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ABSTRACT

Sound Event Annotation and Detection with Less Human Effort

Bongjun Kim

Sound is one of the most important mediums to understand the environment around us.

Identifying a sound event in prerecorded audio (such as a police siren, a dog bark, or a

creaking door in soundscapes) leads to a better understanding of the context where the

sound events occurred. To do so, we record a sound scene, search for sound events of

interest in the recording, determine their time positions (i.e., start and end), and give them

meaningful text labels.

A typical way for a human to find and annotate a sound event of interest in unlabeled

audio recordings is simply to listen to the audio until one hears it and finds accurate onset

and offset of the event. This sound event annotation process is very labor-intensive. My

research goal is to reduce the human effort required for sound event detection and annotation.

In this dissertation, I present methods to speed up the sound event annotation process.

My specific goals are divided into two, in terms of what the annotated data is used for. First,

sound event annotation is essential to quantify the contents of a recorded acoustic scene for

a direct analysis. For this purpose of sound event annotation, I focus on building a system

that helps a user to find sound events of interest and annotate them as quickly as possible.
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Secondly, sound event annotation is also one of the essential steps to provide the training

data needed for building an AI machine that automatically identifies sound events (e.g.,

sound-based surveillance systems). My focus for this situation is to help human annotators

spend less time labeling training data, but still build a high-performance machine learning

model with less annotation effort.

To achieve these goals, I present a human-in-the-loop system for sound event annotation,

I-SED that lets users find sound events of interest roughly twice as fast as manually labeling

the target sounds. Then, I present methods that can solve the problem where query-by-

example search of I-SED could fail if the initially selected region (i.e., a query) contains

multiple sound events. The solution is a new way of improving query-by-example audio

search using user’s vocal imitations (i.e., Imitating what they do or do not want in a query

recording) which would help a user to find target sound events quickly. Finally, I present a

new type of audio labeling, called point labeling, which makes it easier for human annotators

to provide ground truth labels to train a machine learning sound event detection system.

Point labels provide more information than weak labels, but are still faster to collect than

strong labels. I show that a model trained on point-labeled data is comparable to one trained

on the typical type of labeled data, strongly labeled data that is harder to collect.

This dissertation will be a valuable resource for researchers and practitioners who are

looking for new annotation methods under a limited budget. I expect that it will facilitate

the process of sound scene understanding of humans as well as AI systems.
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CHAPTER 1

Introduction

1.1. Background and Motivation

Sound is one of the most important mediums for us to understand the environment

around us. Identifying a sound event (such as a police siren, a dog bark, or a creaking door)

leads to a better understanding of the context where the sound events occurred.

To label sound events, people record a sound scene, search for sound events of interest in

the recording, determine their time positions (i.e., start and end), and give them meaningful

text labels. This task is calledSound event annotation. Figure 1.1 shows an example of

annotated sound events in a recording. Sound event annotation can be applied to many kinds

of audio, for many di�erent purposes. Examples include speech diarization [85], labeling

music recordings by predominant instrument [28], labeling nature recordings with the species

of animals heard in the recording [61, 100], and identifying gunshots in city recordings [104].

Sound event annotation is essential to quantify the sound scene in a recording. Statistics

on annotated sound events are important information to understand an environment and

make a decision for many di�erent tasks. For example, ecologists might want to know when

and how often a bird was signing in an environmental recording to understand bird migration

patterns around the environment. Language pathologists might be interested in how often

and how long their patients are exposed to a certain type of noise sound during a day. To

obtain such information, they need to record audio in a particular environment, search for

sound events of their interest in the recording and label them.
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Figure 1.1. Examples of sound event annotation. Each sound event of interest
is labeled with a text tag and its temporal location within a recording.

Sound identi�cation and annotation of prerecorded audio are also essential for making

searchable audio content in many existing online multimedia (or audio) repositories that

contain a large amount of audio content. This is because it allows us to leverage all the work

done for text-based search and apply it to multimedia search. Example public repositories of

audio include the online music sharing service SoundCloud which contains over 200 million

tracks1, and the online audio sample library FreeSound which contains more than 400,000

audio �les2.

The standard way of searching for audio in these online repositories is text-based search.

People search for audio with descriptive text metadata (text keywords associated with an

audio �le or a sub-portion of the audio �le). However, text-based search is not possible

when there is no tag provided for a relevant portion of the audio content. Machine-assisted

searching for sound events in a lengthy recording (e.g. a 24-hour long recording of a natural

1https://blog.soundcloud.com/2019/02/13/celebrating-the-200-millionth-track-uploaded-to-soundcloud/
2https://blog.freesound.org/?p=942
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Figure 1.2. Typical steps of a supervised machine learning process. Labeling
data is an essential step for training supervised machine learning models. The
performance of a trained model is a�ected by the quality and quantity of
labeled data.

scene) is currently practical only when time-coded labels have been added to the recording.

When this is not the case, then the audio must be annotated �rst.

Sound event annotation is also one of the essential steps for building an AI machine that

automatically identi�es sound events (e.g., sound-based surveillance systems). A typical

approach to building such a system is supervised machine learning. The system learns a

function that maps audio data to a known sound event label so it can predict a label of

a new sound event. Therefore, in order to build such a system using supervised machine

learning, data labeling has to be performed before model training, as shown in Figure 1.2.

Recently, building systems for automatic sound object identi�cation has obtained much

attention from both industry and the research community. They have put signi�cant e�orts

into sound event annotation to foster the development of the AI systems. Every year since

2016, the Detection and Classi�cation of Acoustic Scenes and Events (DCASE) community3

has released annotated datasets for DCASE challenges [72] where researchers can develop and

evaluate computational scene and event analysis methods with the provided public datasets.

