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Abstract— Audio equalizers (EQs) are perhaps the most 
commonly used tools used in audio production. The SocialEQ 
project is a web-based personalized audio equalization system 
that uses an alternative interface paradigm to the standard 
approach. Here, the user names a desired effect (e.g. make the 
sound “warm”) and teaches the tool (e.g. an equalizer) what 
settings make the sound embody the term. SocialEQ typically 
requires 25 ratings to properly personalize the equalization 
settings. In this paper, we present three methods to improve 
the speed of generating personalized items (audio settings) so 
users can be provided personalized EQ curves after rating a 
much smaller number of examples. These methods can be 
adapted to any situation where collaborative filtering is 
desirable, the end products created for users are unique and 
comparable to each other, but prior users did not rate the same 
set of examples as the current user. Methods are tested on a 
data set of 1635 user sessions. 

Keywords-audio equalizer; transfer learning; collaborative 
filtering; personalized item. 

I.  INTRODUCTION 
Media production tools, such as audio equalizers are 

widely used in music production, video production, radio 
production, etc. In the past, these tools were typically used 
by expert professional engineers. Today, there is a paradigm 
shift and everyone is producing media for web distribution 
and sharing (e.g. Youtube, Soundcloud, Bandcamp). 
Therefore, the need for media production and manipulation 
software that even a non-expert can easily use has increased. 

Audio equalizers (EQs) are commonly used tools used in 
audio production. They selectively boost or cut restricted 
portions of the frequency spectrum, and in doing so alter the 
timbre of a sound. Fig. 1 shows a typical parametric 
equalizer. This tool has on the order of 24 knobs, 15 buttons 
and one wheel. The large number of controls makes it 
difficult for non-experts to use effectively.  

Sabin et.al [1]  developed an alternative interface 
paradigm where the user names a desired effect (e.g. make 
the sound “warm”) and teaches the tool (e.g. an equalizer) 
what settings should be applied to make the sound embody 
the term. The combination of term (“warm”) and settings 
(the boost/cut at each frequency band) is a user-concept (e.g. 
Bob’s warm). 

The SocialEQ [2] project is a web-based personalized 
audio equalization system using the method in [1]. Since it 
has been released on the web, over 3000 user-concepts have 
been taught to the system. Each user-concept in the dataset is 

learned by asking the user to rate a randomly-chosen 25 
audio examples out of a set of 50 examples used for training 
the system. Even though the rating method is good approach 
to build a personalized audio object, it requires too many 
ratings (e.g. 25) from each user to achieve accurate results. 

To reduce the number of questions users need to answer, 
transfer learning was applied in [3]. The idea was to use prior 
knowledge to predict user ratings to unrated audio examples. 
In other words, after the current user rates a small number of 
examples, the system predicts the user’s preference to the 
rest of the unrated examples by using prior user data. The 
method in [3] requires all users to rate the exact same set of 
examples so that distance between lists of user ratings can be 
directly measured. SocialEQ asks users to rate a randomly-
selected 25 examples out of a set of 50 examples, so most 
users only overlap on a portion of their rated examples. 
Therefore the method must be modified so similarity 
between user-concepts can be measured when users have not 
rated the same examples. 

In this paper, we present three ways to improve the speed 
of generating personalized items (audio settings). The first 
improves the learning algorithm in [1]. The next two 
methods speed personalization using prior user data, 
overcoming the limitation in [3]. One allows comparison 
between user-concepts without direct reference to the user 
ratings. The other is a new imputation method that fills in 
missing ratings so that user-concepts can be compared in 
terms of user ratings of items. All three methods can be 
adapted to any situation where collaborative filtering is 

Figure 1. A parametric audio equalizer 
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desirable, the end products created for users are unique and 
comparable to each other, but prior users did not rate the 
same set of examples as the current user.  

II. RELATED WORK 
One way we speed learning in this paper is related to 

memory-based collaborative filtering in recommender 
systems. It makes predictions of a user’s unknown 
preference to items by analyzing the known preferences of 
other users [4]. One of the important problems in memory-
based collaborative filtering is how to deal with a sparse 
user-item matrix to calculate accurate similarity between 
users. Yongli et al.[5] proposed a method to select the most 
informative missing data to impute for memory-based 
(neighbor-based) collaborative filtering. Hao et al.[6] 
presented a missing data prediction algorithm that exploits 
the information both from users and items. The work argues 
that if an item is very popular, the new user will be likely to 
give the item a good rating, so it uses both user correlation 
and item correlation to predict missing ratings. However, the 
argument may not apply in our case because items (i.e. audio 
examples) in this paper were generated on purpose to probe 
user’s preference in relation to an audio concept and the 
same user may rate two presenations of  the same example 
quite differently in light of two different audio concepts (e.g. 
“Is this tinny?” vs. “Is this dark”). 

