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Fig 1. Overview of Sketch2Sound. We extract three control signals from any input sonic imitation: loudness, spectral centroid (i.e., brightness)
and pitch probabilities. We encode the signals and add them to the latents used as input to a DiT text-to-sound generation system. We strongly
encourage the reader to listen to this example and many more at: https://hugofloresgarcia.art/sketch2sound.

Abstract—We present Sketch2Sound, a generative audio model capable
of creating high-quality sounds from a set of interpretable time-varying
control signals: loudness, brightness, and pitch, as well as text prompts.
Sketch2Sound can synthesize arbitrary sounds from sonic imitations
(i.e., a vocal imitation or a reference sound-shape). Sketch2Sound can
be implemented on top of any text-to-audio latent diffusion transformer
(DiT), and requires only 40k steps of fine-tuning and a single linear
layer per control, making it more lightweight than existing methods like
ControlNet. To synthesize from sketchlike sonic imitations, we propose
applying random median filters to the control signals during training,
allowing Sketch2Sound to be prompted using controls with flexible levels
of temporal specificity. We show that Sketch2Sound can synthesize sounds
that follow the gist of input controls from a vocal imitation while retaining
the adherence to an input text prompt and audio quality compared to
a text-only baseline. Sketch2Sound allows sound artists to create sounds
with the semantic flexibility of text prompts and the expressivity and
precision of a sonic gesture or vocal imitation. Sound examples are
available at https://hugofloresgarcia.art/sketch2sound/.

Index Terms—audio systems, sound generation, auto foley

I. INTRODUCTION

Sound design is the craft of storytelling through sonic composition.
Within sound design, Foley sound is a technique where special sound
effects are designed and performed in sync to a film during post-
production [1]. These sound scenes are typically performed by a
Foley artist on a stage equipped with abundant sound instruments
and other soundmaking materials1. Foley sound is a skilled and
gestural performance art: performing a sound scene with sound-
making objects and instruments (instead of arranging pre-recorded
samples post hoc) allows sound artists to create fluent and temporally
aligned sounds with a “human” (i.e., gestural) touch. Adding this
gestural touch to the resulting sound composition often results in a
sonic product of great aesthetic and production value.

Recent research in generative modeling for sound has paved the
way for text-to-sound systems [2]–[4], where a user can create sound
samples from text descriptions of a sound (e.g., “explosion”). While
the text-to-sound paradigm can help a sound designer find sounds
more quickly (and, perhaps in the future, with a higher degree of

1Example of a Foley artist performing a scene: youtu.be/WFVLWo5B81w

specificity), a sound designer still has to painstakingly modify the
temporal characteristics of the generated sound so that they can be
in sync with the visuals in the editing timeline. This is in opposition
to the natural way that Foley artists gesturally create sound effects
by physically performing with physical soundmaking objects.

To overcome the drawbacks of a purely text-to-audio interaction,
several works in the music domain sought to condition generative
models on audio [5], parallel instrument stems [6], melody [7], sound
event timestamps and frequency [8], or multiple structural control
signals like song structure and dynamics [9]. Notably, [10] condition
an audio VAE on control signals such as brightness and loudness,
though their experiments are limited to models trained on narrow
sound distributions (e.g., violin, darbouka, speech) and not a multi-
distribution text-to-audio model. For speech, [11] proposes a fully
interpretable and disentangled representation for speech generation
and editing, which allows for fine-grained control over the pitch,
loudness, and phonetic pronunciation of speech.

The human voice is a gestural sonic instrument [12]: it allows us
to realize sounds without having to perform any symbolic abstrac-
tion (i.e., putting a sound into words) beforehand. When humans
communicate audio concepts to other people, they typically combine
language and vocal imitation [13]–[15], and recent work has shown
its utility for query-by-example search of audio databases [16]–[18].
This is a more natural method than describing the evolution of pitch,
timing, and timbre via pure text descriptions [13], and voice-driven
sound synthesis interactions have been of interest long before modern
generative modelling for their embodied capabilities [19]–[24].