Google also has released AudioSet [29] containing a collection of 2 million 10-second sound

clips drawn from YouTube videos with their labels of 632 sound event classes. Sound of New

York City (SONYC) [ 5] is a noise monitoring project where large-scale audio data collection

and labeling have been performed.

3http://dcase.community/
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Figure 1.3. An example of sound event annotation tools: Audacity [64]. A
user can load a label track in addition to an audio track and add a text tag
with its temporal locations (onset and o�set of a sound event).

A typical way to annotate sound events of interest in a recording is to simply listen to

the audio until one hears them and determine the start and stop times of the sound events

(i.e. onset and o�set of an event). For this task, one can use a visual interface where a user

can play an audio recording and add labels of sound events. Figure 1.3 shows an example

of sound event annotation using Audacity, which is an open-source digital audio editor. It

provides a visual annotation environment where a user can select a sub-section of an audio

track and add text-tags to the selected regions.

Labeling sound events of interest in a lengthy audio recording or in a large database of

unlabeled audio �les is a very time-consuming task. For example, one might need to listen

to several seconds of a sound event to �gure out it is the sound of a car passing by. This is

typically much slower than identifying objects in images (e.g., circle the cat in this image).

Images are viewable all at once and it is easy to scan one's eyes in any direction and at

any speed. However, to successfully identify a sound object, one listens start-to-�nish at a
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Figure 1.4. Audio visualization in Audacity: a waveform (the �rst track) and a
magnitude spectrogram (the second track). A waveform represents amplitude
of audio signal over time. A magnitude spectrogram represents how energies
of di�erent frequencies of a sound change over time. Its horizontal dimension
is time, the vertical dimension is frequency. Frequency can be thought of as a
pitch of a sound. The color of each time-frequency point indicates the strength
of the energy at the time-frequency bin. Red means high energy (loud sound),
blue means low energy (quiet sound).

�xed rate. Moreover, marking the exact start and stop times (i.e., onset and o�set ) of a

sound event might require one to listen to certain regions of the recording multiple times

[49]. While many audio annotation tools support a visual representation of audio such as a

waveform and a magnitude spectrogram (see Figure 1.4), it is almost impossible to correctly

identify sound events only by looking at those visual representations of audio. Therefore,

listening to audio is an essential step to fully identify sound events, which makes sound event

annotation labor-intensive.
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Figure 1.5. Magnitude spectrograms of humans couphing (a), laughing (b),
and a mixture of the two.

Identifying sound events and �nding their correct time-boundaries become more di�cult

when multiple sound events are fully overlapped (e.g., a cough is concurrent with television

noise and the sound of a blender). Figure 1.5 shows spectrograms of two overlapping sound

events (coughing and laughing). This is not occlusion. This is a case of simultaneous

overlapped sounds. A visual analog would be observing something through a re
ective glass

window where two overlapping images occur, the one re
ected in the window and the one

visible through the window. Overlapped sounds are far more common than isolated sounds

in the real world and marking the start and stop of sounds that are overlapped may impose

more cognitive load on a human annotator.

This dissertation aims to reduce the human e�ort required for sound event

annotation. To do so, I set up two di�erent goals depending on what the annotated

data is used for. The purpose of sound event annotation can be either to directly use the

annotation to solve a problem or to build machine learning models. One might label audio

to directly quantify sound events of interest in a recording and use the information for a

direct analysis. In this case, the goal is to collect accurate human-labeled data quickly.

Alternatively, one might annotate audio as a precursor to training a machine learning model
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for automatic sound recognition. In this situation, the goal is to build a high-performance

machine learning model with less human annotation e�ort.

1.2. Problem Statement

As mentioned in the previous section, a typical way for a human to annotate a sound

event in an audio recording is simply to listen to the audio until one hears it. Done this

way, human e�ort for annotation would linearly increase with the amount of audio one needs

to listen. In this section, I address this problem in more detail by examining two di�erent

scenarios depending on what the annotated data is used for: 1) quantifying sound scenes for

a direct analysis which requires very accurate labels, 2) building a machine learning model

on the annotated audio data.

1.2.1. Problems with collecting ground-truth labels for direct analysis

Imagine you are a language pathologist and trying to analyze the relationship between chil-

dren's language development and their listening environment. You collect days of audio �les

recorded from a wearable microphone installed on a patient. You listen to the audio tracks

and found an interesting class of sound events (e.g. their mother speaking to them) which

might a�ect children's language development. It occurs repeatedly in their days of record-

ings. Now you are interested in how often and when the sound event occurred. This requires

�nding all the temporal locations of this class of sound events within the recordings.

Searching through lengthy audio �les manually is very time consuming and a natural

thought is to automate the process. One can build a machine to automatically identify var-

ious sound events and let the machine perform the annotation task. However, the typical

approach to building automatic sound recognition systems uses supervised machine learning
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algorithms that still require annotated training audio data. Examples include neural net-

works [81, 38], Gaussian Mixture Models (GMM) [109], decision trees [60] and Support

Vector Machines (SVM) [84]. While, as mentioned in the previous section, there are public

datasets available (e.g., DCASE dataset, AudioSet), these datasets do not cover every ar-

bitrary class of sound events (e.g., a particular children's mother speaking to them). If the

existing repositories do not contain labeled sound events of current interest, we cannot build

a machine to identify the sound events. This problem remains the same even when one uses

pre-trained models to annotate audio or automatic annotation tools because the models or

tools have been built to detect a �nite set of pre-de�ned sound classes. It might be di�cult

for one to collect enough training examples of the sound class that you just found interesting.

Moreover, automatic annotation is not the best solution when you need to make sure

all the collected sound events are labeled with correct class names and accurate onset and

o�set (i.e., human expert-level accuracy of labeling). There is still a gap between human

and machine abilities to identify sound events. For example, the top-ranked audio tagging

system in the recent DCASE challenge task54 produces predicted labels that diverge from

the human-generated labels by an F-score of 0.26 on the DCASE challenge dataset containing

8 di�erent classes.

