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ABSTRACT
Tagging of sound events is essential in many research areas.
However, finding sound events and labeling them within a
long audio file is tedious and time-consuming. Building an
automatic recognition system using machine learning tech-
niques is often not feasible because it requires a large number
of human-labeled training examples and fine tuning the model
for a specific application. Fully automated labeling is also not
reliable enough for all uses. We present I-SED, an interactive
sound detection interface using a human-in-the-loop approach
that lets a user reduce the time required to label audio that is
tediously long (e.g. 20 hours) to do manually and has too few
prior labeled examples (e.g. one) to train a state-of-the-art ma-
chine audio labeling system. We performed a human-subject
study to validate its effectiveness and the results showed that
our tool helped participants label all target sound events within
a recording twice as fast as labeling them manually.
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INTRODUCTION
Detecting sound events in recordings and giving them labels
is a key technology with applications in many areas: labeling
speech recordings with speaker names [18], labeling music
recordings by predominant instrument [5], labeling nature
recordings with the species of animals heard in the recording
[13], and identifying gunshots in city recordings [20].

Even though manual annotation by human experts leads to
more accurate results than automatic annotation, there are
many situations where hand-labeling events in recordings is
prohibitively labor intensive. For example, speech and lan-
guage pathologists often wish to label sound and speech events
in day-long (24 hours) recordings of an individual patient’s
environment. Therefore, researchers have put significant effort
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into developing more accurate automatic sound recognition
systems. Many widely used methods for building recognition
systems use supervised statistical machine learning. Examples
include neural networks [10, 15], Gaussian Mixture Models
(GMM) [18, 22], decision trees [12] and Support Vector Ma-
chines (SVM) [9, 17].

Making a general recognition device using these machine
learning techniques typically requires a large number of la-
beled training examples (e.g. thousands or tens of thousands of
labeled sounds). It also requires fine-tuning the model for the
specific application, usually by machine learning experts. This
is not feasible in the case where users do not have thousands
of pre-labeled examples of the target sound. It is also not fea-
sible when providing enough labeled examples is equivalent
to solving the task manually (e.g. the user labels the entire
24-hour recording to give the machine enough training data to
label the 24-hour recording). Even with lots of training data
and model tuning, machine labels may not show sufficient
agreement with human labels. For example, the current state
of the art environmental labeling for language assessment, the
LENA system [25], agrees with human annotators only 76%
of the time on a four-way forced choice labeling task.

We wish to address audio labeling tasks that fall in a mid-
ground: there is too much audio to be labeled effectively by
hand, yet there are too few training examples to effectively
train an accurate model. Our goal is to develop an efficient
way to achieve human-level accuracy with much less human
effort than is typical for manual annotation. We further require
the end user should be able to perform the labeling without any
knowledge about machine learning or audio signal processing.

In this work, we present I-SED, an interactive sound event de-
tector using a human-in-the-loop approach where human and
machine collaborate to speed up the sound event labeling. The
basic idea is to engage users to provide relevance feedback [6]
to the machine labeler. We use this approach to find regions
that contain similar sound events to the target sound. The user
provides a few (one or two) examples to the machine. The ma-
chine’s initial labeling of the audio, based on these examples,
is presented to the human for validation. The human validates
or modifies the machine’s labels. The machine updates its
labeling. This process repeats. The goal is to quickly finish
the labeling task at hand. This is a fundamentally different
goal compared to prior work. In prior work the interactive
learning is used to train a generalized model to retrieve more
relevant items or for later use on different data. To evaluate
our system’s effectiveness, we built a prototype interface and
performed a human subject study.
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Figure 1. System overview of the interactive sound event detector

RELATED WORK
Several audio editing applications such as Audacity [14] and
Sonic Visualizer [3] provide an annotation environment where
a user manually selects a sub-section of an audio track and
labels it. ASAnnoatation [2] provides low-level feature infor-
mation (e.g. pitch content) to help users label, but does not
suggest which high-level semantic labels (e.g. Bob’s voice) to
apply. It also does not allow user-defined labels.