We propose Sketch2Sound: a text-to-audio model that can
create high-quality sounds from sonic imitation prompts by
following interpretable, fine-grained time-varying control signals
that can be easily extracted from any audio signal at different
levels of temporal detail: loudness, brightness (spectral centroid)
and pitch. We expand upon previous work [25] by developing a
method capable of following the loudness, brightness and pitch of
a vocal imitation, with the option to drop any of the three controls.
Additionally, we propose a technique that varies the temporal detail
of the control signals used during training by applying median filters
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of different window sizes to the control signals before using them
as input. This allows sound artists to specify the degree of temporal
precision to which a generative model should follow the specified
control signals, which improves sound quality in sounds that may be
too hard to perfectly imitate with one’s voice.

This method is not limited to just vocal imitation: any kind
of sonic imitation can be used to drive our proposed generative
model – we place the focus on vocal imitation due to people’s innate
ability to imitate sounds with our voices. Vocal imitations can always
be augmented through other sonic gestures like clapping, tapping,
playing instruments, etc. Sketch2Sound can be added to any existing
latent diffusion transformer (DiT) sound generation model with as
little as 40k fine-tuning steps. Unlike ControlNet methods [26], [27]
that require an extra trainable copy of the entire neural network
encoder, Sketch2Sound requires only a single linear layer per control.

Our experiments show that Sketch2Sound can generate sounds that
closely follow the input control signals (loudness, spectral centroid,
and pitch/periodicity) from a vocal imitation while still achieving
a high degree of adherence to a text prompt and an audio quality
comparable to the text-only pre-trained model. We show that our
median filtering technique leads to improved audio quality and text
adherence when generating sounds from vocal imitations. We also
show that, during inference, a user can arbitrarily specify a degree
of temporal detail by choosing a median filter size, allowing them to
navigate the trade-off between strict adherence to the vocal imitations
and audio quality + text adherence.

To the best of our knowledge, this is the first sound generation
model capable of following vocal imitations and text prompts by
conditioning on a set of holistic control signals suitable for generating
sound objects with fine-grained, gestural control of pitch, loudness,
and brightness. We believe Sketch2Sound will give sound artists a
more expressive, controllable, and gestural interaction for generating
sound-objects than existing text-to-audio and other conditional sound
generation systems. We highly encourage the reader to listen to our
expansive set of audio examples demonstrating Sketch2Sound. 2

II. METHOD

We propose a method for conditioning an audio latent diffusion
model on a set of interpretable, time-varying control signals that
are suitable tasks creating variations of sounds and generating new
sounds expressively via text-prompted sonic imitations.

A. Time-varying control signals for sound objects

We use the following control signals as conditioning for
Sketch2Sound:

• Loudness: We extract the per-frame loudness of an audio signal
by performing an A-weighted sum across the frequency bins in
a magnitude spectrogram [11] and taking the RMS of the result.

• Pitch and Periodicity: We use the raw pitch probabilities of
the CREPE [28], [29] (“tiny” variant) pitch estimation model.
To avoid leaking timbral information in this signal, we zero out
all probabilities below 0.1 in the pitch probability matrix.

• Spectral Centroid is defined as the center of mass of the
frequency spectrum for a given audio frame. Frames with a
higher centroid will be perceived as having a brighter timbre.
To preprocess the centroid, we convert the signal from linear
frequency space (i.e., Hz) to a continuous MIDI-like represen-
tation, scaled to roughly a (0, 1) range by dividing the input
signal by 127 (note G9, roughly 12.5kHz), which we found to
stabilize the first steps of training.

2https://hugofloresgarcia.art/sketch2sound

Other momentary time-varying control signals may be used as well.

B. Conditioning a latent audio DiT on time-varying control signals

Refer to Figure 1 for a visual overview of our approach. We use
a large pre-trained text-to-sound latent diffusion transformer (DiT),
similar to the one described in [2], [30] (text-conditioned only, no
timing conditioning) and adapt it to generate sounds conditioned
on the time-varying control signals mentioned above. The latent
diffusion model for text-to-sound generation has two parts: first, a
variational autoencoder (VAE) compresses 48kHz mono audio to a
sequence of continuous vectors of dim 64 at a rate of 40Hz. Then,
a transformer model is trained to generate new sequences of latents,
which can be decoded into audio using the VAE decoder. This text-
to-audio DiT was pre-trained on a large mix of proprietary, licensed
sound effect datasets and publicly available CC-licensed general
audio datasets. Once the model is pre-trained, we fine-tune it for
40k steps and adapt it to handle our time-varying control signals.

