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ABSTRACT

A phonetic posteriorgram (PPG) is a time-varying categorical dis-
tribution over acoustic units of speech (e.g., phonemes). PPGs are
a popular representation in speech generation due to their ability to
disentangle pronunciation features from speaker identity, allowing
accurate reconstruction of pronunciation (e.g., voice conversion) and
coarse-grained pronunciation editing (e.g., foreign accent conver-
sion). In this paper, we demonstrably improve the quality of PPGs
to produce a state-of-the-art interpretable PPG representation. We
train an off-the-shelf speech synthesizer using our PPG represen-
tation and show that high-quality PPGs yield independent control
over pitch and pronunciation. We further demonstrate novel uses of
PPGs, such as an acoustic pronunciation distance and fine-grained
pronunciation control.
Index Terms: interpretable, ppg, pronunciation, representation

1. INTRODUCTION

The phonetic posteriorgram (PPG) [1] is a time-varying categorical
distribution over acoustic units of speech (e.g., phonemes). PPGs
have enabled voice conversion without changing pronunciation [2,
3, 4] (Figure 1, left). As such, all five top entries to the 2020 Voice
Conversion Challenge [5] utilize PPGs. Beyond voice conversion,
text-to-speech (TTS) systems that predict PPGs from text as an in-
termediate have shown improved pronunciation relative to predicting
speech directly from text [6] and have enabled accent conversion [7].

Speech synthesis tasks (e.g., text-to-speech [11]) typically use
as an input representation the sequence of phonemes indices, ex-
tracted from the transcript via a grapheme-to-phoneme process.
This representation does not specify the exact pronunciation of each
phoneme, or its duration; however, phoneme durations can be in-
ferred from ground truth speech and corresponding transcripts (e.g.,
via forced phoneme alignment [12]). In contrast, PPGs accurately
represent pronunciation, preserve alignment, and permit training
of speech synthesizers without access to the speech transcript—
requiring a transcript only for the initial training of the generalizable
PPG model.

Diphone and triphone models can be used to represent transi-
tions between phonemes in an interpretable representation [13], but
are not designed to represent ambiguity when pronunciation falls at
the border between similar phonemic categories. As with phoneme
indices, training and generation using diphones or triphones requires
either access to the speech transcript—in which case the pronuncia-
tion and phoneme durations are inferred and contain inaccuracies—
or manual diphone or triphone annotations produced by an expert.

Prior works have noted that pronunciation is preserved dur-
ing voice and accent conversion when using representations like
intermediate activations of ASR systems [3] or distributions over
learned latent variables [7]—and have even used the term PPG to
refer to some of these representations. While all of these are multi-
dimensional, continuous-valued representations, none of these rep-

resentations permit the interpretability and control afforded by true
PPGs built upon interpretable phonetic categories.

No prior work has closely evaluated the impact of input repre-
sentations for PPGs on downstream speech fidelity or the entangle-
ment of pronunciation and prosody. No prior work has demonstrated
fine-grained user control of pronunciation, such as interpolation be-
tween phonemes. This is useful for correcting mispronunciations or
accents within podcasts, video games, and film dialogue as well as
measuring acoustic pronunciation distance for, e.g., evaluating voice
conversion and speech editing. Our contributions are as follows:

• (Contribution 1) We propose an interpretable PPG represen-
tation (Section 2) that exhibits competitive pitch modification
accuracy relative to existing, non-interpretable speech repre-
sentations (Section 3.4)1.

• (Contribution 2) We propose an interpretable speech pro-
nunciation distance (Figure 1; bottom) based on the Jensen-
Shannon divergence between PPGs. This is a time-aligned,
language-agnostic alternative to word error rate (Section 4.1).

• (Contribution 3) We are the first to demonstrate that inter-
pretable PPGs enable fine-grained pronunciation control, in-
cluding interpolation (Figure 1; top), regex-based accent con-
version, and automatic onomatopoeia (Section 4.2).

To facilitate future research, we release our code2 and speech repre-
sentations as ppgs, an MIT-licensed, pip-installable Python module
for training, evaluating, and performing inference with PPGs.

2. NETWORK ARCHITECTURE

Neural networks for inferring PPGs take a sequence of audio fea-
tures (see Section 3.1) at some frame resolution (e.g., ten millisec-
onds) and produce a categorical distribution over phonemes at each
frame. Prior work has not thoroughly investigated what input repre-
sentation maximizes PPG performance. We address this by selecting
a representative, high-performing network architecture and, for each
of a variety of audio input encodings (Section 3.1), train our selected
network architecture to produce PPGs. We compare the resulting
PPGs with each other, as well as other recent speech representations.