TotalRecall [11] is a semi-automatic multimedia annotation
tool. It automatically detects speech regions on an audio track
(speech or non-speech) for audio segments. It helps a user
to find speech sections of an audio track easily, but is hard-
coded to find speech and cannot be on-the-fly re-purposed for
detecting other kinds of events.

SoundsLike [7] is a tool to detect user-selected sound events
in a movie. It provides similarity graph that visualizes which
audio segments are similar to the user-selected segment as
an aid for easier navigation. The system does not update its
similarity estimates based on user relevance feedback. There-
fore, if the system thinks two segments are similar and the
user does not, there is no way to correct the system. Also,
they did not evaluate how much the similarity graph helps
the annotation process and the interface does not provide any
machine prediction to speed up the labeling process.

Gulluni [8] suggested an interactive approach to label sound
objects within an electro-acoustic music track. Their system
does not allow a user to change boundaries of segmented re-
gions, our system utilizes boundary adjustment of segments as
user feedback to retrain a model. Their approach uses cluster-
ing techniques that require a user to listen to the audio multiple
times to determine the best segmentation level. Multiple listen-
ings can be problematic for long audio files (hours long). They
also did not conduct a user study and only tested their sys-
tem in simulation. In contrast, we performed human-subject
study where participants actually tried our tool. Further, we
implemented a web-based annotator anyone can use.

Interactive learning by users’ relevance feedback has been
actively researched in image retrieval. CueFlick [4, 1] is
an image search application that allows users to create and
adjust rules for concepts (e.g. portraits of people) by providing
the machine with positive and negative examples. The user
feedback iteratively updates the rule to obtain more accurate
image search result. Their interactive approach is aimed at
training the best classifier to retrieve images relevant to a query.
Our goal is to completely label the audio easily and quickly.

Moreover, labeling an audio track requires a different type
of interface, where a user adjusts time boundaries of sound
events and the updated information is used to retrain models.

Crowd-sourced human power was used in [21]. Even though
crowd-sourcing annotation is a great way to collect a lot of
labeled data, it is not appropriate in a situation where the audio
data should be annotated by domain experts or must not be
distributed in public, such as audio recordings of patients for
clinical purpose.

INTERACTIVE SOUND ANNOTATION
We now describe an interactive system that lets a single user
reduce the time required to label audio that is tediously long
for a human (e.g. 20 hours), has target sounds that are sparse
in the audio (10% or less of the audio contains the target),
and has too few prior labeled examples (e.g. one) to train a
state-of-the-art machine audio labeling system.

System overview
Figure 1 shows how our system works with the user to la-
bel target sound events. First, a user uploads an audio track
into the system and defines the target sound (e.g. someone
coughing) by selecting a region on the audio track containing
an example of this sound. If the user cannot find an initial
example in the audio, they may also provide a short example
audio file containing an example.

The system segments the track into small regions whose length
is the same as the initial example and measures features of the
audio file. It then finds the n regions with features most similar
to the example and returns them as candidate examples of the
target sound class (e.g. coughing). The user gives feedback by
labeling the candidate regions as positive or negative.

Based on the user-validated examples, the importance of fea-
tures is weighted. In the new feature space, the system com-
putes the likelihood of each unlabeled region having the target
sound and again hands the user the n most relevant regions.
This process of selecting candidate regions for human evalu-
ation is repeated for a number of rounds. As more examples
are labeled by the user and the features are re-weighted every
round, the system’s suggestion becomes more accurate.

Segmentation and feature extraction
Once a user provides the initial example to the system (e.g.
a 3-second region of a bird call), the entire track is split into
segments whose length is the same as the length of the initial
example (e.g. 3 seconds). To measure distances between the



regions, audio features are extracted over each fixed-length
segment. The length of labeled regions could vary by user
feedback.