The scenario and problems described above show us that there are situations where

manual audio search is required. However, even though manual sound event annotation

by human experts leads to more accurate results than using automatic detection systems,

hand-labeling events in recordings is prohibitively labor-intensive. For example, to monitor

how long a patient was exposed to a certain type of a sound event during a day, one needs to

listen to 24 hours of audio. Typically, this would take more than 24 hours to label. Although

4http://dcase.community/challenge2019/task-urban-sound-tagging
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one could listen to a recording at higher playback speed (e.g., 2x or 3x), it might make it

harder to �nd accurate time boundaries of an event which often requires repeated listening

to a small-time region in a recording [49]. In this dissertation, I present new methods

to speed up human's searching for a set of sound events of interest in an audio

recording when there are too few labeled examples (e.g., one) of the sound class

to train a state-of-the-art machine audio labeling system.

1.2.2. Problems with building automatic sound event detection systems

Imagine you are working on building an automatic noise monitor device for environmental

sounds, as is being done in New York University's Sound of New York City (SONYC) project

[5]. You try to analyze what kind of noises occur by day and by night. You have a list of

noise sources which could happen near your place and a set of recordings collected from

YouTube videos and microphones installed in front of your house. Now you want to build a

machine learning model to automatically detect sound events of the pre-de�ned classes. The

typical approach to training automatic sound event detection systems is supervised machine

learning which requires annotated training data. So you need to label the collected audio

data to use them as training dataset.

For a supervised machine learning model to be maximally e�ective at detecting sound

events with their onset/o�set times within a recording, they need to be trained on audio

data with time-coded labels that indicate the start and stop times of sound events (strongly

labeled data). Training examples without time-information of sound events will generate

noisy training signal, thus they will prevent models from learning accurate mappings between

sound events and the ground-truth labels. The problem is that manually annotating each

sound's onset and o�set within a recording is a very time-consuming task. It often requires
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repeated listening and adjusting of label time boundaries on a visual interface [49]. Moreover,

building high-performance machine learning models usually requires lots of training data (e.g.

tens of thousands of labeled audio �les). This imposes a large burden on human annotators.

In this dissertation, I present a new type of sound event labeling that requires

less human annotation cost as well as a new way of training supervised machine

learning models with the new labels.

1.3. Summary of Contribution

In this section, I summarize the main contributions of my dissertation. Chapter 2 and 3

contain methods to speed up sound search for sound even annotation. Chapter 4 introduces

a new type of labelingpoint-labeling that requires much less annotation e�ort than collecting

strong labels, and present methods to train a sound event detection model using point-labeled

audio data.

1.3.1. Contribution in Chapter 2

I present a new human-in-the-loop sound search method to speed up human

annotation of a recording. It leverages machine learning's ability to learn from human-

provided examples not to replace a human annotator, but to speed up human annotator. The

human-in-the-loop search method helps a user look at promising regions �rst in a recording,

enabling the user to �nd a set of sound events of interest very quickly not listening to the

entire recording. To evaluate the method, I built a human-in-the-loop interface for sound

event annotation, called Interactive Sound Event Detector (I-SED) where the annotation is

performed by a collaboration between a user and a machine. The user study shows that

I-SED helps users label target sound events twice as fast as labeling them manually.
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I-SED is the �rst general-purpose sound labeling interface where an interactive machine

learning approach is applied to sound event annotation. This method can be used in any

situation where ground-truth sound event labels are required. I also present an in-depth

study about how to evaluate the human-in-the-loop interface. I believe the study can be

a useful reference to one who needs to evaluate the human-in-the-loop system where both

machine's performance and human's ability can a�ect the system's overall performance.

My works in Chapter 2 have been published in the Transaction on Interactive Intelligent

System (TiiS) [49] and presented at ACM conference on Interactive User Interface (IUI)

[48].

1.3.2. Contribution in Chapter 3

I present a new method for a user to improve Query-By-Example audio retrieval

which would potentially speed up the interactive annotation process presented in Chapter

2. The method solves the situation where a machine's searching for promising regions in

the audio is confused by overlapping sound in a query which leads to poor retrieval results

during early stages of the interactive annotation.

The method utilizes users' vocal imitation. Users can improve the search results simply

by imitating the sound events they do or do not want. It is a new approach for a user

to provide an audio search system with additional audio examples as positive and negative

feedback. The interaction is useful especially when prerecorded examples of each isolated

sound event in a query are not available. It is often hard to �nd a recording that sounds the

same as an isolated sound event in a query containing overlapping sound. To implement the

interaction, I present ways of using an existing deep neural network model for generating

audio embeddings to create a similarity measure for Query-By-Vocal imitation (QBV) search.
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To evaluate the e�ectiveness of vocal imitation in content-based audio search, I created

Vocal Imitation Set, a new crowd-sourced vocal imitation dataset. Vocal Imitation Set is

the �rst dataset of vocal imitations that uses a widely-used ontology, AudioSet ontology [29]

and it has more than double the number of imitations available in existing vocal imitation

datasets [17].

My works in Chapter 3 have been presented at IEEE conference on Acoustics, Speech

and Signal Processing (ICASSP) [50] and the Workshop on Detection and Classi�cation of

Acoustic Scenes and Events (DCASE) [47].

1.3.3. Contribution in Chapter 4

I present a new type of sound event labeling, Point labeling that can be obtained

with less human e�ort as well as a new method to build a sound event detection

system on point-labeled audio data. Point labels contain names of sound events at a

single time point per sound event instance in a recording. A human annotator can indicate

a sound occurred (e.g., by clicking a mouse button or hitting a key) anywhere within the

area of the sound event. Therefore, point-labeling is much faster thanstrong-labeling(i.e.,

labeling with accurate time-boundaries of a sound event) and better thanweak-labeling(i.e.,

labeling without any time information). I also present a method to automatically make point

labels competitive with strong labels by bootstrapping from weak labels. It helps to build

a SED system with point-labeled data that is comparable to one built on strongly labeled

data.