Jeong et al.[7] defined user credit and converted each set 
of user ratings into the user credit. This makes it possible to 
measure similarity between users even with incomplete 
rating data. We take a similar approach in one of our 
methods to speed learning for equalization curves. Note that 
we are dealing with a situation distinct from those in general 
recommender system (e.g. movies or music 
recommendation). We do not just recommend an exiting 
item from the set of rated items (sound files manipulated by 
EQ), but rather create a new personalized item (an EQ 
setting) that embodies a user’s audio concept. 

III. METHODS 
In this section, we explain how an individualized EQ 

curve is built based on user ratings in the SocialEQ data 
using the original method in [1]. Then we describe an 
improvement to this learning method and two methods to use 
prior user data to speed learning, one which relies on 
imputation of missing user data and one which does not. 

A. The SocialEQ data set 
The SocialEQ data set has 3369 sessions. A single 

session contains 25 ratings of known examples from a single 
user. In each session, the user selects a concept word (e.g. 
“tinny”) and rates examples on a scale from -1 to 1. A user 
rating of 1 means the audio example perfectly matches the 
sound that the user wants (e.g. “very tinny”) and a user rating 
of -1 means the example has the opposite sense (“very NOT 
tinny”). 

An audio example is a sound file that has been modified 
by equalization setting that specifies a boost or cut of the 
amplitude at each of 40 frequencies. This setting is 
represented as a curve (an EQ curve) with 40 data points  

(gains, frequency bands) representing log-spaced frequencies 
from 20 Hz to 19682 Hz (Fig. 2). When a user gives a rating 
r1 for an audio example, we get a rating value for each of the 
40 gains at these 40 frequencies. If a user rates, for instance, 
25 audio examples, 25 (rating, gain) data points for every 
frequency band are generated. Within a session all examples 
use EQ curves applied to the same audio file. All EQ curves 
for every session were drawn from an underlying set of 50 
EQ curves.  

We filtered sessions with the inclusion criteria used in [2] 
so that only session from people who put in effort and rated 
examples consistently were used in our study. We removed 
all sessions where the participant took less than 60 seconds 
to complete the task. We also removed all sessions where the 
participant gave the default rating for more than 5 out of the 
40 examples. We also removed any session where the 
participant responded “no” to the survey question: “Was the 

listening environment quiet?” Finally, 15 of the 40 examples 
each participant rated were repeat examples. This let us test 
for consistency of user responses. We measured consistency 
using Pearson correlation between each participant’s rating 
of the first presentation of an example with that of the second 
presentation of the example. A participant was excluded if 
their consistency fell more than one standard deviation below 
the mean across all participants. After filtering out the low 
quality data we have 1635 prior sessions. All results in this 
paper use this set of 1635 sessions.  

B. The Baseline Learning Method 
A user-concept is the ideal EQ curve that would modify 

sound to embody the desired word (i.e. the perfect “tinny” 
EQ). In this work, we assume that the baseline learning 
method from [1] perfectly learns the user-concept when 
given 25 rated examples in a session from the SocialEQ data.  

Fig. 2 shows an overview of the baseline learning 
method from [1]. The input is the set of 25 rated 40-band EQ 
curves in a session. For each frequency band we calculate a 
regression slope from the 25 ratings. The regression slope at 
each frequency band represents relative gain of EQ at the 

Figure 2. An overview of the process of the baseline learning method 
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frequency that the user would prefer. This results in a 40-
point EQ curve that we call the user-concept. For a more 
detailed explanation about the EQ building process, see [1].  

C. Speed Learning with Reestimation 
An estimate of the user-concept built with the baseline 

method can be unreliable if learned from only a few rated 
examples (e.g. 5 examples, instead of 25). An estimate 
learned from fewer ratings can, however, be used as the input 
to predict ratings on examples the user has not yet rated. We 
can then use the combination of real and estimated ratings to 
reestimate the user-concept. The method is as follow: we 
obtain the EQ curve genearted from n user ratings (e.g. 5 
ratings), using the baseline method. Next, we predict ratings 
to the rest of unrated examples (the remaining 20 unrated 
examples) by calculating the Pearson correlation between the 
estimated user-concept EQ curve and the EQ curve for each 
unrated audio example. We use this correlation coefficient as 
an estimated rating. We then reestimate the user-concept EQ 
curve by building a new curve using both the estimated (e.g. 
20 estimates) and actual (e.g. 5) ratings back into the 
baseline method. We call this method reestimation. 