Our network architecture consists of an input convolution layer,
five Transformer encoder layers (self-attention and a feed-forward
network) [14], and an output convolution layer that produces a cat-
egorical distribution via softmax activation over 40 phonemes (in-
cluding silence) from the CMU Pronunciation Dictionary phoneme
set 3. We use a kernel size of five for the input and output convolu-
tion layers. Our Transformer layers use two attention heads and 512
channels. For each representation, we selected the number of layers

1Audio examples: maxrmorrison.com/sites/ppgs
2Code: github.com/interactiveaudiolab/ppgs
3speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 1. Pronunciation interpolation and distance | We train a VITS [8] speech synthesizer on our interpretable PPGs and use it for (left)
voice conversion, (center) pronunciation interpolation, and (right) manual phoneme editing. (top) We visualize overlapping PPGs of a
recording of the word ”tomato” (blue) and inferred from the synthesized speech (red). For readability, phoneme rows in the PPGs with
maximum probability < 10% are omitted. The accurate reconstruction of PPGs (magenta) indicates preservation of (potentially edited)
phonetic content in the generated speech. In the center, the input (blue) PPG is interpolated halfway between the left and right PPGs using
SLERP [9]. Note that the reconstruction of interpolating “ey” (left) and “aa” (right) is “ae” or “eh” (center). This is consistent with
interpolating vowels in formant space (F1, F2 - F1) [10] and indicates that one pronunciation can be represented more than one way in a PPG.
(bottom) Pronunciation distances between synthesized speech and the original audio. Our proposed distance (Section 4.1) is more robust to
resynthesis artifacts and accurately captures pronunciation interpolation without a transcript.

and channels via hyperparameter search on a heldout validation par-
tition from Common Voice [15] (Section 3.2). We fixed the number
of channels at 128; trained using 3, 4, 5, and 6 layers; and then fixed
the number of layers at best of these values and trained models with
128, 256, 512, and 1024 channels, selecting the best of these. In the
event of divergence from overparameterization (i.e., gradient confu-
sion [16]), we allow one reload from checkpoint. We find 5 layers
and either 256 (for EnCodec and Mel spectrograms) or 512 (for all
others) channels to be optimal. We use an Adam optimizer [17] with
a learning rate of 2e−4 to optimize categorical cross entropy loss
between predicted and ground truth phoneme categories at each ten
millisecond frame. We train for 200,000 steps using a variable batch
size [18] of up to 150,000 frames per batch.

We synthesize speech by training VITS [8] on each representa-
tion with and without converting to PPGs. We replace the upsam-
pled phoneme features with our representation and concatenate with
pitch inferred with FCNF0++ [19], clipped to 50-550 Hz, evenly
quantized in base-two log-Hz to 256 bins, and embedded in a 64-
dimensional embedding table.

3. EVALUATION

We design our evaluation to answer three questions: (1) What audio
input representation is best for producing accurate PPGs? (Sec-
tions 3.1, 3.3), (2) How good are PPGs at disentangling pitch and
pronunciation? (Section 3.4), and (3) Are our proposed PPGs suit-
able for high-quality speech synthesis? (Section 3.5). We further
perform correlation analysis between framewise accuracy and sub-
jective preference to establish an objective evaluation proxy for
costly subjective evaluation (Figure 3).

3.1. Audio input representations

Representations are computed at a hopsize of ten milliseconds (ms)
and a sample rate of 16,000 Hz, unless otherwise stated. Baseline
neural representations are pretrained using original implementations.
Mel spectrogram [80 channels] | Spectrograms are a common rep-
resentation for speech research tasks. We use log-energy magnitude