We use the first 13 MFCCs (Mel Frequency Cepstral Coef-
ficients) as audio features. These have been used in many
sound recognition tasks [16]. Each segment is split into a
sequence of short frames (e.g. a frame-size of 90ms with 50%
overlap between adjacent frames) and MFCCs are computed
on each frame. Features extracted frame-wise are pooled over
each segment (e.g. 3 seconds) using mean and variance of
instantaneous and delta values. The delta values are the differ-
ence between feature values of two consecutive frames. These
represent basic temporal characteristics of the feature vectors
in one segment. As a result, a 52-dimnesional feature vec-
tor is built for each segment (13 MFCC averages, 13 MFCC
variances, 13 MFCC average delta, 13 MFCC average delta
variance) and distances between regions are measured in the
feature space.

Relevance score
In each round, the system computes the relevance score of
all unlabeled segments, ranks them, and presents the top n
segments to the user. We apply a simple nearest neighbor
(NN) approach used in [6]. The relevance score of an audio
segment s is computed as:

Rel(s) =
d(s,sn)

d(s,sn)+d(s,sp)
(1)

where sp and sn are the nearest positive and nearest negative
segments. Function d(a,b) is the weighted Euclidean distance
between two segments in the feature space. To obtain a more
accurate relevance score in each round, the system re-weights
features using Fisher’s criterion [24]. The weight of the ith
feature is computed as:

w(i) =
(avg( f p

i )�avg( f n
i ))

2

std( f p
i )

2 + std( f n
i )

2 (2)

where f p
i and f n

i are vectors whose elements are ith feature
values of all positive and negative examples, respectively.

User relevance feedback
The system presents n regions to be labeled every round and
the user listens to each region and labels them. Labeling re-
gions plays an important role as feedback for the future rounds
because the machine’s suggestion for each round depends on
the user feedback in the past rounds.

Users provide two kinds of feedback to the system, as shown
in Figure 2. One is to apply positive or negative labels to each
candidate example, which is widely used in interactive image
retrieval systems [23]. The other is to adjust boundaries of
the suggested region if the region does not properly cover the
whole duration of a target sound event. This kind of feedback
is typically not used in document or image retrieval systems,
but is useful for improving retrieval of regions of audio files.

Our system automatically collects additional negative exam-
ples from the user’s boundary adjustments. As shown in figure
3, for example, suppose the user changes the position of the
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Figure 2. As feedback, a user labels regions positive(blue)/negative(red),
or changes the time position and size
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Figure 3. Regions a user listened to, but did not label are labeled as
negative automatically

region (A) and labels it as positive. In this case, we can obtain
not only one positive example, but also one negative example
which is the region (B) that the user did not select, but listened
to. In the same way, adjusting boundaries of the region (C)
generates negative examples (D). This automatic negative la-
beling is beneficial in two ways: 1) A user implicitly labels
more regions, speeding interaction, and 2) Since our system
presents the most relevant examples to a user every round, the
pool of labeled examples tends to skew towards positive, which
could make measuring relevance score problematic. Therefore,
adding negative examples automatically helps in computing
more accurate relevance scores of unlabeled examples.

IMPLEMENTATION
Figure 4 shows the main workspace of the proposed inter-
face. It consists of three main sections: Navigation Map,
Annotation Track, and Region Selection. The Navigation Map
displays a waveform of an entire track and the currently la-
beled regions so that a user navigates and listens to them easily.
The Annotation Track is a zoomed-in version of Navigation
Map. A user can select regions or change their boundaries
by mouse clicking and dragging. The Region Selection dis-
plays the top n candidate regions identified by the machine.
The user can listen to presented regions by clicking the items
in the list and label it by clicking <positive> or <negative>
button. Once the user labels all of them in that round, the
user clicks on <find similar regions> button to give system
feedback and obtains a new set of candidate regions from the
system. Readers can watch the demo video and try the system
out at http://www.bongjunkim.com/ised.