D. Transfer learning and active learning  
Transfer learning [8] is an effective learning method to 

speed concept learning through using prior knowledge from 
previously learned tasks. We can further improve our 
estimate of the output EQ curve by using prior user data 
(user-concepts) to augment the information gained from the 
current user’s ratings. The idea is that if two user-concepts 
are close to each other in terms of either the ratings users 
gave to examples or in terms of the EQ curve learned from 
the partial set of ratings (even after only a few ratings), the 
resulting user-concept EQ curves learned after all 25 ratings 
should also be similar. When a user rates n examples, we 
measure similarities between the current user-concept and 
prior user-concepts in n-dimensional rating space or 40-
dimensional EQ space. Once we have the similarity between 
the current user-concept and all prior user-concepts, we can 
estimate the current user’s ratings of currently-unrated 
examples by using a K-nearest neighbor linear combination 
of prior data, weighted by similarity to the current user-
concept. As a similarity measure, in this work, Pearson 
correlation is used because it accounts for scaling differences 
between users (i.e. user A rates everything in the range 1 to -
1 and user B rates things in the range 0.01 to -0.01). We 
select the 64 closest prior user-concepts because a pilot study 
showed this number was optimal for generating good 
estimates. 

Active Learning refers to the case where the learner 
selects the examples to learn from, rather than passively 
receiving examples chosen by the teacher. We apply the 
active learning method used in [9], which is to present 
examples to the user ordered by the variance in how those 
examples were rated across all prior users. This lets us 
quickly differentiate between prior user-concepts and locate 
the current user’s concept in the space of prior user-concepts. 
This approach was selected for simplicity, effectiveness and 
consistency with the prior work we build upon. A 

comparison to other approaches is outside the scope of this 
paper. We now describe two methods of applying K-nearest 
neighbor estimation.  

E. Using Prior Data with Missing Values without need for 
imputation of missing values 
In our case, the equalization curves learned for any two 

users can be directly compared, even though they were 
generated from different sets of rated objects. Therefore, 
instead of filling in estimates for “missing” ratings so that all 
prior users can be compared, we create an EQ curve from the 
current user’s set of ratings (even if they have only rated a 
few examples) and compare that curve to the EQ curves 
learned for each prior user. Note, prior user EQ curves are 
learned with the baseline method from all 25 examples in the 
session. This lets us apply data from prior users, even if they 
rated completely different sets of example EQ settings. 

From the current user’s ratings, we build an EQ curve 
from n ratings using the baseline method and measure the 
similarity of this (admittedly bad) EQ curve, to each of the 
EQ curves learned from previous users. This is done with 
Pearson correlation. We then create a composite EQ curve 
for the current user from the 64 closest EQ curves from prior 
users. The weight of each prior user’s user-concept EQ curve 
is proportional to its similarity to the current user’s curve. 

F. Imputation of Missing Values in Rating Data Set 
In this method, we compare users based on their ratings 

of examples, rather than based on the final EQ curve 
estimated for each user-concept. Users in the SocialEQ data 
set have each rated 25 randomly-selected examples out of a 
set of 50 from which the examples were drawn for all 
sessions. Therefore, to make prior user-concepts comparable, 
we must fill in (impute) missing ratings. Once we impute 
ratings for all unrated examples, we directly compare user-
concepts in rating space. The objective is to estimate user 
ratings to the 25 unrated examples, so an EQ curve learned 
from the imputed rating set (including actual 25 and 
estimated 25 ratings) is identical to the EQ curve learned 
from just the actual 25 user ratings. 

Suppose we predict a user rating r to the example i. To 
find a missing rating that does not change a previously 
learned EQ curve, we use the slopes of linear regression lines 
that can be derived from existing ratings. Since we already 
know gains over frequencies of all audio examples, we can 
calculate the estimate of a missing rating to an example using 
(1). 

� �

�

�

���� � ��
�

���          (1) 
,where si and bi are the slope and intercept of regression line 
at frequency band fi of the original EQ curve, gi is the gain at 
the frequency, and n is the number of frequency bands. We 
perform imputation for all unrated examples and all prior 
sessions so that every session has ratings for all 50 possible 
examples. 

To calculate the weight prior sessions have on learning a 
new concept we measure similarity between the current 
user’s ratings and prior user ratings. Let s(u, v) be similarity 
(Pearson correlation) between the new user-concept u and 
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each prior user-concept v. The weight of the prior user-
concept v can be derived by (2). 

 
� � �

� ��� ��

� ��� �����

� � � � �,           (2)
 
where U is a set of prior user-concepts. In this work, we limit 
U to be the 64 user-concepts whose ratings of examples are 
most similar to the current user’s ratings. 
 

�
�
��� � � ���� � ��������         (3)

 
Based on the weights, the current user’s future ratings to 

the audio example q are calculated by (3) which is the 
weighted sum of prior ratings. 

IV. THE EXPERIMENT 
The purpose of this work is to reduce the number of rated 

examples needed to estimate a user’s desired audio concept. 
To do that, we first evaluate the imputation technique 
described in Section III-F by comparing other common 
imputation methods. We then measure the learning speed of 
each method described in Section III. 