spectrograms computed from the raw audio with a window size of
1024 and bin the frequency channels into 80 Mel-spaced bands.
Wav2vec 2.0 [20] [768 channels] | Wav2vec 2.0 is a neural speech
encoder that achieves state-of-the-art ASR Phoneme Error Rate
(PER) when fine-tuned on TIMIT. Wav2vec 2.0 uses a 20 ms hop-
size. We apply nearest neighbors interpolation (which outperforms
linear) to double the number of timesteps to a 10 ms hopsize.
Charsiu [12] [768 channels] | Charsiu appends a convolutional layer
to a pretrained wav2vec 2.0 base model that upsamples from the 20
ms hopsize to a 10 ms hopsize. The wav2vec 2.0 feature encoder is
frozen and the rest of the model is fine-tuned to maximize a categor-
ical cross entropy loss over ground truth derived via grapheme-to-
phoneme and forced alignment [21]. We use the W2V2-FC-10ms
model, which achieves state-of-the-art in forced alignment [12].
ASR bottleneck [3] [144 channels] | This is a pretrained ASR model
with an encoder-decoder architecture. We use the bottleneck features
output by the pretrained encoder, which is also used in voice conver-
sion and TTS for its pronunciation-preserving qualities [4, 6].
EnCodec [22] [128 channels] | EnCodec converts audio into code-
book indices of 32 codebooks—each containing 1024 codes and 128
channels—and then performs an element-wise sum over codebooks.
EnCodec achieves competitive results on low-dimensional, invert-
ible speech representation learning [22] and text-to-speech [11].

3.2. Data

We train on Common Voice 6.1 [15] and perform objective evalu-
ation of phoneme accuracy using a held-out partitions of Common
Voice, as well as the full CMU Arctic [23] and TIMIT [24] datasets.
We use open-source Common Voice alignments produced by Char-
siu [12]. The transcripts for Arctic and TIMIT are phonetically bal-
anced and manually time-aligned. We partition Common Voice into
train/valid/test partitions of proportions 80%/10%/10%. We train
and evaluate our VITS [8] speech synthesizers on VCTK [25].

3.3. Objective evaluation of phoneme accuracy

While PPGs allow a more nuanced representation than discrete
phonemes, any network that infers PPGs from audio should broadly
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Fig. 2. Average framewise phoneme accuracy | Accuracy of PPGs
computed from five input representations. The wav2vec 2.0 [20] in-
put representation has the best PPG accuracy when averaged over all
datasets (see legend). N.B., The base wav2vec 2.0 model of Char-
siu [12] was trained on some of our Common Voice test partition
as well as the TIMIT training partition, making Charsiu’s results on
those datasets unreliable upper bounds.

agree with high-quality, aligned phonetic transcriptions. We perform
objective evaluation to determine the extent to which our PPG rep-
resentations computed from each input representation (Section 3.1)
accurately predict ground truth phoneme categories. We evaluate the
framewise phoneme accuracy, or the proportion of frames where the
ground-truth phoneme is assigned highest probability by the model.
We perform evaluation on our test partition of Common Voice, as
well as all of Arctic and TIMIT. These framewise phoneme accura-
cies are not directly comparable to unaligned connectionst temporal
classification (CTC) phoneme error rates (PER) for ASR [20], nor
framewise accuracies of models trained on heldout speakers and
datasets [26]. Results can be found in Figure 2.

3.4. Objective evaluation of disentanglement

We evaluate disentanglement of pitch and pronunciation by demon-
strating pronunciation invariance when pitch-shifting by ±200 cents.
Given pitch values y and ŷ in Hz, cents is the perceptually linear ra-
tio

∣∣1200 log2(y/ŷ)∣∣; one musical semitone is 100 cents. We use 100
utterances (from 10 speakers; 5 male and 5 female) in the VCTK [25]
dataset and encode each into 10 speech representations: 5 input rep-
resentations (Section 3.1) and 5 corresponding PPG representations
inferred from input representations. We train 10 VITS [8] models—
one for each representation—and use each model to perform synthe-
sis using the 100 selected utterances. We use three error metrics: (1)
pitch error, (2) word error rate (WER), and (3) our proposed PPG-
based pronunciation distance (∆PPG) described in Section 4.1.

We measure pitch error as the average framewise error in cents:
∆¢(y, ŷ) = 1200

|V|
∑

t∈V

∣∣log2(yt/ŷt)∣∣, where y = y1, . . . , yT is the
ground truth frame resolution pitch contour in Hz; ŷ = ŷ1, . . . , ŷT
is the predicted pitch contour in Hz; and V are the time frames
where both the original and re-synthesized speech contain a pitch
(i.e., when the entropy-based periodicity exceeds 0.1625 [19]). We
measure WER as a fraction between zero and one by using Whisper-
V3 [27] to transcribe the generated speech and comparing to ground
truth transcripts.