EVALUATION
We conducted a user study to verify whether our interactive
annotation system lets a user detect and label target sounds in
the given audio track faster than with manual annotation. For
manual annotation, we provided the identical interface to the
interactive one except for removal of systems recommenda-
tions. We recruited 20 potential users of our tool, including
people who study speech and language development and re-
searchers in machine learning and audio.

http://www.bongjunkim.com/ised


Figure 4. Screenshot of the interactive sound event detector

Dataset
We used the dataset from the Detection and Classification of
Acoustic Scenes and Events (DCASE) challenge. [19]. To
generate testing tracks for this experiments, we chose files
used for the Office Synthetic (OS) Event Detection Task of
the DCASE 2016 challenge.1 They are two minute-long mono
recordings of sequences containing artificially concatenating
overlapping acoustic events in an office environment (e.g.
coughing, drawer, door knock, speech, etc.). We created each
12 minute-long audio track by concatenating six short tracks in
the dataset to increase the length of an audio file to be over the
10-minute length we anticipate as the minimal length where
someone might wish to speed search. Each 12-minute track
has 11 different sound classes with 18 examples of each class
in the track and all events are randomly distributed over the
track. The total time proportion that each class takes up in a
track is roughly 4% of the entire length of the track.

Task procedure
Each subject participated in one session. Each session consists
of two annotation tasks: one task with the manual annotation
interface and the other with the proposed interactive annotation
interface. Prior to each task, users were given a 4-minute
training session to learn the interface. For each task, the
participant was given 15 minutes to find as many target sounds
as they could within a 12-minute recording using one of the
two interfaces: manual annotator or our interactive detector.

We created two 12 minute-long audio tracks (one for each task)
by randomly reordering sound events in the dataset. A unique
recording is assigned to each task to control the learning effect.
We had participants search for two sonically different target
sounds: knocks and speech. The presentation order of both
interfaces and audio tasks were balanced designed for the
unbiased result. The 20 participants were divided into 4 groups
so that task and interface order was balanced.

1
http://www.cs.tut.fi/sgn/arg/dcase2016/

task-sound-event-detection-in-synthetic-audio

Figure 5. The proportion of examples found over time (quantized every 5
seconds) using two different interfaces, our proposed interactive system
and a manual annotator. Here, N = 20, as each of 20 participants tried
both interfaces in a session. Lines indicate medians, and dark and light
bands of each color show 75th and 25th percentile.

Results
Figure 5 shows the proportion of the target sound events de-
tected by the 20 participants as a function of time they spent.
We considered a sound event correctly detected if the user-
labeled region overlaps sufficiently with its ground truth (tol-
erance for the onset and offset: 1 second). Participants spent
an average of 517 seconds labeling all target sound events
using the interactive detector. It is about 15 rounds per user.
The mean times that participants spent finding 80% of the
sound events are 740 seconds for the manual annotator and
347 seconds for the interactive detector (Wilcoxon signed-rank
test: p<0.05). We can conclude that the interactive detector
helped participants find sound events roughly twice as fast
as the manual annotator. We also compared the interactive
detector to a fully automated baseline system which is the
initial ordering of the audio segments provided by the system,
prior to any user feedback. While participants evaluated about
15% of the total duration of the audio to find all target sounds,
the baseline finds all target sounds when it returns top 33% of
it.

CONCLUSIONS
We presented a new system for sound event detection and
annotation using interactive learning focusing on helping the
user label as many target sound events as possible every round.
The experiment showed that the proposed interface lets users
find sparsely-distributed target sounds roughly twice as fast
as manually labeling the target sounds. The effectiveness of
the proposed approach depends on the retrieval accuracy of
the machine and the user interaction with the system. We will
explore alternate retrieval techniques and a new interaction
design in the context of interactive learning. When to stop
labeling is also an important issue. Developing a systematic
stopping criterion is one area for future work.
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