A. Data imputation evaluation 
We compared the imputation method in Section III-F. 

(labeled Reg, for regression) to three widely-used techniques 
to impute missing values. These are: 1) Pearson correlation 
coefficient between a user’s leanred EQ curve and unrated 
audio examples; (Corr) 2) mean value of rating to certain 
examples across all prior users (Mean); and 3) Matrix 
Factorization (MF) [10].  

Fig. 3 shows the pairwise Pearson correlation between 
EQ curves learned from 25 actual ratings to EQ curves 
generated from 25 actual ratings + 25 imputed ratings on 
1635 user-concepts from the SocialEQ data set. Similarity 
1.0 means that EQ curve learned from data including 
imputed ratings is identical to original EQ curves learned 
from only the 25 actual ratings. The mean similarity values 

for the two methods that show the best performance (Reg 
and Corr) are 0.992 and 0.969, respectively. More 
importantly, the figure shows that our method results in more 
stable and accurate performance. 

Even in the worst case, correlation is above 0.95, while 
the other three methods have large variance in their 
correlation. This means that our imputation method is much 
less likely than existing methods to skew the outcome by 
creating bad data estimates. Therefore, it is the best method 
to let us use prior data in transfer learning.  

B. Learning methods evaluation 
The methods described in Section III were designed to let 

the system learn user-concepts with fewer ratings than 
required by the baseline system. We measure the ability of 
each approach to speed learning as follow: First, we select 
one of the 1635 prior sessions from the SocialEQ data. Each 
session has 25 rated examples. Then, we select n audio 
examples rated by the user in that session. We then generate 
an EQ curve to represent the user-concept using each of the 
methods from Section III. To measure the correctness of 
each estimated EQ curve, the estimated EQ curve is 
compared to the actual EQ generated from the user’s full set 
of rated examples for that session. For the comparison, 
Pearson correlation was used and the correlation coefficient 
is called machine-user correlation.  We perform the 
simulation for all 1635 prior sessions and summarized the 
1635 the machine-user correlation values by taking the 
mean.  

Fig. 4 shows the mean machine-correlation as a function 
of the number of rated examples n, comparing all learning 
methods. All three methods outperformed the baseline 
method. Using our imputation technique and measuring 
similarities to the imputed prior data in rating space was the 
best solution tested. For example, when we use the method, a 
correlation of 0.8 to the final EQ curve learned from 25 rated 
examples can be achieved using only 7 ratings. But the 
baseline method requires 13 ratings for the same level of 
correlation.  

Figure 4. The mean machine-user correlation comparing all learning 
methods 

Figure 3. Simlarity between EQ curves before and after imputation 

497498



V. DYNAMIC DATA ENVIRONMENTS 
The prior analysis of algorithms had the implicit 

assumption that the database of prior users remains constant. 
We now revisit our algorithms and consider the case where 
the database of prior users is growing over time. Consider 
the case where the nth user’s data (responses to examples 
and learned EQ curve) has just been added to the database. 
We now wish to find an EQ curve for user n+1.  What is the 
time complexity to learn an EQ curve for user n+1? 

The baseline method described in III-B takes no prior 
user data into account and therefore its time complexity is 
constant with respect to the number of prior users n. The 
same applies to the reestimation method in III-C. When 
transfer learning is applied (Section III-D) a distance must be 
determined between the current user and all prior users. This 
is clearly O(n). It can, however, be reduced to something 
approximating O(log(n)) through the use of database 
organizational techniques, such as vantage point trees [11]. 

Our imputation method presented in Section III-F only 
needs data from one user-concept to impute missing values 
of that user’s ratings. It does not depend on prior users’ data 
and therefore takes constant time with respect to n. Therefore 
the algorithm itself does not need to be modified in the 
dynamic situation even though it requires more time to 
compute the result. The commonly-used matrix factorization 
technique, on the other hand, requires a refactorization of the 
full dataset matrix each time a new user is added. 

VI. CONCLUSIONS 
We presented three methods to reduce the number of 

ratings required for creating a personalized audio EQ curve 
and tested the methods with SocialEQ data set.  Each 
approach showed improvement over the baseline learning 
method. When prior data is unavailable, then our 
reestimation method in Section III-C improves learning. If 
prior data is available and imputation of missing data is 
infeasible, Section III-E describes a method that improves 
learning even more. If missing ratings can be reliably 
estimated, then our approach in Section III-F further 
improves learning. What is more, for our data set, the 
imputation method in Section III-F is novel and is 
significantly better in estimating missing values than existing 

techniques, such as Matrix Factorization. This work can be 
adapted to any situation where a system generates a 
personalized item based on user-ratings to sample items. 
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