Results of this objective evaluation are in Table 1. We see Mel
spectrograms and EnCodec fail to pitch-shift due to entanglement,
producing intelligible pronunciation at the original pitch. Wav2vec
2.0 [20] and the Charsiu forced aligner [12] both produce state-of-
the-art disentanglement—outperforming the widely-used ASR bot-
tleneck [3] in pronunciation accuracy. PPGs computed from Mel
spectrograms and EnCodec [22] outperform wav2vec 2.0 and Char-
siu in pitch disentanglement, but with less accurate pronunciation.
Addressing this pronunciation error gap is an important research

∆¢ ↓ WER↓ ∆PPG ↓
Mel spectrogram 207.7 0.0239 0.1063

PPG 56.0 0.0744 0.2014
Wav2vec 2.0 [20] 57.2 0.0244 0.1528

PPG 59.5 0.0910 0.2616
Charsiu [12] 59.2 0.0214 0.1652

PPG 61.8 0.5074 0.5245
ASR bottleneck [3] 55.8 0.0558 0.2026

PPG 65.9 0.2779 0.4164
EnCodec [22] 183.8 0.0260 0.1654

PPG 56.5 0.1018 0.2014

Table 1. Pitch and pronunciation disentanglement | Results are
averages over pitch-shifting down (−200¢) and up (+200¢) using
VITS [8] with either one of our input features or proposed PPG rep-
resentations computed from each input representation.
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Fig. 3. Crowdsourced subjective evaluation results | (top) Recon-
struction quality of speech synthesized from PPGs inferred from five
input representations, as well as high- and low-anchors. White dots
are medians and black dots are means. A Wilcoxon signed-rank test
gives p = 0.02 between original speech and speech reconstructed
using PPGs inferred from EnCodec. Interpretable PPGs inferred
from EnCodec significantly outperform (p < 0.05) PPGs inferred
from all other representations except Mel spectrograms (p = 0.25).

direction, as Charsiu, wav2vec 2.0, and ASR bottleneck are non-
interpretable, use at least an order of magnitude more channels per
frame, and do not enable the properties discussed in Section 4.

3.5. Subjective evaluation of speech synthesis quality

To validate that PPGs allow high-fidelity speech generation, we use
Reproducible Subjective Evaluation (ReSEval) [28] to perform a
subjective listening test in the Multiple Stimuli with Hidden Ref-
erence and Anchor (MUSHRA) [29] format. Each participant per-
forms 10 MUSHRA trials. In each trial, one of the 100 utterances
used in the objective evaluation (Section 3.4) is reconstructed (using
the original pitch contour without pitch-shifting) from PPGs com-
puted from each of the five input representations. The reconstruc-
tions are rated in comparison to each other on a 0-100 quality scale
using a set of sliders. Two references are also included in the com-
parison set: (1) the high-quality original speech audio (the high an-
chor) and (2) a low-quality, 4-bit quantization of the original audio
(the low anchor). We recruited 50 participants on Amazon Mechani-
cal Turk, filtering for US residents with an approval rating of at least
99% and at least 1,000 approved tasks. We paid annotators $3.50
for an estimated 15 minutes of work ($14 per hour). We filtered out
26 annotators that either failed the listening test or rated the low an-
chor (4-bit quantized audio) as higher quality than the high anchor
(original audio). Results are in Figure 3.



4. PROPERTIES OF PHONETIC POSTERIORGRAMS

We discuss additional evidence gathered in this work supporting the
existence of useful and interesting properties of our interpretable
PPG features.

4.1. PPGs encode acoustic pronunciation distance

We propose an interpretable distance measure of framewise pro-
nunciation error. Let G ∈ R|P |×T be a phonetic posteriorgram
on phoneme set P and time frames T , such that Gp,t is the in-
ferred probability that the speech in frame t is phoneme p. By de-
fault, our PPG training is not class-balanced, and some phonemes
are significantly more likely to occur in the dataset (e.g., “aa” oc-
curs far more often than “zh”). To prevent this from imposing bias
on our proposed distance, we train a class-balanced PPG model us-
ing class weights λi = minj Fj/Fi to weight the relative contri-
bution of each phoneme to the training loss, where Fx is the num-
ber of frames where phoneme x is ground truth. We extract from
this class-balanced model an interpretable representation of similar-
ity S ∈ R|P |×|P | between phonemes (Figure 4). Our proposed
acoustic pronunciation distance ∆PPG can be stated as follows.