I evaluate the e�cacy of point labels for building a sound event detection system us-

ing the proposed training method. The experiment results show that a model trained on

point labeled audio data is comparable to a model trained on data labeled with correct
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time-boundaries of sound events (i.e., strongly labeled data). Therefore, I believe that the

proposed methods will allow us to build a high-performance machine annotation system with

much less human labeling cost.

My works in Chapter 4 have been presented at IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA) [51].

Supplementary materials for each chapter such as audio examples, demo videos, or codes

for experiments are available athttps://github.com/bongjun/thesis .

1.4. Broader Impact

The proposed methods are applicable in any �eld that needs to search and label sounds.

Sound designers might want to search for sound e�ects of interest in a database or a long

audio recording quickly. Ecologists need tools for labeling bird calls and singing in lengthy

recordings. Language pathologists are also interested in audio searching tools to �nd sound

events that would a�ect children's language development in an audio �le where their everyday

life is recorded.

The proposed work would also help people working on citizen science for sound object

labeling such as the SONYC project [5] where crowd-workers are asked to annotate sound

events in a recording to be used to build noise monitoring systems. The research in this

dissertation on the new sound event labeling (i.e. point-labeling) and the proposed model

training method will make it possible to generate enough labeled data for a statistical ma-

chine learner to be trained in cases where it is currently prohibitive to label enough data by

hand. This will eventually increase the range of sound-objects that could be automatically

identi�ed by AI systems.
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In addition to audio annotation, the proposed methods can be applied to video data.

Researchers who study animal behavior might need to annotate video data quickly to build a

system for automatically computing quantitative measures of animal behavior [43]. It is also

very time-consuming to label video scenes to train a machine learning model for computer

vision tasks such as visual event detection [115, 74]. The proposed model training method

on point-labeled data will reduce such annotation e�orts.

Finally, the proposed point-labeling is a new audio labeling method that has not been ad-

dressed in any of sound event detection literature. In this dissertation, I provide the evidence

that models trained on point-label data outperform models on weakly-labeled data. There-

fore, I expect that my works on point labeling will open new opportunities to researchers

who have been working on an audio detection model with weak supervision.
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CHAPTER 2

A human-in-the-loop system for sound event annotation

2.1. Introduction

In this chapter, I address sound event labeling tasks that fall in a middle ground: there is

too much audio to be practically labeled by hand, yet there are too few training examples to

train an accurate statistical model. I want to develop an e�cient way to achieve human-level

labeling accuracy with much less human e�ort than is typical for manual audio annotation.

I note that my primary goal in this chapter is to speed the labeling task at hand, rather

than to train a generalized machine learning model for later use on di�erent data.

To achieve the goal, I apply a human-in-the-loop approach to sound event detection and

annotation. The idea is to engage users in an interactive process [102] to collaboratively label

the audio with the machine. Human-in-the-loop machine learning is a technique that has

received attention recently as one approach to resolving limits of fully automated systems. It

has been applied in many areas, such as image retrieval and identi�cation systems [102, 12,

110], image foreground extraction [90], image object labeling systems [92], biomedical image

recognition [116], natural language processing [97], Network Alarm Triage [2], interactive

visualization for machine learning [101], musical performance [26, 25], and audio source

separation [78, 11, 24].

In this chapter, I present a new human-in-the-loop sound search method to speed up

sound event annotation in a recording. The system directs the user's attention to the most

promising regions of audio for labeling. The user labels these regions and gives the system
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feedback by labeling and adjusting region boundaries. The system learns from this feedback

and updates future recommendations for high-interest regions.

To assess the e�ectiveness of the proposed method for sound event annotation task, I

build an audio annotation tool calledInteractive Sound Event Detector (I-SED)and perform

a human subject study with potential users of the tool. In the experiments, I evaluate how

much the proposed tool speeds up sound event annotation tasks. The results show that

my approach helped the experimental participants label target sound events twice as fast

as labeling them manually. I also present a method to quantitatively assess the system's

retrieval performance and the interaction overhead separately, as these are two key factors

that determine the performance of a human-in-the-loop system. The analysis shows that

an ideal interface that does not have interaction overhead at all could speed labeling by as

much as a factor of four.

The contributions of my works in this chapter are the following:

� A new human-in-the-loop sound search method which greatly reduces sound event

annotation time

� The �rst general-purpose sound annotation interface where interactive machine

learning is applied

� Qualitative and quantitative evaluation of the proposed interface.

� Evaluating the interactive overhead caused by the human-machine collaboration.

2.2. Related works

2.2.1. A human-in-the-loop system for multimedia retrieval and annotation

A common approach to labeling large amounts of multimedia data is through crowd-sourcing

[15, 106, 108] where a small amount of data to label is assigned to a crowd-worker with
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web-based annotation interfaces. Even though crowd-sourcing annotation is a great way

to collect large scale labeled audio data quickly, it is not appropriate in a situation where

the audio data should be annotated very accurately by domain experts or must not be

distributed in public, such as audio recordings of patients for clinical purposes or costumer's

private conversation with AI agent (e.g., Apple's Siri or Amazon's Alexa). In this chapter

of my dissertation, I focus on the case where a very accurate annotation is required and

crowd-sourcing is not an appropriate solution.

Interactive learning frameworks that depend on users' relevance feedback have been ac-

tively researched in image retrieval.CueFlik [27] is a web image search application that

allows users to create and adjust rules for concepts (e.g. portraits of people) by providing

the machine with positive and negative examples. The user feedback iteratively updates the

rules to obtain more accurate image search results. Their interactive approach is aimed at

training the best classi�er to retrieve images relevant to a query. My goal is to completely

label the audio easily and quickly.

