmasked tokens
and the model parameters θ. The training objective is to
maximize the probability of the true tokens. This corre-
sponds to minimizing the negative log likelihood.

L = −
∑

∀y∈YM

log p(y|YU , θ) (1)

To predict the masked tokens, we use a multi-layer bidi-
rectional transformer, which predicts the probabilities of
each possible token at every timestep, for every quantizer.
If each quantizer has a codebook size of C possible values,
and there are N quantizers, then the last layer of the net-
work will be a fully connected layer of shape (E,CN),
where E is the dimensionality of the output of the last
layer. We then reshape this output into (EN,C), and com-
pute the cross-entropy loss between the ground-truth one-
hot token and the predicted token. Because the transformer
is bidirectional, it can attend to all tokens in the input se-
quence to optimize the loss for each token.

For the coarse-to-fine generative model, the input se-
quence always contains Nc coarse tokens, and the masking
operation is restricted to the Nf fine tokens. The last layer
of this network only predicts masked fine tokens. Other-
wise, the training procedure for both models is identical.

3.3 Sampling

We follow the same iterative confidence-based sampling
approach used in MaskGIT. More concretely, given YM as
the set of masked tokens and YU as the set of unmasked
tokens, do:

1. Estimate. For each masked token y in YM , estimate
the conditional probability distribution over its vo-
cabulary of codebook values V .

2. Sample. For each masked token, sample from the
distribution to generate an associated token estimate
ŷ ∈ V . We don’t use any sampling tricks in this
step, sampling from the categorical probability dis-
tribution for each token as-is.

3. Rank by Confidence. Compute a confidence mea-
sure for each of the sampled tokens by taking their
prediction log-probabilities and adding temperature-
annealed Gumbel noise to them:

confidence(ŷt) = log(p(ŷt)) + temp · gt (2)

where ŷt is a token estimate at timestep t, gt is
an i.i.d sample drawn from Gumbel(0,1) [29], and
temp is a hyperparameter that is linearly annealed to
0 over the number of sampling iterations. Then, sort
the set of sampled token estimates by the confidence
computed above. We find that high temperature val-
ues (e.g. > 6.0) result in higher quality samples.

4. Select. Pick the number of tokens to mask at the
next sampling iteration, k, according to the mask-
ing schedule 5 . Take the k lowest confidence es-
timates and toss them out, re-masking their tokens.
Place the remaining high-confidence token estimates
in YU , removing their tokens from YM .

5. Repeat Return to step 1 until the number of itera-
tions has been reached.

3.4 Prompting

Interactive music editing can be enabled by incorporating
human guidance in the sampling procedure through the
conditioning prompt of unmasked tokens. Because our ap-
proach isn’t conditioned on any signal other than the in-
put audio itself, we find that various types of prompts are
useful for obtaining coherent samples, as they lower the
amount of multimodality when sampling from the model.
Like AudioLM, we can prompt our model with prefix au-
dio of some duration (usually between 1 and 4 seconds),
and it will provide a continuation of that audio. Unlike Au-
dioLM, and other auto-regressive approaches, we can also
prompt our model with suffix audio, and it will generate

5 k = γ(t
tT

)D, where t is the current iteration, tT is the total number
of iterations, and D the total number of tokens in the sequence. The
scheduling function γ is a cosine schedule.

audio that leads up into that suffix. We can provide prefix
and suffix audio, and the model will generate the remaining
audio, such that it is appropriate, giventhe specified prefix
and suffix.

We can also apply a “periodic” prompt, where all but
every P th timestep are masked.The lower P is, the more
the generated audio will sound like the original, as the
model is highly conditioned. For example if P = 2, then
the model is essentially behaving like a upsampler, imput-
ing the tokens for every other timestep. As P increases,
the model shifts from behaving in a compression mode to
a generative mode, creating variations that match the style
of the original.