Because the time-varying control signals can be easily and effi-
ciently extracted from any audio signal on the fly, we can fine-tune the
pre-trained text-to-audio model in a self-supervised manner: Given
any input audio signal, we extract the three control signals (loudness,
centroid, pitch) from the audio signal and use them as conditioning
for the model during fine-tuning. The model is then fine-tuned using
the same recipe used during training: learning the reverse diffusion
process from a set of noisy latents with text conditioning, along with
our proposed control conditioning.

To align the time-varying control signals with the latents from our
text-to-sound DiT, the control signals must be extracted at the same
frame rate as the audio VAE latents or interpolated to this frame rate.
This allows us to perform a simple conditioning method: condition a
latent diffusion model ϵθ by simply adding a linear projection layer
from our control signals to the noisy latents used as input to the
diffusion model. Since these time-varying control signals are highly
localized to their given time frame, a simple linear layer suffices to
incorporate each time-varying signal as conditioning to the model.

Given the noisy latent vector sequence z ∈ RD×N that is used as
input to a latent diffusion model ϵθ with embedding dimension D
and sequence length N , we introduce our time-varying conditioning
signal cctrl ∈ RK×N with dimension K and sequence length N to
the latent z by applying a trainable linear projection layer pθ(cctrl) ∈
RD×N to the input conditioning, and adding the result directly to the
latents used as input to the diffusion model: zctrl = pθ(cctrl) + z.
We can repeat this process for any number of time-varying control
signals that we’d like to condition our latent diffusion model.

During fine-tuning, the loss configuration for the model does not
change from the one used in original training; that is, we do not apply
any reconstruction losses for the control curves themselves, removing
the need to pass through the VAE decoder during fine-tuning. Despite
not measuring loss on the control signals, providing them as input
during fine-tuning is sufficient for the model to condition generation
on them. As a result, these signals become useful for control at
inference time. To ensure we can generate without requiring all the
control signals, we perform dropout during fine tuning on the control
signals by zero-ing out the control embeddings pθ(cctrl) before they
are added to the diffusion model’s latents z. We drop each control
signal (as well as the text conditioning) individually with a 20%
probability, with an added 20% probability of dropping out all signals
together. Likewise, these signals can be dropped out at inference if a
user wishes to control only one or two controls while omitting others.

At inference time, we follow the two-conditioning classifier-free
guidance setup described in [31]. We use guidance scales sctrl and

https://hugofloresgarcia.art/sketch2sound


TABLE I: Control Signal Evaluation and Sketch Type Ablation. Control Signals: Introducing more control signals improves control adherence
while trading off text adherence and audio quality. Sketch Types: Using median filters to create sketch curves achieves the best trade-off
between text adherence/audio quality and control adherence, compared to a no filtering baseline and a low pass filtering approach.

Control Signal Sketch
Type

Text
Adherence ↑ Control Adherence (Error) ↓ Audio Quality

(FAD) ↓

CLAP Score RMS (dB) Centroid (st) Pitch (st) Chroma (st) VGGish CLAP

control
signals

text-only median (sz 10) 0.273
¯

13.41 10.34 13.91 2.96 2.57 0.27

loudness (ldns) median (sz 10) 0.230 3.88 10.37 12.45 2.96 2.69 0.296

ldns+centroid median (sz 10) 0.219 3.60 4.39 11.17 2.87 2.67 0.306

ldns+centroid+pitch (ours) median (sz 10) 0.211 3.60 4.43 1.49 0.48 2.51 0.312

sketch
types

ldns+centroid+pitch low pass 0.166 2.19 3.33 0.44 0.23 3.30 0.363

ldns+centroid+pitch no filters 0.152 1.87 3.21 0.45 0.21 3.53 0.379

stext, which can be used to trade off the guidance strength for the
control signal conditioning and text conditioning, respectively. We
find that using a single guidance scale for all three control signals
together (sctrl) is a sufficient approach, but future work may explore
the effect of applying guidance strengths to each time-varying control
independently of each other. Anecdotally, we find that setting stext to
a value of 5 and sctrl to 1 achieves results with good text adherence
while following the contour provided in the sonic imitation controls.

C. Creating sketchlike controls via control-rate filtering

Even though the human voice is remarkable at imitating sounds,
there will still be a mismatch between the control signals of the target
sound and the control signals of the vocal imitation. To overcome
this issue, we propose a technique to make the controls sketchlike
by applying random median filters to the control signals at different
window sizes (1-25 control frames) before they are used as input to
the model. This filtering technique can help mitigate the mismatch in
temporal specificity between the vocal imitation and target sound and
help the model produce higher-quality sounds from sketchlike vocal
imitations. Our experiments show that during inference, a sound artist
is free to adjust the control rate of their input control signals, giving
them an interpretable control over the trade-off between text-prompt
adherence and fine temporal precision.