In general, interactive image annotation/retrieval systems provide a user interface where

a user can look at sets of images and give the system feedback by clicking the images [1] or

selecting sub-regions of the images [12, 105]. The interface design for my sound detection

tool focuses on directing the user's attention to promising sub-sections (i.e. the machine's

recommendations) of a long audio track for labeling.

2.2.2. Existing sound annotation tools

Several audio editing applications such asAudacity [64] and Sonic Visualizer [14] provide

an annotation environment where a user manually selects a sub-section of an audio track

and labels it. Audio-annotator[18] and BAT [71] is a web-based audio annotation interface
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for crowd-souring which also provides the manual annotation environment.Sonic Visualizer,

AudioSculpt [8], Audio Brush [10], ASAnnoatation [9], and Praat [7] also provide low-level

feature information (e.g. pitch content, repeated structure labeling) by using audio signal

processing techniques, but they do not use high-level semantic labels (e.g. Bob's voice) and

do not allow user-de�ned labels.

TotalRecall [56] is a semi-automatic multimedia annotation tool. It automatically detects

speech regions on an audio track (speech or non-speech) for audio segments. It helps a user

to �nd speech sections of an audio track easily, but is hard-coded to �nd speech and cannot

be on-the-
y re-purposed for detecting other kinds of events.

SoundsLike[32] is a tool to detect user-selected sound events in a movie. It provides a

similarity graph that visualizes which audio segments are similar to the user-selected segment

as an aid for easier navigation. The system does not update its similarity estimates based

on user feedback. Therefore, if the system thinks two segments are similar and the user

doesn't, there is no way to correct the system. They also did not evaluate how much the

similarity graph helps the annotation process. Finally, the interface does not provide any

machine prediction to speed up the labeling process.

Gulluni [33] suggested an interactive approach to analyze electro-acoustic music by in-

teractive machine/human labeling of sound objects within a music track. While Gulluni's

system does not allow a user to change the boundaries of segmented regions, my system

utilizes boundary adjustment of segments as user feedback to retrain a model. Moreover,

their approach uses clustering techniques that require a user to listen to the audio multiple

times to determine the best segmentation level. Multiple listenings can be problematic for

long audio �les (hours long). They also did not conduct human subject studies to evaluate

the e�ectiveness of the system and only tested their system in simulation. In contrast, I
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performed a human-subject study where participants used the proposed tool and a man-

ual editor to label audio, letting us observe the e�ectiveness of my approach for speeding

labeling.

Nakano et al. [76] presented an interactive annotation interface for music. It helps a user

to label pitch contour of a vocal sound in music quickly. Once a user annotates pitch contour

of a vocal sound in a section of music, the system shows pitch contour estimation in other

sections that are similar to the user-edited section. Then, the user can accept or edit the ma-

chine's suggestion. Similar sections are detected by using repeated structure of music. While

the annotation in their interface is performed by human-machine interaction, their method is

fundamentally di�erent from my work where a machine learning model for detecting target

sound events gets improved during rounds of the human-machine collaboration.

2.3. Interactive sound event detection and annotation

In this section, I describe my sound event annotation system that lets a single user greatly

reduce the time required to label audio that is tediously long for a human (e.g. 20 hours),

has target sounds that are sparsely distributed throughout a long duration recording (10%

or less of the audio contains the target), and has too few prior labeled examples (e.g. one)

to train a state-of-the-art machine audio labeling system.

2.3.1. System overview

Figure 2.1 shows how the proposed system works with the user to label target sound events.

First, a user uploads an audio track into the system and provides an example of the kind of

sound they seek (e.g. someone knocking on a door). This can be done either by selecting a

region on the audio track containing a good example sound or by uploading a short example
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Figure 2.1. System overview of the human-in-the-loop sound event annotation.

audio �le containing an example target sound (e.g. someone knocking on a door). Note that

the goal is not to �nd exact copies of the target sound in the audio �le to be labeled. The

goal is to �nd other sounds of the same category (e.g. other door knocking sounds) in the

audio �le.

The system segments the track into small regions whose length is the same as the initial

example and measures features of the audio �le (see Section 2.3.2). It then �nds then

regions with features most similar to the example and directs user attention to them by

showing them as candidates. The user labels the candidate regions as positive or negative

(see Section 2.3.4), and adjusts the start/stop times of positive examples. Based on this user

feedback, the importance of audio features is re-weighted to move positive examples closer

together and further from the negative examples. Given this new feature space, the system

selects a new set ofn relevant regions (see Section 2.3.3) for the user to evaluate. This
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process of selecting candidate regions for human evaluation is repeated for some number of

rounds. As more examples are labeled by the user and the features are re-weighted every

round, the system's ability to suggest good regions improves.

Active Learning [96] refers to the case where the learner selects the examples to learn

from, rather than passively receiving examples chosen by the teacher. This interaction

between the user and the system can be thought of as a kind of active learning where

the system is learning the feature weights for audio examples by presenting the unlabeled

segments it currently estimates to be most similar to the set of positively labeled segments.

The system shows the user the topn results and not the most ambiguous examples because

our purpose is to help the user complete the annotation quickly by directing their attention

to high-likelihood regions, not to train a machine learning model to �ne-tune a decision

boundary. When one has a long audio �le and only a few target examples, showing the topn

results lets users label them more quickly. This is a better strategy to speed up the labeling

task at hand.

2.3.2. Segmentation and feature extraction

Once a user provides the initial example to the system (e.g. a 3-second region containing

a bird call), the entire track is split into segments whose length is the same as the length

of the initial example (e.g. 3 seconds). In the initial phase, all segments have the same

length. However, once the user starts labeling the suggested regions, the length of user-

labeled segments will vary, because the user is allowed to adjust boundaries of the regions.