Another useful style of prompt are “compression”
prompts, where all codebooks other than the most coarse-
grained are masked. This gives the model strong condi-
tioning on every timestep, so the model is likely to produce
audio that closely matches the original. We can combine
this prompt with a periodic prompt with low P for even
more extreme compression ratios. Given the bitrate of the
codec B , which has number of codebooks N , a downsam-
pling rate P for the periodic prompt, and a number of kept
codebooks Nk, we can achieve a bitrate of B/P (N−Nk).

Finally, we can design music-specific prompts, which
exploit knowledge about the structure of the music. More
concretely, we explore beat-driven prompting, where
timesteps that fall on or around the beat are left unmasked.
The model is left to create music between these beats,
resulting in interesting variations on the original music.
These prompts can all be combined to create a very use-
ful music creation tool. In concert with a well designed
user interface, VampNet shows promise as the basis for a
next-generation music editing and creation suite.

4. EXPERIMENTS

Our experiments aim to evaluate VampNet’s capability
to both compress and generate music, given the various
prompting strategies described in Section 3.4. For our ob-
jective audio quality measures, we use a multiscale mel re-
construction error and the Fréchet Audio Distance (FAD).
Mel-reconstruction error is defined as the L1 distance be-
tween log-mel spectrograms at various time-scales,

DF,M = ||ŜF,M − SF,M ||1 (3)

where F is the FFT size of each spectrogram, and
M is the number of mel-frequency bins. We use F ∈
[2048, 512] and M ∈ [150, 80], with a hop size of 1

4 the
FFT size. Mel-reconstruction is valuable as a metric for
compression quality, but not for generation quality, since
it is likely that models produce audio that does not match
one to one with the original target audio. For generation
quality, we use FAD, which measures the overlap between
distributions of real and generated audio. Unlike mel-
reconstruction, FAD is geared more towards evaluating if
sample quality falls within the data distribution of the real
audio, and can be used to evaluate generation quality.

Figure 3. Mel reconstruction error (top) and Fréchet Au-
dio Distance (FAD, bottom) for VampNet samples taken
with varying numbers of sampling steps, taken using a pe-
riodic prompt of P = 16. The samples were generated
by de-compressing tokens at an extremely low bitrate (50
bps), effectively generating variations of the input signals.

4.1 Dataset

Similar to JukeBox [17], we collect a large dataset of pop-
ular music recordings. Our dataset consists of 797k tracks,
with a sampling rate of 32 khz. These tracks are resam-
pled to 44.1kHz to make compatible with our tokenizer.
Our dataset contains music from thousands of artists across
genres described in Echo Nest’s Every Noise at Once 6 .

We use a subset of 2k tracks for validation, and another
subset of 2k tracks for testing. We ensure that there is no
artist overlap between train, validation, and test tracks. In
addition, we collect a set of music and non-music data
(speech, environmental sound), which we used to train
our tokenizer, using the datasets described in DAC [15].
All audio is normalized to -24dbFS. We do not use any
metadata about these files during training, as our model is
trained unconditionally.

4.2 Network Architecture and Hyperparameters

The audio tokenizer model we use takes as input 44.1kHz
audio, and compresses it to a bitrate of 8kbps using 14
codebooks, with a downsampling rate of 768x. The latent
space therefore is at 57Hz, with 14 tokens to predict at ev-
ery timestep. We designate 4 of these tokens as the coarse
tokens, and the remaining 10 as the fine tokens. Refer to
the Descript Audio Codec [15] for details on the tokenizer
architecture. We train the tokenizer for 250k steps.

The VampNet architecture (for both coarse and coarse-
to-fine models) consists of a bidirectional transformer [18]
with relative attention [30] and an embedding dimension
of 1280 and 20 attention heads. The coarse model has 20
attention layers, while the coarse-to-fine model has 16. We
train the coarse and coarse-to-fine model for 1M and 500k
steps, respectively. We train with the AdamW optimizer
[31] with β1 and β2 set to 0.9 and 0.999, respectively. We

6 https://everynoise.com/engenremap.html

Figure 4. Multiscale Mel-spectrogram error (top) and
Fréchet Audio Distance (FAD, bottom) for VampNet 10s
samples taken with a different types of prompts.

use the learning rate scheduler introduced by Vaswani et
al [18] with a target learning rate of 0.001 and 10k warmup
steps. We use a dropout of 0.1, and a batch size of 25, with
a GPU memory budget of 72GB.