III. EXPERIMENTAL DESIGN

Our experiments evaluate Sketch2Sound’s ability to synthesize
high-quality sounds from vocal imitations. Except for the text-only
baseline (which doesn’t need fine-tuning), we fine-tune every model
for 40k steps with the same configuration used for training. For all
fine-tunings, we use the text-only baseline as the starting checkpoint.

The main dataset used for evaluation is VimSketch [32], which
consists of approximately 12k vocal imitations, each with a text
description and reference sound. For each model variant, we generate
10k examples with durations of up to 5 seconds using the vocal imita-
tion and text description as conditioning. We evaluate Sketch2Sound
along the following characteristics:

Audio Quality: To measure a model’s ability to synthesize high-
quality sound effects, we compute the Frechét Audio Distance (FAD)
[33] using a proprietary dataset of 40k high-quality sound effects as
the reference set, and 10k sounds generated from vocal imitations
from the VimSketch dataset as the evaluation set, as suggested by
[34]. We report the FAD for VGGish [35] and LAION-CLAP [36]
embeddings. Text Adherence: We measure how well our generated
audio adheres to the target text prompt by computing the CLAP

embedding cosine similarity [36] between audio generated from a
sonic imitation and the target text prompt for every example.

Control Signal Adherence: Finally, to measure the adherence of
the generated audio to the vocal imitations, we measure the error (L1)
between the input and generated control signals (loudness, centroid,
pitch) only on non-silent (loudness > −40dB) frames. We measure
loudness error in dBFS RMS and centroid error in semitones (st). We
report the following pitch metrics: pitch error (st), chroma error (from
the predicted pitch), and periodicity error, as estimated by torchcrepe
[29]. We only measure pitch and chroma error on voiced frames,
i.e., where the periodicity predicted by torchcrepe is greater than a
threshold of 0.5 for both the vocal imitation and the model output.

IV. EXPERIMENTS

A. Control signals

First, we validate that Sketch2Sound can synthesize sounds from
a reference vocal imitation and a text prompt while achieving a com-
petitive audio quality, text adherence, and adherence to the vocal imi-
tation. We fine-tune three models, each with a different set of control
signals (loudness only, loudness+centroid, loudness+centroid+pitch),
and compare the performance of these models, along with a text-only
baseline, using the metrics discussed in Section III. For all model
variants, we use a fixed median filter window size of 10 at inference.

B. Sketch type ablation

To observe the effect of our random median filtering as a way of
creating sketchlike controls, we compare our approach to a no-filter
baseline, as well as an alternative approach using low-pass filters
instead of median filters to remove fine temporal detail from the
controls during training. We train our model with random median
filters with window sizes ranging between 1 and 25 control frames
(1 frame = 25 ms). At inference, we use a fixed median filter size of
10. For our low-pass filter approach, we apply random low-pass filters
ranging from 5Hz-20Hz and use a fixed cutoff (10Hz) at inference.
Likewise, we compare each variant in this experiment in terms of
audio quality, text and control adherence, following Section III.

C. Inference-time control rates

To verify whether our median filtering approach allows for an
inference-time trade-off between text adherence and fine-temporal
control, we observe the performance of our model trained with
random median filters at different inference-time temporal resolu-
tions. Specifically, we generate samples using our model at different
inference-time median filter sizes of {1, 5, 10, 15, 20, 25} observe
their performance on the metrics (Section III).
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Fig. 2: At inference, larger median filters are more sketchlike and can
lead to higher audio quality, while smaller filters are more precise and
may lead to lower audio quality if the vocal imitations aren’t precise
enough, giving the sound artist a choice over this trade-off.

V. RESULTS AND DISCUSSION

A. Control signals

Table I validates Sketch2Sound’s ability to synthesize sounds using
control signals extracted from a vocal imitation + a text prompt
while achieving comparable audio quality to a text-only baseline.
We incrementally add each control (loudness, centroid, pitch), and
observe each model’s performance in terms of text adherence (CLAP
score), control signal adherence, and audio quality (FAD).