Given the possibility of varied-length segments, we need a way to measure the distance

between segments, regardless of segment length.
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Figure 2.2. Audio feature extraction for all segments of an audio �le. MFCCs
are extracted frame-wise and pooled over each segment using the means and
variances of both the instantaneous and delta values.

To measure distances between the segments including the initial example, audio features

are extracted over each �xed-length segment. Our system extracts the �rst 13 Mel Frequency

Cepstral Coe�cients (MFCCs). MFCCs are widely used in a variety of sound recognition

tasks [82]. As shown in Figure 2.2, each segment is split into a sequence of short frames (e.g.

a frame-size of 90ms with 50% overlap between adjacent frames) and MFCCs are computed

on each frame. The MFCC Features extracted frame-wise are pooled over each segment (e.g.

3 seconds) using mean and variance of instantaneous and delta values. The delta values

are the di�erence between feature values of two consecutive frames. These represent basic

temporal characteristics of the feature vectors in one segment. As a result, a 52-dimensional

feature vector is built for each segment (13 MFCC averages, 13 MFCC variances, 13 MFCC
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average delta, 13 MFCC average delta variance). Using this feature extraction method,

varied length segments can be represented as a �xed-length of vector (i.e. 52 dimensions) so

that distances between the segments are easily measured in the feature space.

2.3.3. Relevance score

In each round, the system measures the distance between each unlabeled segment and the set

of positively labeled segments (initially, this set contains only the original target example).

Using this distance, it ranks them by decreasing level of relevance, and presents the top

n segments to a user. To compute the relevance score, I apply a simple nearest neighbor

method [31]. The relevance score of an unlabeled audio segments can be computed as

(2.1) Rel(s) =
d(s; sn )

d(s; sn ) + d(s; sp)

wheresp is the nearest positively-labeled segment tos and sn is the nearest negatively-labeled

segment tos. Function d(a; b) is the weighted Euclidean distance between two segments in

the feature space. When there is no negative segment (there is always at least one positive

example, which is the initial query), the relevance score is computed as

(2.2) Rel(s) =
1

d(s; sp)
if jnegj = 0;

wherejnegj means the number of negative segments.

To obtain a more accurate relevance score in each round, the system re-weights features

using Fisher's criterion [112]. The weight of i th feature is computed as

(2.3) w(i ) =
(avg(f p

i ) � avg(f n
i ))2

std(f p
i )2 + std(f n

i )2
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where f p
i and f n

i are vectors whose elements arei th feature values in the 52 dimensional

(MFCC-based) feature vectors of all positive and negative examples respectively.avg(x)

and std(x) indicate the mean and standard deviation of elements in a vectorx.

As the i-th feature contributes more to better discrimination between positive and neg-

ative examples, its Fisher score will increase. The system re-weights each feature with the

Fisher score based on the current labeled segments (positive and negative) in each round and

the relevance scores (eq. (2.1)) over all segments are computed in the updated feature space.

I expect that as more labeled segments are collected, the relevance score would become more

accurate.

2.3.4. User relevance feedback

The system presentsn segments to be labeled every round and the user adjusts segment

boundaries and labels them. Labeling segments plays an important role as feedback for the

future rounds because the machine's suggestions for each round depend on the user feedback

in past rounds.

A user can provide two types of feedback to the system, as shown in Figure 2.3. One is

to apply positive or negative labels to each candidate example. This type of feedback has

been widely used in interactive image retrieval systems [111]. The other type is to adjust

boundaries of the suggested region when the region does not cover the whole duration of

a target sound event. This type of feedback is typically not used in document or image

retrieval systems, but is useful for improving retrieval of regions of audio �les.

The system automatically collects additional negative examples from the user's boundary

adjustments. As shown in Figure 2.4, for example, suppose the user changes the position of

the region (A) and labels it as positive. In this case, the system can obtain not only one
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Figure 2.3. As feedback, a user labels regions positive(blue)/negative(red), or
changes the time position and size.

Figure 2.4. The region A and C (gray) are the machine's suggestions. A user
listened to them, changed the temporal location of A and adjust boundaries
of C, and labeled them positive (A* and C*). Then the system automatically
labels the region B and D as negative since it is clear that they do not contain
the target sound events.

positive example, but also one negative example which is the region (B) that the user did

not select after listening to it. In the same way, adjusting boundaries of region (C) generates

negative examples (D). This automatic negative labeling is bene�cial in two ways: 1) A user

implicitly labels more regions in one iteration, speeding interaction, and 2) Since our system

presents the most relevant examples to a user every round, the pool of labeled examples tends

to skew towards positive, which could make measuring relevance score problematic. There-

fore, adding negative examples automatically helps in computing more accurate relevance

scores of unlabeled examples.
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2.4. Interface design and implementation

I implemented a web-based interactive annotator and Figure 2.5 shows its main workspace.

Readers can watch the demo video and try the application out athttp://www.bongjunkim.

com/ised/ . It consists of these main sections:Navigation Map, Annotation Track, Listen

and Label These, and Already Labeled. The Navigation Map displays a waveform of an entire

track and the currently labeled regions so that a user navigates and listens to them easily.

The Annotation Track is a zoomed-in version ofNavigation Map where a user can select or

adjust regions and label them by clicking and dragging a mouse. TheListen and Label These

displays the top n candidate regions identi�ed by the machine. These are to be labeled by

the user every round.

Figure 2.6 describes how a user performs the labeling task in each round. The user listens

to new regions by clicking the items in theListen and Label Thesesection. If a region does

not contain an example of the target sound class, the user labels it as negative by clicking

the Negative button. If the region has the target sound, the user �rst adjusts boundaries

of the region so that it fully covers one instance of the target sound class and labels it as

positive by clicking the Positive button. The user labels all the regions in each round and

clicks on theFind Similar Regions button to submit the feedback to the system and obtain

a new set of candidate regions from the system.