4.3 Efficiency of VampNet

We first validate that VampNet can generate realistic music
audio in a low number of steps. To do this, we run Vamp-
Net using one of our prompts (the periodic prompt, with
P = 16) on our test set, on 10-second excerpts. We vary
the number of sampling steps in [1, 4, 8, 12, 36, 64, 72], and
report metrics for each sampling step.

4.4 Effect of prompts

We seek to understand how VampNet responds to different
prompts, as discussed in Section 3.4. The prompts range
from “compression” prompts, which compress music to a
low bitrate, to more creative “generative” prompts. We ex-
amine whether compression and generative prompts exist
on a continuum, and whether decompression from low bi-
trates results in generative behavior.

We draw 2000 10-second examples from our evaluation
dataset, encode them into token streams with our audio to-
kenizer, and manipulate the token streams in four ways:

1. Compression prompt: C codebooks are left un-
masked, starting from the coarsest codebook. All
other tokens are masked. We set Nk = 1.

2. Periodic prompt: every P th timestep is left un-
masked. In an unmasked timestep, tokens from ev-
ery codebook are unmasked. All other tokens (e.g.
tokens in timesteps that do not correspond to the pe-
riod P) are masked. We set P ∈ [8, 16, 32].

3. Prefix and suffix (inpaint) prompts: a segment at the
beginning and at the end of the sequence is left un-
masked. All other tokens are masked. This prompt
is parameterized by a context length in seconds. We
set the context to be either 1 second or 2 seconds,
which corresponds to 57 or 114 timesteps.

4. Beat-driven prompt: we first process the audio wave-
form with a beat tracker [32]. Then, around each de-
tected beat, we unmask timesteps to the right of the
beat. We examine a 75ms unmasked section around
each beat, which is about 4 timesteps per beat.

After manipulating the input token streams with our
prompts, we generate new musical signals from these
masked token streams using VampNet, and compute FAD
and mel-reconstruction error between the generated signals
and the input signals from our music dataset. We include
a noisy token stream baseline, where a portion (as dictated
by mask ratio r) of the tokens in the input token stream are
replaced with random tokens. We also include as baseline
the codec by itself, as well as the coarse-to-fine model.

Finally, we examine how these prompts can be com-
bined - specifically the compression and periodic prompts.
By manipulating the hyperparameters of these prompts (C
and P), we can shift the model behavior from compression
to generation. As more timesteps are masked, the model
must generate plausible musical excerpts that connect the
unmasked timesteps, that may not match the input music.

5. RESULTS AND DISCUSSION

Results for our experiment varying the number of sam-
pling steps used to generate samples with VampNet are
shown on Figure 3. We find that VampNet achieves the
lowest FAD with 36 sampling steps, although 12 sampling
steps achieves comparable performance. In practice, we
find that samples taken with 24 steps achieve a fair trade-
off between generation quality and compute speed, with
10-second samples taking around 6 seconds to sample on
an NVIDIA RTX3090. In contrast, to generate 10 seconds
of audio with an autoregressive model would require 574
steps, which would take around 1 min to generate 10 sec-
onds of audio, given an autoregressive model with the same
number of parameters as ours, and the same tokenizer.

Results for our study on the effect of each prompt are
shown in Figure 4. First, we note that while the noisy token
baseline has comparable mel reconstruction to all prompts,
it performs very poorly in terms of FAD. This indicates that
while our prompting strategies may result in audio that is
not a perfect match to the original input audio, it still falls
inside the distribution of plausible music.