∆PPG(Gt, Ĝt) = JS(SγGt,SγĜt) (1)

JS is the Jensen-Shannon divergence. We tune γ on our validation
partition to maximize the Pearson correlation with WER. Using the
test data from Table 1 and optimal hyperparameter γ = 1.20, ∆PPG
demonstrates strong Pearson correlation with WER (r = 0.697; n =
2000; p = 1.76× 10−291).

We further inspect the behavior of our proposed phoneme dis-
tance to capture frame-level pronunciation differences during pro-
nunciation editing. We use as a baseline the dynamic time warp-
ing (DTW) between wav2vec 2.0 latents, which has been shown
to outperform spectral-based and transcript-based speech variation
distances [30]. Our audio is already aligned, so we replace DTW
with framewise L2 distance. Figure 1 (bottom) demonstrates the be-
havior of each pronunciation distance during voice conversion (left),
pronunciation interpolation (center), and manual pronunciation edit-
ing (right). While wav2vec 2.0 [20] enables disentanglement (Ta-
ble 1), it fails to detect aligned pronunciation differences captured
by our proposed, interpretable pronunciation distance based on the
JS-divergence between PPGs.

4.2. PPGs enable fine-grained pronunciation control

While prior works have demonstrated that PPGs enable conversion
between accents [7], no prior work has demonstrated interpretable,
fine-grained user control of speech pronunciation. We present the
first such example by demonstrating interpolation between two com-
mon pronunciations of a single word within an utterance (Figure 1;
top). We use spherical linear interpolation (SLERP) [9] for inter-
polating PPGs to maintain a valid distribution. As described in
Section 4.1, we use as pronunciation reconstruction error the JS di-
vergence between the input, interpolated PPG and the corresponding
PPG inferred from the generated audio (Figure 1; top). When trained
to synthesize speech from pitch and interpretable PPGs, models such
as VITS [8] acquire a diverse set of affordances for speech editing,
including existing controls (voice conversion, pitch-shifting, and
singing voice transfer) as well as novel fine-grained pronunciation
control. To further demonstrate the novel pronunciation control en-
abled by interpretable PPGs, we propose two novel types of speech
editing: (1) interpretable accent conversion via regex-based editing

aa
aa

ae
ae

ah
ah

ao
ao

aw
aw

ay
ay

b
b

ch
ch

d
d

dh
dh

eh
eh

er
er

ey
ey

f
f

g
g

hh
hh

ih
ih

iy
iy

jh
jh

k
k

l
l

m
m

n
n

ng
ng

ow
ow

oy
oy

p
p

r
r

s
s

sh
sh

t
t

th
th

uh
uh

uw
uw

v
v

w
w

y
y

z
z

zh
zh

<s
ile

nt
>

<s
ile

nt
>

aaaeahaoawaybchddhehereyfghhihiyjhklmnngowoyprsshtthuhuwvwyzzh<silent> 0.0

0.2

0.4

0.6

0.8

Fig. 4. Acoustic phoneme similarities | Row x column y is Sx,y =
E [λyGy,t;λxGx,t ≥ λzGz,t ∀z], the average class-weighted prob-
ability assigned to phoneme y when phoneme x is the maximum
model prediction. Averages are taken over all frames of our valida-
tion partition of Common Voice [15] using our PPG model trained
with class-balancing on Mel spectrogram inputs. Red boxes show
that the corresponding unvoiced fricative (/f/, /s/, /sh/) to each voiced
fricative (/v/, /z/, /zh/) is assigned relatively high probability, and
vice versa. Class-balanced training and class-weighting are used to
remove column banding indicative of natural phoneme frequency.

of monophone, diphone, and triphone sequences contained in the
PPG and (2) automatic onomatopoeia, in which speech is synthe-
sized to mimic non-speech audio in a target voice. Audio examples
of all of these speech editing controls are on our companion website.

5. CONCLUSION

Phonetic posteriorgrams (PPGs) are time-varying distributions over
phoneme categories that capture fine-grained pronunciation infor-
mation. In this work, we propose an interpretable PPG representa-
tion with competitive pitch disentanglement relative to widely-used,
non-interpretable representations (Contribution 1). We discover
novel properties of interpretable PPGs, such as an acoustic phoneme
distance (Contribution 2) and fine-grained pronunciation control
(Contribution 3). Future work may explore the manifold of valid
interpolations and evaluate our PPGs in downstream tasks such as
accent coaching and mispronunciation detection.
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