The Already Labeledsection shows regions labeled positive during past rounds. A user

can listen to them by clicking each item in the list. Clicking on theExport Resultsbutton

saves the annotation results to a text �le containing start and stop times of all positive

regions.
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Figure 2.5. Screenshot of the interactive sound annotator.

2.5. Evaluation

I conducted a user study to validate the e�ectiveness of the proposed interactive an-

notation approach compared to manual annotation. The experiment seeks to answer the

following questions:

� Which interface enables participants to label the given audio track faster?

� How accurately did participants label the target sound events using each interface?
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Figure 2.6. User interaction 
owchart of the interactive annotator.

� How satis�ed are participants with each interface?

� Do participants prefer the proposed interactive annotation to manual annotation?

� What user-interface overhead does the interactive annotation approach impose, com-

pared to manual annotation?

2.5.1. The two interfaces compared in the study

The two interfaces I compared were the proposed interactive annotator and a manual an-

notator, similar to the standard interfaces currently used for manual annotation. In the

interactive annotation tasks, a participant submits a �le containing an initial target sound

event to the system, and then the system presents the �ve most relevant regions to the user

at each round. If the participant thinks a suggested region contains the target sound events,

the participant labels it as positive. If the suggested region contains only some portion of
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the target sound, the participant adjusts the position of the candidate regions and labels

it as positive. If it does not contain the target sound at all, it is labeled as negative. The

participant keeps labeling in this manner for the given amount of time in each task (15

minutes).

In the manual annotation tasks, participants use an identical interface to the interactive

annotator, except for the removal of the recommendations from the system. They �nd target

events by listening to the track sequentially (from the beginning to the end) or accessing any

time position on the track. If they �nd the target sound event, they drag a mouse over the

region containing the target sound. They keep �nding as many sound events as they can for

the given amount of time in a task (i.e. 15 minutes).

Both interfaces also provided a control for the user to adjust playback speed (1x, 2x,

and 3x). Speeding playback is an alternative way to speed up the search that is commonly

available in many multimedia players or annotators such asYoutube, Quicktime Player, or

Audacity. It is also known that increasing up to double rate produces no signi�cant loss in

comprehension of speech, but higher playback rate produces a loss in comprehension [77].

To navigate an audio track, one might use a scrubbing function that is available in

modern Digital Audio Workstaion (DAWs), where a user drags a cursor on a waveform and

the audio samples the cursor is passing by are played. In the interfaces for this experiment,

the scrubbing feature was not provided because it is mostly useful to �nd a precise spot

where sound characteristics dramatically change (e.g. silence between noisy sections), and

is not useful for recognizing relatively short sound events overlapping each other in a long

audio track, therefore I did not include a scrubbing feature in either interface. By decreasing

the chance a user makes mistake with the scrubbing feature and takes more time, I can more

fairly evaluate the e�cacy of the interactive annotation against the manual annotation.
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2.5.2. The audio dataset

To evaluate our system, I used the dataset from the IEEE Audio and Acoustic Signal Pro-

cessing Technical Committee challenge on Detection and Classi�cation of Acoustic Scenes

and Events (DCASE) [99]. The DCASE dataset is one of a few public datasets for compu-

tational analysis of sound events and scene analysis. Moreover, since it has been used in a

public challenge, it is well-designed enough to test submitted algorithms properly in various

situations. Using a public dataset also allows future systems to compare to our approach

under the same conditions.

To generate testing tracks for this experiments, I chose �les used for the O�ce Synthetic

(OS) Event Detection Task of the DCASE challenge.1 These consist of two-minute duration

mono recordings of sequences containing overlapping acoustic events in an o�ce environment

(e.g. coughing, drawer, door knock, speech, etc.).

I anticipate 10 minutes as the minimal length of track where someone might wish to

speed search. Therefore, I created two di�erent 12 minute-long audio tracks by concate-

nating six short tracks in the DCASE dataset to create each track. Each track contains 11

di�erent sound classes with 18 examples of each class on the track. All sound events are

randomly distributed over a track. The two tracks, while containing similar sound events,

order these events di�erently. This prevents learning ordering details of one track in
uencing

performance on the other.

The sound classes in the two tracks include the following 11 sound events:door knock,

door slam, speech, human laughter, clearing throat, coughing, drawer, keyboard typing, keys,

phone ringing, page turning. The DCASE dataset provides audio �les with three di�erent

1http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-synthetic-audio
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levels (-6, 0 and 6 dB) of the average Signal-to-Noise Ratio (SNR) of events over the back-

ground texture. Readers can �nd more detailed information about the dataset in [99]. I

chose audio �les with -6 dB SNR (i.e. the target sound is 6 dB softer than intruding back-

ground noises) when generating the testing tracks. This reduces the chances that users could

obtain additional information about the sound events by looking at the shape of waveform

displayed on the screen, as the waveform is not noticeably larger when the target sound

class is present if the target class is 6 dB softer than the background. It also makes the

problem more challenging for the machine recommender system, as sounds softer than the

background noise are more di�cult for automated systems to detect.

The summed total time that all of the instances of the target class take up in a track

is roughly 4% of the entire length of the track. The density of target events and distractor

events are roughly 1.5 and 15 (events per min). The average inter-onset-intervals of the 18

examples of a sound class is 38 seconds. Since environmental recordings are usually long

and have many di�erent kinds of sound events happening in our everyday life, I believe that

the generated audio tracks, which have sparsely distributed sound events of each class, are

appropriate to evaluate the proposed sound annotator.