Of our proposed prompts, we find that beat-driven
prompts perform best, achieving the lowest FAD of all
prompts. A notable result here is that the periodic prompt
with P = 16 (35 conditioning timesteps) performs on par
with inpainting with 1 second of context (57 conditioning
timesteps). Therefore, prompt techniques that spread out
the conditioning tokens throughout the sequence (periodic
prompts) are able to use fewer conditioning timesteps to
generate samples of comparable quality to those generated
by sampling techniques that place all of the conditioning
tokens at the start and end of the sequences (inpainting).

Qualitatively, we also find that beat-driven prompts can
keep a steadier tempo than other prompts, though their out-
puts tend to resemble the original music closer than peri-

Figure 5. Mel-spectrogram error (top) and Fréchet Audio
Distance (FAD) (bottom) for VampNet samples at varying
bitrates. A baseline is provided by replacing tokens in the
input sequence with random tokens, per noise ratio r.

odic prompts. In practice, a mix of beat-driven, periodic,
and inpainting prompts can be employed to steer of Vamp-
Net in creative ways. To illustrate, we highly encourage
the reader to listen to the accompanying sound samples 7 .

We then combined periodic and compression prompting
to show how the model’s behavior shifts between recon-
struction and generation tasks, as more tokens are masked
away. Results for this experiment are shown in Figure 5.
At higher bitrates, (600 bps and above), VampNet is able
to accurately reconstruct the original music signal, achiev-
ing low mel-spectrogram error and FAD values with re-
spect to the evaluation music audio. At bitrates of 200bps
and below, VampNet has comparable reconstruction qual-
ity to the noisy token baselines, indicating that the sam-
pled VampNet signals no longer resemble the input audio
in terms of fine-grained spectral structure. However, the
FAD for VampNet samples at low bitrates is much lower
than the FAD for noisy baselines. This indicates that even
though VampNet isn’t able to reconstruct the input music
signal at low bitrates, it is still able to generate coherent
audio signals with musical structure, that are closer to the
distribution of “real music” than our noisy baseline.

6. CONCLUSION

We introduced VampNet, a masked acoustic token mod-
eling approach to music generation. VampNet is bidirec-
tional, and can be prompted a variety of ways using an
input audio file. Through different prompting techniques,
VampNet can operate in a continuum between music com-
pression and generation, and is an excellent tool for gener-
ating variations on a piece of music. With VampNet, a mu-
sician could record a short loop, feed it into VampNet, and
have VampNet create musical variations on the recorded
idea every time the looped region repeats. In future work,
we hope to investigate the interactive music co-creation po-
tential of VampNet and its prompting techniques, as well as
explore the representation learning capabilities of masked
acoustic token modeling.

7 audio samples: https://tinyurl.com/bdfj7rdx

7. REFERENCES

[1] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu,
Z. Chen, Y. Liu, H. Wang, J. Li et al., “Neural codec
language models are zero-shot text to speech synthe-
sizers,” arXiv preprint arXiv:2301.02111, 2023.

[2] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov,
O. Pietquin, M. Sharifi, O. Teboul, D. Grangier,
M. Tagliasacchi, and N. Zeghidour, “Audiolm: a lan-
guage modeling approach to audio generation,” arXiv
preprint arXiv:2209.03143, 2022.

[3] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel,
M. Verzetti, A. Caillon, Q. Huang, A. Jansen,
A. Roberts, M. Tagliasacchi et al., “Musiclm:
Generating music from text,” arXiv preprint
arXiv:2301.11325, 2023.

[4] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T.
Freeman, “Maskgit: Masked generative image trans-
former,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
11 315–11 325.

[5] D. Rampas, P. Pernias, E. Zhong, and M. Aubre-
ville, “Fast text-conditional discrete denoising on
vector-quantized latent spaces,” arXiv preprint
arXiv:2211.07292, 2022.

[6] Z. Borsos, M. Sharifi, D. Vincent, E. Kharitonov,
N. Zeghidour, and M. Tagliasacchi, “Soundstorm: Ef-
ficient parallel audio generation,” 2023.