Conditioning a model on a time-varying control signal (e.g., loud-
ness, centroid or pitch) significantly improves the adherence to that
control signal compared to when the model is not conditioned on
that control. Since loudness, centroid, and pitch are often correlated
in natural sounds, incorporating a single conditioning (i.e., loudness)
also slightly improves the control adherence for other control signals.

In terms of text adherence and audio quality, introducing control
signals produces a slight decrease in audio quality and text adherence.
Empirically, we find that this difference is near negligible when
compared to the text-only baseline in most cases. We also find that
the quality of the generated audio can be a function of how well the
user imitates the characteristics of the target sound: better-performed
vocal imitations lead to higher-quality generated sound effects.

B. Sketch type ablation

Table I shows that our median filter method makes Sketch2Sound
robust to generating high-quality sound effects from sketchlike vo-
cal imitation control signals, improving the audio quality and text
adherence over a no-filter baseline and a low-pass method. Notably,
our median filter method is able to achieve a higher CLAP score
(text adherence) and lower FAD (audio quality), while trading off
the control adherence to vocal imitations. This trade-off, where
lowering the control adherence to vocal imitations improves the
audio quality is more desirable than a strict adherence to the
controls since most vocal imitations cannot perfectly mimic the
fine temporal behavior of target sounds. Generating sounds that
exactly follow the vocal imitation controls (i.e. “no filtering”)
results in audio that does not sound like the text, but “speechlike”.

C. Inference-time control rates

Our control-rate filtering method lets a sound artist use different-
size median filters at inference time, allowing users to choose the

desired amount of temporal detail needed for a particular voice-to-
sound example. The results in Figure 2 show that Sketch2Sound can
be used with different control-rate resolutions at inference time by
using median filters of different sizes. Smaller filters achieve higher
control adherence, at the cost of a lower audio quality and text
adherence. We hypothesize that the decrease in text adherence and
audio quality is due to the mismatch between vocal control signals
and the target control signals suitable for generating Foley sounds.
However, this flexibility allows one to use smaller filters (i.e., higher
temporal resolution) when the vocal imitations are well-performed,
and larger filters (i.e., lower temporal resolution) when the vocal
imitations are impossible to precisely imitatate with the human voice.

D. The semantics of control curves are implicitly modeled

[bird] [bird] [bird] [snare] [snare][bass] [bass] [bass][bass]

sketch2sound (output)

sonic imitation (input)

sketch2sound (output)

prompt: "forest ambience" prompt: "bass drum, snare drum"

sonic imitation (input)

Fig. 3: (left) When prompted with “forest ambience”, bursts of
loudness in the controls become of birds without prompting the model
to do so. (right) With “bass drum, snare drum”, the model places
snares in unpitched areas and bass drums in pitched areas.

We find that the control signals can manipulate the semantics of
the generated signals. For example, using the text prompt “forest
ambience” with a sonic imitation containing random bursts of loud-
ness in it, we can synthesize bird sounds into those loudness bursts
(see Figure 3), without having to use the prompt “birds” at all. The
model follows the correlations between bursts of loudness and the
presence of birds in recordings of forest ambience in the training
data, and so generates bird sounds when prompted with loudness
bursts in a “forest ambience” prompt. Likewise, with the prompt
“snare drum, bass drum, drum beat”, performing a sonic imitation
with a series of pitched (bass drum) and unpitched (snare drum)
sounds will successfully apply bass drum sounds on pitched regions,
and snare drum on unpitched regions. Both of these examples are
available on our accompanying website.

E. Limitations

We found that the centroid control tends to entangle the room tone
of the input sonic imitation onto the generated audio. We believe this
is because the room tone of the input audio is encoded by the centroid
when no sound events are occurring in the input audio. A potential
solution is to drop the controls when the signal is quiet, though this
may fail with overcompressed inputs or loud room tones.

VI. CONCLUSION

Sketch2Sound is a generative sound model capable of generat-
ing sounds from text prompts and time-varying controls: loudness,
brightness (spectral centroid), and pitch. Sketch2Sound is capable
of generating sounds from sonic imitations and sketchlike control
curves. Sketch2Sound is a lightweight adapter method, requiring only
40k steps of fine-tuning and a single linear adapter layer per control
signal. We showed that Sketch2Sound can create arbitrary sounds via
sonic imitations with a flexible amount of temporal specificity while
retaining the semantics of a text prompt, making it a controllable,
gestural, and expressive tool for sound artists.
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