2.5.3. Participant recruiting

The target users of the proposed tool are people who need to �nd and label sound events

within an audio track for their research activities. These groups of users include speech

and language pathologists, who need to analyze relationships between children's language

development and their listening environment by recording their everyday life. Another group

of potential users are researchers who study machine listening, since building an automated

sound event labeler with supervised machine learning usually requires a number of correctly
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labeled audio examples of various sound classes as training data. Therefore, I recruited people

who study speech and language development or machine learning in the audio domain. I also

recruited people who have experienced audio editing or labeling software. Even if people in

this group may not be the main target user group, I believe they are appropriate subjects

to validate the e�cacy of the proposed system against manual annotation, since they are

familiar with critical listening to audio recordings.

To ensure participants capable of recognizing sound events for the experiments, I per-

formed a hearing pre-test. Participants were given a labeled target sound event to listen

to (e.g. speech) and 10 di�erent sound events (3 speech events and 7 other events) were

presented. They were asked to select all sound events that belong to the same label as the

target sound (e.g. speech) and they had to correctly label all target sound events to pass

the test. I performed the hearing test twice per subject with two di�erent target sounds (i.e.

speech and door knock). These were the target sound classes used in the actual annotation

tasks. This let the listening test also implicitly train participants on the range of variation

to expect for target sounds in the actual tasks.

I did not limit gender and age of participants as long as they belong to the target

group mentioned above, but all recruited subjects were over 18, since I recruited people

who have experienced at least college-level research activities related sound (e.g. speech and

hearing, machine listening). Subjects' native language did not matter as long as they could

understand the experimental instructions written in English. In total, 20 subjects who met

all requirements were recruited and each subject performed two annotation tasks using two

di�erent interfaces. All sessions were conducted using a desktop computer and headphones

in a quiet room.
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2.5.4. Task procedure

Each subject participated in one session. One session included a hearing test, training on

the interfaces, two annotation tasks (one on the proposed interface and one on the manual

interface) and survey questions about their experience. Each session lasted about one hour.

To reduce the chances that the order of presentation of interfaces would in
uence the

results, half of the participants tested the proposed interface �rst and the other half tested

the manual interface �rst. As with interfaces, half of the participants were presented Task

1 (the �rst audio �le) �rst, and half were presented Task 2 (the second audio �le) �rst. As

a result, 20 participants were divided into 4 groups so that task and interface order was

balanced:

� Group1: Manual, Task 1! Interactive , Task 2

� Group2: Manual, Task 2! Interactive, Task 1

� Group3: Interactive, Task 1! Manual, Task 2

� Group4: Interactive, Task 2! Manual, Task 1

I selected two di�erent sound types for users to detect: one from physical objects,door

knock and the other from human voice,human speech. Thus, participants labeleddoor knock

in Task 1 and human speechin Task 2. These sounds were selected to be quite di�erent

from each other, as human speech is complex, varied and harmonic, while door knocks are

transient, percussive sounds. I hypothesized that there might be di�erences in how good the

system recommendations would prove for these qualitative di�erent sounds.

Each task includes a training session for a subject to learn how to label audio using

each interface. In the training session, participants were given the exact same task as in the

testing phase, except for the recording to be labeled. For training, I chose a two-minute long



49

recording from another DCASE challenge dataset. It contains 15 classes of sound events

(including speech and door knock sound) recorded in an o�ce environment. Participants

were required to spend at least 4 minutes practicing the labeling task. If they wanted

to practice more, they were allowed to practice the labeling task as long as desired. No

participant, however, chose to spend more than 4 minutes on training. Participants were

also allowed to ask any questions about the task and the interface during and after the

training session.

For each task, participants were asked to �nd as many regions containing the target

sound class (e.g. door knock) as they could within 15 minutes. I believe that 15 minutes are

enough for a user to label a 12-minutes long audio track even when they listen to the entire

track sequentially from the beginning to the end. For the interactive annotator, an example

target sound �le was provided for the user to submit to the system as the initial query, which

is one of two ways of submitting an initial query to the interactive annotator as described

in Section 2.3.1. The reason I chose the method is because I only wanted to measure the

bene�ts of the interactive loop against the manual method. Time that users would spend

�nding the �rst query in audio to be labeled would vary depending on the position of the

target sound on the audio track and how they search for it. The initial query given to users

is not one of the 18 examples of the target classes on the audio track. Therefore, regardless

of which interface (manual or interactive) was used, each participant was given 18 examples

to label in each task.

After each task, the participant was asked to identify their level of agreement with the

following statements:

� I had a clear understanding of the task.

� I understood how to use this interface to achieve the given goal.
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� I was satis�ed with using this interface.

� I was able to label target sound events easily.

To do this, the participant was given a slider for each question that was labeled as ranging

from strongly disagree (O) to strongly agree (1). After the entire session (both sound labeling

tasks) was done, participants were asked a set of questions comparing the two interfaces:

� Which interface was easier to use?

� Which interface was easier to learn?

Additionally, they were provided a free-form comment box where they could leave any

feedback about interfaces or tasks.

2.5.5. Performance measures

The machine's role in the proposed system is to direct the human's attention to the most

likely portions of the audio, not to determine whether something is a member of the target

class or not. The human makes the �nal determination. One can think of this system as

an attention model instead of a classi�er. Therefore I sought to measure how quickly a

user found regions containing target sound events within a recording. How the classi�cation

accuracy of a machine learning model changes over time is not my focus.

As participants labeled audio, the system recorded positions of labeled regions, whenever

labeled regions were added or updated. Based on the recorded log, I evaluated a user's

labeling performance by measuring the proportion of sound events correctly detected by a

user as a function of time spent on the task (0 to 15 minutes). I considered a sound event

correctly labeled if the temporal position of user-labeled region overlaps su�ciently with the

temporal position of its ground truth with one-second tolerance.
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