[7] P. Esser, R. Rombach, and B. Ommer, “Taming trans-
formers for high-resolution image synthesis,” in Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 2021, pp. 12 873–12 883.

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser,
and B. Ommer, “High-resolution image synthesis
with latent diffusion models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition., 2022.

[9] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Syn-
naeve, Y. Adi, and A. Défossez, “Simple and control-
lable music generation,” 2023.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly et al., “An image is
worth 16x16 words: Transformers for image recogni-
tion at scale,” arXiv preprint arXiv:2010.11929, 2020.

[11] A. Van Den Oord, O. Vinyals et al., “Neural discrete
representation learning,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[12] C. Gârbacea, A. van den Oord, Y. Li, F. S. Lim,
A. Luebs, O. Vinyals, and T. C. Walters, “Low bit-rate
speech coding with vq-vae and a wavenet decoder,”
in ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 735–739.

[13] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and
M. Tagliasacchi, “Soundstream: An end-to-end neu-
ral audio codec,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 30, pp. 495–
507, 2021.

[14] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High
fidelity neural audio compression,” arXiv preprint
arXiv:2210.13438, 2022.

[15] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and
K. Kumar, “High-fidelity audio compression with im-
proved rvqgan,” 2023.

[16] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever
et al., “Improving language understanding by genera-
tive pre-training,” 2018.

[17] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” arXiv preprint arXiv:2005.00341, 2020.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural infor-
mation processing systems, vol. 30, 2017.

[19] M. Bavarian, H. Jun, N. Tezak, J. Schulman,
C. McLeavey, J. Tworek, and M. Chen, “Efficient train-
ing of language models to fill in the middle,” arXiv
preprint arXiv:2207.14255, 2022.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional trans-
formers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[21] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Gir-
shick, “Masked autoencoders are scalable vision learn-
ers,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp.
16 000–16 009.

[22] Y.-A. Chung, Y. Zhang, W. Han, C.-C. Chiu, J. Qin,
R. Pang, and Y. Wu, “W2v-bert: Combining con-
trastive learning and masked language modeling for
self-supervised speech pre-training,” in 2021 IEEE Au-
tomatic Speech Recognition and Understanding Work-
shop (ASRU). IEEE, 2021, pp. 244–250.

[23] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and
R. van den Berg, “Structured denoising diffusion mod-
els in discrete state-spaces,” Advances in Neural In-
formation Processing Systems, vol. 34, pp. 17 981–
17 993, 2021.

[24] Y. Song and S. Ermon, “Generative modeling by esti-
mating gradients of the data distribution,” Advances in
neural information processing systems, vol. 32, 2019.

[25] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion
probabilistic models,” Advances in Neural Information
Processing Systems, vol. 33, pp. 6840–6851, 2020.

[26] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann,
and C. Sutton, “Veegan: Reducing mode collapse in
gans using implicit variational learning,” Advances in
neural information processing systems, vol. 30, 2017.

[27] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen, “Improved techniques for
training gans,” Advances in neural information pro-
cessing systems, vol. 29, 2016.

[28] H. Chang, H. Zhang, J. Barber, A. Maschinot,
J. Lezama, L. Jiang, M.-H. Yang, K. Murphy, W. T.
Freeman, M. Rubinstein et al., “Muse: Text-to-image
generation via masked generative transformers,” arXiv
preprint arXiv:2301.00704, 2023.

[29] E. J. Gumbel, “Statistical theory of extreme values
and some practical applications; a series of lectures.”
Washington, 1954.

[30] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention
with relative position representations,” arXiv preprint
arXiv:1803.02155, 2018.

[31] I. Loshchilov and F. Hutter, “Fixing weight decay
regularization in adam,” CoRR, vol. abs/1711.05101,
2017. [Online]. Available: http://arxiv.org/abs/1711.
05101

[32] C. J. Steinmetz and J. D. Reiss, “WaveBeat: End-to-
end beat and downbeat tracking in the time domain,”
in 151st AES Convention, 2021.

